SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Sample Preparation, Extraction and PCR Testing
2.3. Validation of the PCR System for the Detection of SARS-CoV-2
2.4. Serological Screening
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Lancet Respiratory Medicine. COVID-19 Transmission—Up in the Air. Lancet Respir. Med. 2020, 8, 1159. [Google Scholar] [CrossRef] [PubMed]
- Boklund, A.; Gortázar, C.; Pasquali, P.; Roberts, H.; Nielsen, S.S.; Stahl, K.; Stegeman, A.; Baldinelli, F.; Broglia, A.; Van Der Stede, Y.; et al. Monitoring of SARS-CoV-2 Infection in Mustelids. EFSA J. 2021, 19, e06459. [Google Scholar] [CrossRef]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Munnink, B.B.O.; der Honing, R.W.H.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 Infection in Farmed Minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Domańska-Blicharz, K.; Orłowska, A.; Smreczak, M.; Niemczuk, K.; Iwan, E.; Bomba, A.; Lisowska, A.; Opolska, J.; Trȩbas, P.; Potyrało, P.; et al. Mink SARS-CoV-2 Infection in Poland—Short Communication. J. Vet. Res. 2021, 65, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; DeLiberto, T.J.; et al. SARS-CoV-2 Exposure in Wild White-Tailed Deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, e2114828118. [Google Scholar] [CrossRef]
- Aguiló-Gisbert, J.; Padilla-Blanco, M.; Lizana, V.; Maiques, E.; Muñoz-Baquero, M.; Chillida-Martínez, E.; Cardells, J.; Rubio-Guerri, C. First Description of SARS-CoV-2 Infection in Two Feral American Mink (Neovison vison) Caught in the Wild. Animals 2021, 11, 1422. [Google Scholar] [CrossRef]
- Sit, T.H.C.; Brackman, C.J.; Ip, S.M.; Tam, K.W.S.; Law, P.Y.T.; To, E.M.W.; Yu, V.Y.T.; Sims, L.D.; Tsang, D.N.C.; Chu, D.K.W.; et al. Infection of Dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- Sailleau, C.; Dumarest, M.; Vanhomwegen, J.; Delaplace, M.; Caro, V.; Kwasiborski, A.; Hourdel, V.; Chevaillier, P.; Barbarino, A.; Comtet, L.; et al. First Detection and Genome Sequencing of SARS-CoV-2 in an Infected Cat in France. Transbound. Emerg. Dis. 2020, 67, 2324–2328. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; VandeWoude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Experimental Infection of Domestic Dogs and Cats with SARS-CoV-2: Pathogenesis, Transmission, and Response to Reexposure in Cats. Proc. Natl. Acad. Sci. USA 2020, 117, 26382–26388. [Google Scholar] [CrossRef]
- Böszörményi, K.P.; Stammes, M.A.; Fagrouch, Z.C.; Kiemenyi-Kayere, G.; Niphuis, H.; Mortier, D.; van Driel, N.; Nieuwenhuis, I.; Zuiderwijk-Sick, E.; Meijer, L.; et al. Comparison of SARS-CoV-2 Infection in Two Non-Human Primate Species: Rhesus and Cynomolgus Macaques. bioRxiv 2020, 10, 05-369413. [Google Scholar] [CrossRef]
- Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of Ferrets, Cats, Dogs, and Other Domesticated Animals to SARS-Coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Beer, M. Experimental Infection of Cattle with SARS-CoV-2—Volume 26, Number 12—December 2020—Emerging Infectious Diseases Journal—CDC. Emerg. Infect. Dis. 2020, 26, 2979–2981. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.A.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B.L.; Koopmans, M.P.G.; et al. SARS-CoV-2 Is Transmitted via Contact and via the Air between Ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in Fruit Bats, Ferrets, Pigs, and Chickens: An Experimental Transmission Study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef] [PubMed]
- Sia, S.F.; Yan, L.M.; Chin, A.W.H.; Fung, K.; Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and Transmission of SARS-CoV-2 in Golden Hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef]
- Griffin, B.D.; Chan, M.; Tailor, N.; Mendoza, E.J.; Leung, A.; Warner, B.M.; Duggan, A.T.; Moffat, E.; He, S.; Garnett, L.; et al. SARS-CoV-2 Infection and Transmission in the North American Deer Mouse. Nat. Commun. 2021, 12, 3612. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, G.; Wang, Y.; Ren, W.; Zhao, X.; Ji, F.; Zhu, Y.; Feng, F.; Gong, M.; Ju, X.; et al. Functional and Genetic Analysis of Viral Receptor ACE2 Orthologs Reveals a Broad Potential Host Range of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2021, 118, e2025373118. [Google Scholar] [CrossRef]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.-P.; Pfenning, A.R.; Zhao, H.; et al. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. Proc. Natl. Acad. Sci. USA 2020, 117, 22311–22322. [Google Scholar] [CrossRef]
- Mollentze, N.; Keen, D.; Munkhbayar, U.; Biek, R.; Streicker, D.G. Variation in the ACE2 Receptor Has Limited Utility for SARS-CoV-2 Host Prediction. Elife 2022, 11, e80329. [Google Scholar] [CrossRef] [PubMed]
- Nerpel, A.; Yang, L.; Sorger, J.; Käsbohrer, A.; Walzer, C.; Desvars-Larrive, A. SARS-ANI: A Global Open Access Dataset of Reported SARS-CoV-2 Events in Animals. Sci. Data 2022, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Goraichuk, I.V.; Arefiev, V.; Stegniy, B.T.; Gerilovych, A.P. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res. 2021, 302, 198473. [Google Scholar] [CrossRef] [PubMed]
- McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 2020, 11, e02220-20. [Google Scholar] [CrossRef]
- Bartlett, S.L.; Diel, D.G.; Wang, L.; Zec, S.; Laverack, M.; Martins, M.; Caserta, L.C.; Killian, M.L.; Terio, K.; Olmstead, C.; et al. SARS-CoV-2 Infection and Longitudinal Fecal Screening in Malayan Tigers (Panthera Tigris Jacksoni), Amur Tigers (Panthera tigris altaica), and African Lions (Panthera leo krugeri) at the Bronx Zoo, New York, USA. J. Zoo Wildl. Med. 2021, 51, 733–744. [Google Scholar] [CrossRef]
- Vercammen, F.; Cay, B.; Gryseels, S.; Balmelle, N.; Joffrin, L.; Van Hoorde, K.; Verhaegen, B.; Mathijs, E.; Van Vredendaal, R.; Dharmadhikari, T.; et al. SARS-CoV-2 Infection in Captive Hippos (Hippopotamus amphibius), Belgium. Animals 2023, 13, 316. [Google Scholar] [CrossRef]
- Sciensano. Belgium COVID-19 Dashboard—Variants. Available online: https://datastudio.google.com/embed/reporting/c14a5cfc-cab7-4812-848c-0369173148ab/page/urrUC (accessed on 4 December 2022).
- Wille, M.; Yin, H.; Lundkvist, Å.; Xu, J.; Muradrasoli, S.; Järhult, J.D. RNAlater® Is a Viable Storage Option for Avian Influenza Sampling in Logistically Challenging Conditions. J. Virol. Methods 2018, 252, 32–36. [Google Scholar] [CrossRef]
- Young, R.R.; Jenkins, K.; Araujo-Perez, F.; Seed, P.C.; Kelly, M.S. Long-term Stability of Microbiome Diversity and Composition in Fecal Samples Stored in ENAT Medium. MicrobiologyOpen 2020, 9, e1046. [Google Scholar] [CrossRef]
- World Organisation for Animal Health—Belgium. Official Report—Infection of Hippopotamus with SARS-CoV-2 in Belgium Zoo. Available online: www.health.belgium.be (accessed on 11 January 2023).
- Centers for Disease Control and Prevention. CDC’s Diagnostic Test for COVID-19 Only and Supplies. Laboratories. CDC 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/viru (accessed on 5 January 2023).
- Muradrasoli, S.; Mohamed, N.; Hornyák, Á.; Fohlman, J.; Olsen, B.; Belák, S.; Blomberg, J. Broadly Targeted Multiprobe QPCR for Detection of Coronaviruses: Coronavirus Is Common among Mallard Ducks (Anas platyrhynchos). J. Virol. Methods 2009, 159, 277–287. [Google Scholar] [CrossRef]
- Joffrin, L.; Goodman, S.M.; Wilkinson, D.A.; Ramasindrazana, B.; Lagadec, E.; Gomard, Y.; Le Minter, G.; Dos Santos, A.; Corrie Schoeman, M.; Sookhareea, R.; et al. Bat Coronavirus Phylogeography in the Western Indian Ocean. Sci. Rep. 2020, 10, 6873. [Google Scholar] [CrossRef] [Green Version]
- Mariën, J.; Michiels, J.; Heyndrickx, L.; Nkuba-Ndaye, A.; Ceulemans, A.; Bartholomeeusen, K.; Madinga, J.; Mbala-Kingebeni, P.; Vanlerberghe, V.; Ahuka-Mundeke, S.; et al. Evaluation of a Surrogate Virus Neutralization Test for High-Throughput Serosurveillance of SARS-CoV-2. J. Virol. Methods 2021, 297, 114228. [Google Scholar] [CrossRef]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and Other Coronaviruses in the Environment and on Common Touch Surfaces and the Influence of Climatic Conditions: A Review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-D.; Wang, Z.-Y.; Zhang, S.-F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.-B.; Dong, Y.-Z.; Chi, X.-Y.; et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1586. [Google Scholar] [CrossRef] [PubMed]
- Marquès, M.; Domingo, J.L. Contamination of Inert Surfaces by SARS-CoV-2: Persistence, Stability and Infectivity. A Review. Environ. Res. 2021, 193, 110559. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Ratnesar-Shumate, S.; Williams, G.; Green, B.; Krause, M.; Holland, B.; Wood, S.; Bohannon, J.; Boydston, J.; Freeburger, D.; Hooper, I.; et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J. Infect. Dis. 2020, 222, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Yongchen, Z.; Shen, H.; Wang, X.; Shi, X.; Li, Y.; Yan, J.; Chen, Y.; Gu, B. Different Longitudinal Patterns of Nucleic Acid and Serology Testing Results Based on Disease Severity of COVID-19 Patients. Emerg. Microbes Infect. 2020, 9, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cen, M.; Hu, M.; Du, L.; Hu, W.; Kim, J.J.; Dai, N. Prevalence and Persistent Shedding of Fecal SARS-CoV-2 RNA in Patients With COVID-19 Infection: A Systematic Review and Meta-Analysis. Clin. Transl. Gastroenterol. 2021, 12, e00343. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Fröberg, J.; Gillard, J.; Philipsen, R.; Lanke, K.; Rust, J.; van Tuijl, D.; Teelen, K.; Bousema, T.; Simonetti, E.; van der Gaast-de Jongh, C.E.; et al. SARS-CoV-2 Mucosal Antibody Development and Persistence and Their Relation to Viral Load and COVID-19 Symptoms. Nat. Commun. 2021, 12, 5621. [Google Scholar] [CrossRef] [PubMed]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal Observation and Decline of Neutralizing Antibody Responses in the Three Months Following SARS-CoV-2 Infection in Humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Isho, B.; Abe, K.T.; Zuo, M.; Jamal, A.J.; Rathod, B.; Wang, J.H.; Li, Z.; Chao, G.; Rojas, O.L.; Bang, Y.M.; et al. Persistence of Serum and Saliva Antibody Responses to SARS-CoV-2 Spike Antigens in COVID-19 Patients. Sci. Immunol. 2020, 5, eabe5511. [Google Scholar] [CrossRef]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and Decay of Human Antibody Responses to the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 Patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Cushing, A.C.; Sawatzki, K.; Grome, H.N.; Puryear, W.B.; Kelly, N.; Runstadler, J. Duration of Antigen Shedding and Development of Antibody Titers in Malayan Tigers (Panthera tigris jacksoni) Naturally Infected with SARS-CoV-2. J. Zoo Wildl. Med. 2021, 52, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Grassi, A.; Lorusso, E.; Patterson, E.I.; Lorusso, A.; Desario, C.; Anderson, E.R.; Vasinioti, V.; Wastika, C.E.; Hughes, G.L.; et al. Long-term Persistence of Neutralizing SARS-CoV-2 Antibodies in Pets. Transbound. Emerg. Dis. 2022, 69, 3073–3076. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.B.; Fonager, J.; Jørgensen, C.S.; Lassaunière, R.; Hammer, A.S.; Quaade, M.L.; Boklund, A.; Lohse, L.; Strandbygaard, B.; Rasmussen, M.; et al. Infection, Recovery and Re-Infection of Farmed Mink with SARS-CoV-2. PLoS Pathog. 2021, 17, e1010068. [Google Scholar] [CrossRef]
- Hamer, S.A.; Nunez, C.; Roundy, C.M.; Tang, W.; Thomas, L.; Richison, J.; Benn, J.S.; Auckland, L.D.; Hensley, T.; Cook, W.E.; et al. Persistence of SARS-CoV-2 Neutralizing Antibodies Longer than 13 Months in Naturally Infected, Captive White-Tailed Deer (Odocoileus virginianus), Texas. Emerg. Microbes Infect. 2022, 11, 2112–2115. [Google Scholar] [CrossRef]
Antwerp | Planckendael | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Family | Species | Session 1 | Session 2 | Session 3 | Session 4 | Session 5 | Total | Session 1 | Session 2 | Session 3 | Session 4 | Session 5 | Total |
Cetartiodactyla | Bovidae | Addax nasomaculatus | 5 | 5 | 5 | 4 | 19 | |||||||
Bison bison | 5 | 5 | 5 | 5 | 20 | |||||||||
Bison bonasus | 3 | 3 | 3 | 3 | 12 | |||||||||
Bos taurus | 3 | 3 | 3 | 3 | 12 | |||||||||
Budorcas taxicolor | 2 | 2 | 2 | 2 | 8 | |||||||||
Capra hircus | 5 | 5 | 5 | 5 | 20 | |||||||||
Cephalophus natalensis | 2 | 2 | 2 | 2 | 8 | |||||||||
Gazella leptoceros | 3 | 3 | 3 | 1 | 10 | |||||||||
Madoqua kirkii | 4 | 4 | 4 | 12 | 5 | 5 | 5 | 3 | 18 | |||||
Nanger dama | 3 | 3 | 3 | 5 | 14 | |||||||||
Oryx dammah | 1 | 1 | 1 | 1 | 4 | |||||||||
Oryx leucoryx | 1 | 1 | 1 | 1 | 4 | |||||||||
Ovis aries | 3 | 3 | 3 | 2 | 11 | 5 | 5 | 5 | 3 | 18 | ||||
Ovis aries laticaudatus | 2 | 2 | 2 | 6 | ||||||||||
Syncerus caffer | 5 | 5 | 5 | 5 | 20 | |||||||||
Tragelaphus eurycerus | 3 | 3 | 3 | 3 | 4 | 16 | 3 | 3 | 3 | 1 | 10 | |||
Camelidae | Camelus bactrianus | 5 | 5 | 5 | 5 | 20 | ||||||||
Lama guanicoe | 5 | 5 | 5 | 3 | 18 | |||||||||
Vicugna pacos | 5 | 5 | 5 | 10 | 25 | |||||||||
Vicugna vicugna | 5 | 5 | 5 | 4 | 19 | |||||||||
Cervidae | Cervus canadensis | 5 | 5 | 5 | 5 | 20 | ||||||||
Muntiacus reevesi | 5 | 5 | 5 | 5 | 20 | |||||||||
Equidae | Equus asinus | 2 | 2 | 2 | 2 | 8 | ||||||||
Equus caballus | 4 | 4 | 4 | 12 | ||||||||||
Equus ferus przewalskii | 4 | 4 | ||||||||||||
Equus grevyi | 5 | 5 | 5 | 5 | 20 | |||||||||
Equus zebra | 4 | 4 | 4 | 4 | 16 | |||||||||
Giraffidae | Giraffa camelopardalis | 3 | 3 | 3 | 3 | 12 | 5 | 5 | 5 | 5 | 20 | |||
Okapia johnstoni | 5 | 5 | 5 | 4 | 19 | |||||||||
Hippopotamidae | Hippopotamus amphibius | 2 | 2 | 2 | 2 | 8 | ||||||||
Suidae | Sus cebifrons | 4 | 4 | 4 | 4 | 16 | ||||||||
Sus scrofa | 3 | 3 | 3 | 3 | 12 | |||||||||
Tayassuidae | Catagonus wagneri | 5 | 5 | 5 | 5 | 20 | ||||||||
Total | 33 | 33 | 33 | 27 | 4 | 130 | 102 | 102 | 102 | 95 | 401 | |||
Carnivora | Canidae | Crocuta crocuta | 2 | 2 | 2 | 3 | 9 | |||||||
Speothos venaticus | 5 | 5 | 5 | 5 | 20 | |||||||||
Felidae | Acinonyx jubatus | 2 | 2 | 2 | 2 | 2 | 10 | |||||||
Panthera leo | 3 | 3 | 3 | 3 | 6 | 18 | 3 | 3 | 3 | 3 | 3 | 15 | ||
Panthera onca | 1 | 1 | 1 | 1 | 2 | 6 | ||||||||
Panthera pardus | 1 | 1 | 1 | 3 | ||||||||||
Panthera uncia | 2 | 2 | 2 | 2 | 8 | |||||||||
Herpestidae | Cynictis penicillata | 5 | 5 | 5 | 5 | 20 | ||||||||
Mungos mungo | 5 | 5 | 5 | 5 | 20 | |||||||||
Suricata suricatta | 5 | 5 | 5 | 3 | 18 | |||||||||
Mustelidae | Aonyx cinereus | 1 | 1 | 1 | 3 | 4 | 4 | 4 | 12 | |||||
Meles meles | 1 | 1 | 1 | 1 | 4 | |||||||||
Otariidae | Phoca vitulina | 7 | 7 | 7 | 2 | 23 | ||||||||
Zalophus californianus | 4 | 4 | 4 | 2 | 14 | |||||||||
Procyonidae | Nasua narica | 1 | 1 | 1 | 2 | 5 | ||||||||
Nasua nasua | 3 | 3 | 3 | 9 | ||||||||||
Procyon lotor | 2 | 2 | 2 | 6 | ||||||||||
Ursidae | Ailurus fulgens | 2 | 2 | 2 | 2 | 8 | ||||||||
Tremarctos ornatus | 2 | 2 | 2 | 2 | 8 | |||||||||
Total | 25 | 25 | 25 | 15 | 6 | 96 | 36 | 36 | 36 | 28 | 7 | 143 | ||
Chiroptera | Pteropodidae | Rousettus aegyptiacus | 5 | 5 | 5 | 2 | 17 | |||||||
Total | 5 | 5 | 5 | 2 | 17 | |||||||||
Dasyuromorphia | Dasyuridae | Sarcophilus harrisii | 3 | 3 | 3 | 3 | 12 | |||||||
Total | 3 | 3 | 3 | 3 | 12 | |||||||||
Diprotodontia | Macropodidae | Dendrolagus goodfellowi | 1 | 1 | 1 | 3 | ||||||||
Macropus giganteus | 4 | 4 | 4 | 3 | 15 | |||||||||
Macropus parma | 3 | 3 | 3 | 9 | ||||||||||
Macropus rufus | 1 | 1 | 2 | 4 | ||||||||||
Thylogale brunii | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 4 | |||||
Wallabia bicolor | 5 | 5 | 5 | 5 | 20 | |||||||||
Phascolarctidae | Phascolarctos cinereus | 1 | 1 | 1 | 2 | 5 | 2 | 2 | 2 | 1 | 7 | |||
Potoroidae | Bettongia penicillata | 1 | 1 | |||||||||||
Total | 10 | 10 | 10 | 6 | 36 | 9 | 9 | 8 | 9 | 35 | ||||
Lagomorpha | Leporidae | Oryctolagus cuniculus | 5 | 5 | 5 | 5 | 20 | |||||||
Total | 5 | 5 | 5 | 5 | 20 | |||||||||
Macroscelidea | Macroscelididae | Rhynchocyon petersi | 3 | 3 | 3 | 2 | 11 | |||||||
Total | 3 | 3 | 3 | 2 | 11 | |||||||||
Monotremata | Tachyglossidae | Tachyglossus aculeatus | 2 | 2 | 2 | 2 | 8 | |||||||
Total | 2 | 2 | 2 | 2 | 8 | |||||||||
Perissodactyla | Rhinocerotidae | Ceratotherium simum simum | 2 | 2 | 2 | 2 | 8 | |||||||
Rhinoceros unicornis | 2 | 2 | 2 | 3 | 9 | |||||||||
Tapiridae | Tapirus indicus | 3 | 3 | 3 | 2 | 4 | 15 | |||||||
Total | 5 | 5 | 5 | 4 | 4 | 23 | 2 | 2 | 2 | 3 | 9 | |||
Pilosa | Myrmecophagidae | Myrmecophaga tridactyla | 2 | 2 | 2 | 2 | 2 | 10 | ||||||
Tamandua tetradactyla | 1 | 1 | 1 | 3 | ||||||||||
Total | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 10 | ||||
Primates | Aotidae | Aotus trivirgatus | 1 | 1 | 1 | 3 | ||||||||
Atelidae | Ateles fusciceps | 5 | 5 | 5 | 5 | 6 | 26 | |||||||
Callitrichidae | Callimico goeldii | 5 | 5 | 5 | 5 | 2 | 22 | |||||||
Callithrix geoffroyi | 5 | 5 | 5 | 5 | 2 | 22 | ||||||||
Cebuella pygmaea | 1 | 1 | 1 | 1 | 2 | 6 | ||||||||
Leontopithecus chrysomelas | 3 | 3 | 3 | 9 | 4 | 4 | 4 | 3 | 5 | 20 | ||||
Saguinus imperator | 2 | 2 | 2 | 2 | 1 | 9 | ||||||||
Cebidae | Saimiri boliviensis | 3 | 3 | 3 | 9 | |||||||||
Cercopithecidae | Cercopithecus hamlyni | 3 | 3 | 3 | 4 | 3 | 16 | |||||||
Colobus guereza | 4 | 4 | 4 | 4 | 2 | 18 | ||||||||
Macaca nigra | 5 | 5 | 5 | 5 | 3 | 23 | ||||||||
Macaca sylvanus | 5 | 5 | 5 | 5 | 3 | 23 | ||||||||
Mandrillus sphinx | 5 | 5 | 5 | 5 | 4 | 24 | ||||||||
Hominidae | Gorilla beringei | 1 | 1 | 1 | 1 | 1 | 5 | |||||||
Gorilla gorilla | 5 | 5 | 5 | 5 | 5 | 25 | ||||||||
Pan paniscus | 5 | 5 | 5 | 5 | 18 | 38 | ||||||||
Pan troglodytes | 5 | 5 | 5 | 5 | 11 | 31 | ||||||||
Hylobatidae | Nomascus leucogenys | 2 | 2 | 2 | 2 | 2 | 10 | |||||||
Lemuridae | Eulemur macaco | 2 | 2 | 2 | 3 | 2 | 11 | |||||||
Lemur catta | 2 | 2 | 2 | 2 | 8 | 5 | 5 | 5 | 5 | 5 | 25 | |||
Varecia rubra | 1 | 1 | 1 | 3 | ||||||||||
Loridae | Loris lydekkerianus | 5 | 5 | 5 | 5 | 2 | 22 | |||||||
Lorisidae | Nycticebus pygmaeus | 5 | 5 | 5 | 2 | 17 | ||||||||
Total | 53 | 53 | 53 | 46 | 39 | 244 | 36 | 36 | 36 | 33 | 40 | 181 | ||
Proboscidea | Elephantidae | Elephas maximus | 2 | 2 | 2 | 6 | 5 | 5 | 5 | 5 | 20 | |||
Total | 2 | 2 | 2 | 6 | 5 | 5 | 5 | 5 | 20 | |||||
Rodentia | Castoridae | Castor fiber | 1 | 1 | 1 | 3 | ||||||||
Caviidae | Dolichotis patagonum | 5 | 5 | 5 | 5 | 20 | ||||||||
Hydrochoerus hydrochaeris | 3 | 3 | 3 | 2 | 11 | |||||||||
Dasyproctidae | Dasyprocta prymnolopha | 1 | 1 | 1 | 1 | 4 | ||||||||
Echimidae | Myocastor coypus | 5 | 3 | 8 | ||||||||||
Erethizontidae | Erethizon dorsatum | 4 | 4 | 4 | 4 | 16 | ||||||||
Hystricidae | Hystrix africaeaustralis | 3 | 3 | 3 | 3 | 3 | 5 | 14 | ||||||
Murinae | Lemniscomys barbarus | 5 | 5 | 5 | 5 | 20 | ||||||||
Phleomys padillus | 5 | 5 | 5 | 3 | 1 | 19 | ||||||||
Total | 14 | 14 | 14 | 20 | 4 | 66 | 13 | 13 | 13 | 13 | 52 | |||
Total | 146 | 146 | 146 | 120 | 57 | 615 | 220 | 220 | 219 | 200 | 49 | 908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joffrin, L.; Cooreman, T.; Verheyen, E.; Vercammen, F.; Mariën, J.; Leirs, H.; Gryseels, S. SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Vet. Sci. 2023, 10, 382. https://doi.org/10.3390/vetsci10060382
Joffrin L, Cooreman T, Verheyen E, Vercammen F, Mariën J, Leirs H, Gryseels S. SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Veterinary Sciences. 2023; 10(6):382. https://doi.org/10.3390/vetsci10060382
Chicago/Turabian StyleJoffrin, Léa, Tine Cooreman, Erik Verheyen, Francis Vercammen, Joachim Mariën, Herwig Leirs, and Sophie Gryseels. 2023. "SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo)" Veterinary Sciences 10, no. 6: 382. https://doi.org/10.3390/vetsci10060382
APA StyleJoffrin, L., Cooreman, T., Verheyen, E., Vercammen, F., Mariën, J., Leirs, H., & Gryseels, S. (2023). SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Veterinary Sciences, 10(6), 382. https://doi.org/10.3390/vetsci10060382