The History and Prospects of Rabbit Sperm Sexing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Attempts for Sexing Rabbit Spermatozoa
2.1. Sperm Sexing through Density Gradients
2.2. Sperm Sexing through Electrophoresis Based on Surface Electric Charge Differences
2.3. Sperm Sexing Based on pH Susceptibility
2.4. Sperm Sexing through Antisera Reaction
2.5. Other Approaches for Sperm Sexing
2.6. Sperm Sexing through Flow Cytometry
3. Sperm Sexing through Immunological Methods: A Promising Weapon
4. Sperm Sexing Methods in Development
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Data Retrieval System|Food and Agriculture Organization of the United Nations (FAO). Data Data Series, Meat. Available online: http://data.un.org/Search.aspx?q=meat+datamart%5BFAO%5D (accessed on 18 February 2023).
- TRIDGE. Rabbit Meat. Available online: https://www.tridge.com/intelligences/rabbit-meat (accessed on 18 February 2023).
- TRIDGE. Rabbit Meat—Global Exports and Top Exporters. Available online: https://www.tridge.com/intelligences/rabbit-meat/export (accessed on 23 March 2023).
- Vega, M.D.; Peña, A.I.; Gullón, J.; Prieto, C.; Barrio, M.; Becerra, J.J.; Herradón, P.G.; Quintela, L.A. Sex Ratio in Rabbits Following Modified Artificial Insemination. Anim. Reprod. Sci. 2008, 103, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Gerini, F.; Ikram, A.; Saeed, F.; Feng, X.; Chen, Y. Rabbit Meat—Production, Consumption and Consumers’ Attitudes and Behavior. Sustainability 2023, 15, 2008. [Google Scholar] [CrossRef]
- Van Ba, H.; Hwang, I.; Jeong, D.; Touseef, A. Principle of Meat Aroma Flavors and Future Prospect. Latest Res. Qual. Control 2012, 2, 145–176. [Google Scholar]
- Shi, Y.; Wang, X.; Borhan, M.S.; Young, J.; Newman, D.; Berg, E.; Sun, X. A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies. Food Sci. Anim. Resour. 2021, 41, 563. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Gugołek, A. A Comparison of the Quality of Meat from Female and Male Californian and Flemish Giant Gray Rabbits. Animals 2020, 10, 2216. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.J.; He, Z.F.; Zhang, E.; Li, H.J. Characterization of Key Volatile Odorants in Rabbit Meat Using Gas Chromatography Mass Spectrometry with Simultaneous Distillation Extraction. World Rabbit. Sci. 2016, 24, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Federation of Veterinarians of Europe. FVE Position on Killing Unwanted Offspring in Farm Animal Production; Federation of Veterinarians of Europe: Brussels, Belgium, 2017. [Google Scholar]
- Garnsworthy, P.C. Reducing the Environmental Impact of Animal Production. Lat. Am. Arch. Anim. Prod. 2018, 26, 1–6. [Google Scholar]
- Balzani, A.; Aparacida Vaz do Amaral, C.; Hanlon, A. A Perspective on the Use of Sexed Semen to Reduce the Number of Surplus Male Dairy Calves in Ireland: A Pilot Study. Front. Vet. Sci. 2021, 7, 1243. [Google Scholar] [CrossRef]
- Álvarez-Gallardo, H.; Kjelland, M.E.; Pérez-Martínez, M.; Villaseñor-González, F.; Romo-García, S. Evaluation of Novel SexedULTRA-4M Technology for in Vitro Bovine Embryo Production. Anim. Reprod. 2022, 19, e20220018. [Google Scholar] [CrossRef]
- Umehara, T.; Tsujita, N.; Shimada, M. Activation of Toll-like Receptor 7/8 Encoded by the X Chromosome Alters Sperm Motility and Provides a Novel Simple Technology for Sexing Sperm. PLoS Biol. 2019, 17, e3000398. [Google Scholar] [CrossRef] [Green Version]
- EMLAB. Genetics EMLAB Genetics. Product Gallery. Available online: https://www.emlabgenetics.com/shop (accessed on 7 February 2023).
- ABS. Global Sexcel® Sexed Genetics. Available online: https://www.absglobal.com/au/dairy/sexcel-sexed-genetics/ (accessed on 23 March 2023).
- Bradley, M.P. Immunological Sexing of Mammalian Semen: Current Status and Future Options. J. Dairy Sci. 1989, 72, 3372–3380. [Google Scholar] [CrossRef]
- Yadav, S.K.; Gangwar, D.K.; Singh, J.; Tikadar, C.K.; Khanna, V.V.; Saini, S.; Dholpuria, S.; Palta, P.; Manik, R.S.; Singh, M.K.; et al. An Immunological Approach of Sperm Sexing and Different Methods for Identification of X- and Y-Chromosome Bearing Sperm. Vet. World 2017, 10, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xu, Z.; Wu, Z.; Hong, L. Sex Manipulation Technologies Progress in Livestock: A Review. Front. Vet. Sci. 2020, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A. Sex Preselection by Flow Cytometric Separation of X and Y Chromosome-Bearing Sperm Based on DNA Difference: A Review. Reprod. Fertil. Dev. 1995, 7, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Lush, J.L. The Possibility of Sex Control by Artificial Insemination with Centrifuged Spermatozoa. J. Agric. Res. 1925, 30, 893–913. [Google Scholar] [PubMed]
- Bhattacharya, B.C. Different Sedimentation Rates of X- and Y- Sperm and the Question of Arbitrary Sex Determination. Z. Wissenschartliche Zool. 1962, 166, 203–250. [Google Scholar]
- Bedford, J.M.; Bibeau, A.M. Failure of Sperm Sedimentation to Influence the Sex Ratio of Rabbits. J. Reprod. Fertil. 1967, 14, 167–170. [Google Scholar] [CrossRef]
- Beatty, R.A. Genetic Content and Buoyant Density of Rabbit Spermatozoa. J. Reprod. Fertil. 1969, 19, 379–384. [Google Scholar] [CrossRef]
- Stambaugh, R.; Buckley, J. Association of the lactic dehydrogenase X4 isozyme with male-producing rabbit spermatozoa. Reproduction 1971, 25, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Zavos, P.M. Sperm Separation Attempts via the Use of Albumin Gradients in Rabbits. Theriogenology 1985, 23, 875–879. [Google Scholar] [CrossRef]
- Copello, M.; Perez, A.; Marquez, S.; Sansinena, M.; Copello, M.; Perez, A.; Marquez, S.; Sansinena, M. 202 Sex Pre-Selection in Rabbits: An Attempt to Skew Offspring Sex through Percoll and Swim-Up Sperm Preparation Techniques. Reprod. Fertil. Dev. 2011, 24, 213. [Google Scholar] [CrossRef]
- Hussein, A.M.A. Effect of sperm selection by percoll and swim up techniques on the sex ratio of rabbit offspring. J. Anim. Poult. Prod. 2013, 4, 469–478. [Google Scholar] [CrossRef]
- Koltzoff, N.K.; Schröder, V.N. Artificial Control of Sex in the Progeny of Mammals. Nature 1933, 131, 329. [Google Scholar] [CrossRef]
- Bangham, A.D. Electrophoretic Characteristics of Ram and Rabbit Spermatozoa. Proc. R. Soc. Lond. B Biol. Sci. 1961, 155, 292–305. [Google Scholar] [CrossRef]
- Nevo, A.C.; Michaeli, I.; Schindler, H. Electrophoretic Properties of Bull and of Rabbit Spermatozoa. Exp. Cell Res. 1961, 23, 69–83. [Google Scholar] [CrossRef]
- Gordon, M.J. Control of sex ratio in rabbits by electrophoresis of spermatozoa. Proc. Natl. Acad. Sci. USA 1957, 43, 913–918. [Google Scholar] [CrossRef]
- Sevinç, A. Experiments on Sex Control by Electrophoretic Separation of Spermatozoa in the Rabbit. J. Reprod. Fertil. 1968, 16, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Unterberger, F. Geschlechtsbestimmung und Wasserstoffionenkonzentration. DMW-Dtsch. Med. Wochenschr. 1932, 58, 729–731. [Google Scholar] [CrossRef]
- Wakim, P.E. Determining the Sex of Baby Rabbits by Ascertaining the PH of the Vagina of the Mother before Mating. J. Am. Osteopath. Assoc. 1972, 72, 173–174. [Google Scholar]
- Muehleis, P.M.; Long, S.Y. The Effects of Altering the PH of Seminal Fluid on the Sex Ratio of Rabbit Offspring. Fertil. Steril. 1976, 27, 1438–1445. [Google Scholar] [CrossRef]
- Burkov, I.A. The Effect of Immunisation of Rabbits with Cock Semen on the Sex of the Progen. In The Effect of Immunisation of Rabbits with Cock Semen on the Sex of the Progeny; oAmg: Omaha, NE, USA, 1968; pp. 390–391. [Google Scholar]
- Hancock, R.J.T. Comparison of Effects of Normal Rabbit Sera and Anti-Cock Sperm Sera on Rabbit Sperm, Including Comparison of Effects on the Sex Ratio. Biol. Reprod. 1978, 18, 510–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavos, P.M. Preconception Sex Determination via Intra-Vaginal Administration of H-Y Antisera in Rabbits. Theriogenology 1983, 20, 235–240. [Google Scholar] [CrossRef]
- Hays, F.A. The Influence of Excessive Sexual Activity of Male Rabbits. II. On the Nature of Their Offspring. J. Exp. Zool. 1918, 25, 463–497. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, C.; Hagen, D.; Dziuk, P.J. The Lack of Effect of Ejaculate Sequence on Sex Ratio in Rabbits. Reproduction 1979, 56, 193–194. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.A.; Flook, J.P.; Hawk, H.W. Sex Preselection in Rabbits: Live Births from X and Y Sperm Separated by DNA and Cell Sorting. Biol. Reprod. 1989, 41, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, D.; Gledhill, B.; Pinkel, D.; Lake, S.; Stephenson, D.; Van Dilla, M.; Johnson, L. Quantification of the X-and Y-Chromosome-Bearing Spermatozoa of Domestic Animals by Flow Cytometry. Biol. Reprod. 1983, 28, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.A. Advances in Gender Preselection in Swine. J. Reprod. Fertil. Suppl. 1997, 52, 255–266. [Google Scholar] [CrossRef]
- Benedict, R.C.; Schumaker, V.N.; Davies, R.E. The Buoyant Density of Bovine and Rabbit Spermatozoa. J. Reprod. Fertil. 1967, 13, 237–249. [Google Scholar] [CrossRef]
- Kaneko, S.; Oshio, S.; Kobayashi, T.; Iizuka, R.; Mohri, H. Human X- and Y-Bearing Sperm Differ in Cell Surface Sialic Acid Content. Biochem. Biophys. Res. Commun. 1984, 124, 950–955. [Google Scholar] [CrossRef]
- Bhattacharya, B.C. Sex Control in Mammals. Z. Tierzuecht. Zuechtungsbiol. 1958, 72, 250–254. [Google Scholar] [CrossRef]
- Schilling, E. Sedimentation as an Approach to the Problem of Separating X- and Y-Chromosome-Bearing Spermatozoa. J. Anim. Sci. 1971, 1971, 76–84. [Google Scholar] [CrossRef]
- Lindahl, P.E. Centrifugation as a means of separating X- and Y-chromosome-bearing spermatozoa. J. Anim. Sci. 1971, 1971, 69–75. [Google Scholar] [CrossRef]
- Quinlivan, W.L.; Preciado, K.; Long, T.L.; Sullivan, H. Separation of Human X and Y Spermatozoa by Albumin Gradients and Sephadex Chromatography. Fertil. Steril. 1982, 37, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Yamaguchi, J.; Kobayashi, T.; Iizuka, R. Separation of Human X- and Y-Bearing Sperm Using Percoll Density Gradient Centrifugation. Fertil. Steril. 1983, 40, 661–665. [Google Scholar] [CrossRef]
- Hedge, U.C.; Shastry, P.R.; Rao, S.S. A Simple and Reproducible Method for Separating Y-Bearing Spermatozoa from Human Semen. Indian J. Med. Res. 1977, 65, 738–740. [Google Scholar]
- Branham, J.M. Separation of rabbit semen into two populations of spermatozoa by centrifugation. Reproduction 1970, 22, 469–482. [Google Scholar] [CrossRef]
- Cui, Z.; Sharma, R.; Agarwal, A. Proteomic Analysis of Mature and Immature Ejaculated Spermatozoa from Fertile Men. Asian J. Androl. 2016, 18, 735–746. [Google Scholar] [CrossRef]
- Brahem, S.; Mehdi, M.; Elghezal, H.; Saad, A. Semen Processing by Density Gradient Centrifugation Is Useful in Selecting Sperm with Higher Double-Strand DNA Integrity. Andrologia 2011, 43, 196–202. [Google Scholar] [CrossRef]
- Hoffmann, D.S.; Killian, G.J. Isolation of Epithelial Cells from the Corpus Epididymidis and Analysis for Glycery Lphosphorylchol Ine, Sialic Acid, and Protein. J. Exp. Zool. 1981, 217, 93–102. [Google Scholar] [CrossRef]
- Ishijima, S.A.; Okuno, M.; Mohri, H. Zeta Potential of Human X- and Y-bearing Sperm. Int. J. Androl. 1991, 14, 340–347. [Google Scholar] [CrossRef]
- Ainsworth, C.J.; Nixon, B.; Aitken, R.J. The Electrophoretic Separation of Spermatozoa: An Analysis of Genotype, Surface Carbohydrate Composition and Potential for Capacitation. Int. J. Androl. 2011, 34, e422–e434. [Google Scholar] [CrossRef] [PubMed]
- Shettles, L.B. Factors Influencing Sex Ratios. Int. J. Gynecol. Obstet. 1970, 8, 643–647. [Google Scholar] [CrossRef]
- Park, Y.J.; Shin, D.H.; Pang, W.K.; Ryu, D.Y.; Rahman, M.S.; Adegoke, E.O.; Pang, M.G. Short-Term Storage of Semen Samples in Acidic Extender Increases the Proportion of Females in Pigs. BMC Vet. Res. 2021, 17, 362. [Google Scholar] [CrossRef] [PubMed]
- You, Y.A.; Kwon, W.S.; Rahman, M.S.; Park, Y.J.; Kim, Y.J.; Pang, M.G. Sex Chromosome-Dependent Differential Viability of Human Spermatozoa during Prolonged Incubation. Hum. Reprod. 2017, 32, 1183–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, D.; Boyse, E.A. Sex Ratio in Progeny of Mice Inseminated with Sperm Treated with H-Y Antiserum. Nature 1973, 246, 308–309. [Google Scholar] [CrossRef]
- Prasad, S.; Rangasamy, S.; Satheshkumar, S. Sex Preselection in Domestic Animals-Current Status and Future Prospects. Vet. World 2010, 3, 346. [Google Scholar]
- Sills, E.S.; Kirman, I.; Colombero, L.T.; Hariprashad, J.; Rosenwaks, Z.; Palermo, G.D. H-Y Antigen Expression Patterns in Human X- and Y-Chromosome-Bearing Spermatozoa. Am. J. Reprod. Immunol. 1998, 40, 43–47. [Google Scholar] [CrossRef]
- Sumner, A.T.; Robinson, J.A.; Evans, H.J. Distinguishing between X, Y and YY-Bearing Human Spermatozoa by Fluorescence and DNA Content. Nat. New Biol. 1971, 229, 231–233. [Google Scholar]
- Moruzzi, J.F. Selecting a Mammalian Species for the Separation of X- and Y-Chromosome-Bearing Spermatozoa. Reproduction 1979, 57, 319–323. [Google Scholar] [CrossRef]
- Gledhill, B.L.; Pinkel, D.; Garner, D.L. Identifying X- and Y-Chromosome-Bearing Sperm by DNA Content: Retrospective Perspectives and Prospective Opinions. 1982. Available online: https://www.osti.gov/biblio/5245674 (accessed on 25 March 2023).
- Pinkel, D.; Lake, S.; Gledhill, B.L.; Van Dilla, M.A.; Stephenson, D.; Watchmaker, G. High Resolution DNA Content Measurements of Mammalian Sperm. Cytom. J. Int. Soc. Anal. Cytol. 1982, 3, 1–9. [Google Scholar] [CrossRef]
- Keeler, K.D.; Mackenzie, N.M.; Dresser, D.W. Flow Microfluorometric Analysis of Living Spermatozoa Stained with Hoechst 33342. Reproduction 1983, 68, 205–212. [Google Scholar] [CrossRef]
- Johnson, L.A. Gender Preselection in Domestic Animals Using Flow Cytometrically Sorted Sperm. J. Anim. Sci. 1992, 70, 8–18. [Google Scholar] [CrossRef]
- Morrell, J.M.; Keeler, K.D.; Noakes, D.E.; Mackenzie, N.M.; Dresser, D.W. Sexing of Sperm by Flow Cytometry. Vet. Rec. 1988, 122, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Welch, G.R.; Rens, W. The Beltsville Sperm Sexing Technology: High-Speed Sperm Sorting Gives Improved Sperm Output for in Vitro Fertilization and AI. J. Anim. Sci. 1999, 77, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rens, W.; Welch, G.R.; Johnson, L.A. Improved Flow Cytometric Sorting of X- and Y-chromosome Bearing Sperm: Substantial Increase in Yield of Sexed Semen. Mol. Reprod. Dev. 1999, 52, 50–56. [Google Scholar] [CrossRef]
- Garner, D.L.; Evans, K.M.; Seidel, G.E. Sex-Sorting Sperm Using Flow Cytometry/Cell Sorting. Spermatogenes. Methods Protoc. 2013, 927, 279–295. [Google Scholar]
- Rens, W.; Welch, G.R.; Johnson, L.A. A Novel Nozzle for More Efficient Sperm Orientation to Improve Sorting Efficiency of X and Y Chromosome-Bearing Sperm. Cytometry 1998, 33, 476–481. [Google Scholar] [CrossRef]
- Garner, D.L.; Seidel, G.E. History of Commercializing Sexed Semen for Cattle. Theriogenology 2008, 69, 886–895. [Google Scholar] [CrossRef]
- Johnson, L. Method to Preselect the Sex of Offspring. U.S. Patent No 5,135,759, 4 August 1992. [Google Scholar]
- Buchanan, K.; Sharpe, J.; Michael, K. Nozzle Assembly for a Flow Cytometer. U.S. Patent 9,927,345 B2, 27 March 2018. [Google Scholar]
- Evans, K. High Resolution Flow Cytometer. U.S. Patent 7,855,078 B2, 21 December 2010. [Google Scholar]
- Cogent UK Ultraplus. Available online: https://www.cogentuk.com/sexed-ultra-1 (accessed on 18 April 2023).
- Brito, L.; Vishwanath, R.; Heuer, C.; Evans, K. Bovine Sexed Semen Production and Utilization. Clin. Theriogenol. 2019, 11, 297–315. [Google Scholar]
- Mastergen Ltd. SexedUltraTM Semen. Available online: https://mastergen.com/factsheets/sexedultra-semen/ (accessed on 18 April 2023).
- González-Marín, C.; Góngora, C.E.; Moreno, J.F.; Vishwanath, R. Small Ruminant SexedULTRATM Sperm Sex-Sorting: Status Report and Recent Developments. Theriogenology 2021, 162, 67–73. [Google Scholar] [CrossRef]
- Fenner, G.P.; Johnson, L.A.; Hruschka, W.R.; Bolt, D.J. Two-Dimensional Electrophoresis and Densitometry Analysis of Solubilized Bovine Sperm Plasma Membrane Proteins Detected by Silver Staining and Radioiodination. Arch. Androl. 1992, 29, 21–32. [Google Scholar] [CrossRef]
- Rahman, M.S.; Pang, M.G. New Biological Insights on X and Y Chromosome-Bearing Spermatozoa. Front. Cell Dev. Biol. 2020, 7, 388. [Google Scholar] [CrossRef] [Green Version]
- Yeh, Y.-C.; Yang, V.-C.; Huang, S.-C.; Lo, N.-W. Stage-Dependent Expression of Extra-Embryonic Tissue-Spermatogenesis-Homeobox Gene 1 (ESX1) Protein, a Candidate Marker for X Chromosome-Bearing Sperm. Reprod. Fertil. Dev. 2005, 17, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Quelhas, J.; Santiago, J.; Matos, B.; Rocha, A.; Lopes, G.; Fardilha, M. Bovine Semen Sexing: Sperm Membrane Proteomics as Candidates for Immunological Selection of X- and Y-Chromosome-Bearing Sperm. Vet. Med. Sci. 2021, 7, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Umehara, T.; Tsujita, N.; Zhu, Z.; Ikedo, M.; Shimada, M. A Simple Sperm-Sexing Method That Activates TLR7/8 on X Sperm for the Efficient Production of Sexed Mouse or Cattle Embryos. Nat. Protoc. 2020, 15, 2645–2667. [Google Scholar] [CrossRef] [PubMed]
- Neves, F.; Marques, J.P.; Areal, H.; Pinto-Pinho, P.; Colaço, B.; Melo-Ferreira, J.; Fardilha, M.; Abrantes, J.; Esteves, P.J. TLR7 and TLR8 Evolution in Lagomorphs: Different Patterns in the Different Lineages. Immunogenetics 2022, 74, 475–485. [Google Scholar] [CrossRef]
- Nuri Science Inc. Animal Sperm Sexing. Available online: http://www.nurisci.com/eng/ (accessed on 12 April 2023).
- Heo, Y.-T.; Kim, D.-G.; Uhm, S. Analysis of Sex Ratio on Bovine in vitro Fertilized Embryos Using Sex Determination Kit Treated Sperm. J. Embryo Transf. 2018, 33, 169–175. [Google Scholar] [CrossRef]
- Agarwal, A.; Panner Selvam, M.K.; Baskaran, S. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Int. J. Mol. Sci. 2020, 21, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casares-Crespo, L.; Fernández-Serrano, P.; Viudes-de-Castro, M.P. Proteomic Characterization of Rabbit (Oryctolagus cuniculus) Sperm from Two Different Genotypes. Theriogenology 2019, 128, 140–148. [Google Scholar] [CrossRef]
- Douglas, C.; Maciulyte, V.; Zohren, J.; Snell, D.M.; Ojarikre, O.A.; Ellis, P.J.I.; Turner, J.M.A. Generating Single-Sex Litters: Development of CRISPR-Cas9 Genetic Tools to Produce All-Male Offspring. bioRxiv 2020. [Google Scholar] [CrossRef]
- Douglas, C.; Maciulyte, V.; Zohren, J.; Snell, D.M.; Mahadevaiah, S.K.; Ojarikre, O.A.; Ellis, P.J.I.; Turner, J.M.A. CRISPR-Cas9 Effectors Facilitate Generation of Single-Sex Litters and Sex-Specific Phenotypes. Nat. Commun. 2021, 12, 6926. [Google Scholar] [CrossRef]
- Gamez, S.; Chaverra-Rodriguez, D.; Buchman, A.; Kandul, N.P.; Mendez-Sanchez, S.C.; Bennett, J.B.; Sánchez, C.H.M.; Yang, T.; Antoshechkin, I.; Duque, J.E.; et al. Exploiting a Y Chromosome-Linked Cas9 for Sex Selection and Gene Drive. Nat. Commun. 2021, 12, 7202. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, B.; Ji, D.; Li, M.; Li, K.; James, A.A.; Tan, A.; Huang, Y. Silkworm Genetic Sexing through w Chromosome-Linked, Targeted Gene Integration. Proc. Natl. Acad. Sci. USA 2018, 115, 8752–8756. [Google Scholar] [CrossRef] [Green Version]
- Galizi, R.; Hammond, A.; Kyrou, K.; Taxiarchi, C.; Bernardini, F.; O’Loughlin, S.M.; Papathanos, P.A.; Nolan, T.; Windbichler, N.; Crisanti, A. A CRISPR-Cas9 Sex-Ratio Distortion System for Genetic Control. Sci. Rep. 2016, 6, 31139. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Maddison, L.A.; Li, M.; Kara, N.; Lafave, M.C.; Varshney, G.K.; Burgess, S.M.; Patton, J.G.; Chen, W. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and SgRNAs. Genetics 2015, 200, 431–441. [Google Scholar] [CrossRef]
- Domínguez, E.; Moreno-Irusta, A.; Castex, H.R.; Bragulat, A.F.; Ugaz, C.; Clemente, H.; Giojalas, L.; Losinno, L. Sperm Sexing Mediated by Magnetic Nanoparticles in Donkeys, a Preliminary In Vitro Study. J. Equine Vet. Sci. 2018, 65, 123–127. [Google Scholar] [CrossRef]
- Zuidema, D.; Kerns, K.; Sutovsky, P. An Exploration of Current and Perspective Semen Analysis and Sperm Selection for Livestock Artificial Insemination. Animals 2021, 11, 3563. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.A.; Walker, J.A.; Rich, J.J.J.; Northrop, E.J.; Perkins, S.D.; Beck, E.E.; Sandbulte, M.D.; Mokry, F.B. Influence of SexcelTM (Gender Ablation Technology) Gender-Ablated Semen in Fixed-Time Artificial Insemination of Beef Cows and Heifers. Theriogenology 2020, 146, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Faust, M.A.; Betthauser, J.; Storch, A.; Crego, S. Effects for Fertility of Processing Steps of a New Technology Platform for Producing Sexed Sperm. J. Anim. Sci. 2016, 94, 544. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.C.; Managó, S.; Ferrara, M.A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G. Non-Invasive Sex Assessment in Bovine Semen by Raman Spectroscopy. Laser Phys. Lett. 2014, 11, 055604. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Di Caprio, G.; Managò, S.; De Angelis, A.; Sirleto, L.; Coppola, G.; De Luca, A.C. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells. Biosensors 2015, 5, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.S.; Roberts, R.M. Maternal Diet and Other Factors Affecting Offspring Sex Ratio: A Review. Biol. Reprod. 2004, 71, 1063–1070. [Google Scholar] [CrossRef]
- Green, M.P.; Spate, L.D.; Parks, T.E.; Kimura, K.; Murphy, C.N.; Williams, J.E.; Kerley, M.S.; Green, J.A.; Keisler, D.H.; Roberts, R.M. Nutritional Skewing of Conceptus Sex in Sheep: Effects of a Maternal Diet Enriched in Rumen-Protected Polyunsaturated Fatty Acids (PUFA). Reprod. Biol. Endocrinol. 2008, 6, 31139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhimaidi, A.R.; Ammari, A.A.; Alghadi, M.Q.; Al Saiady, M.Y.; Amran, R.A.; Swelum, A.A. Sex Preselection of Sٍheep Embryo by Altering the Minerals of Maternal Nutrition. Saudi J. Biol. Sci. 2021, 28, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, C.; Nixon, B.; Aitken, R.J. Development of a Novel Electrophoretic System for the Isolation of Human Spermatozoa. Hum. Reprod. 2005, 20, 2261–2270. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.D.; Ilad, R.S.; Griffin, A.M.G.; Wu, Y.; Ong, K.J.; Smith, H.C.; Aitken, R.J. Prospective Controlled Trial of an Electrophoretic Method of Sperm Preparation for Assisted Reproduction: Comparison with Density Gradient Centrifugation. Hum. Reprod. 2008, 23, 2646–2651. [Google Scholar] [CrossRef] [Green Version]
- Diasio, R.B.; Glass, R.H. Effects of PH on the Migration of X and Y Sperm. Fertil. Steril. 1971, 22, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Welch, G.R. Sex Preselection: High-Speed Flow Cytometric Sorting of X and Y Sperm for Maximum Efficiency. Theriogenology 1999, 52, 1323–1341. [Google Scholar] [CrossRef]
- Feugang, J.M.; Rhoads, C.E.; Mustapha, P.A.; Tardif, S.; Parrish, J.J.; Willard, S.T.; Ryan, P.L. Treatment of Boar Sperm with Nanoparticles for Improved Fertility. Theriogenology 2019, 137, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bisla, A.; Honparkhe, M.; Srivastava, N. A Review on Applications and Toxicities of Metallic Nanoparticles in Mammalian Semen Biology. Andrologia 2022, 54, 1–19. [Google Scholar] [CrossRef]
- Jahmani, M.Y.; Hammadeh, M.E.; Al Smadi, M.A.; Baller, M.K. Label-Free Evaluation of Chromatin Condensation in Human Normal Morphology Sperm Using Raman Spectroscopy. Reprod. Sci. 2021, 28, 2527–2539. [Google Scholar] [CrossRef]
- UniProt Oryctolagus Cuniculus (Rabbit)|Proteomes. Available online: https://www.uniprot.org/proteomes/UP000001811 (accessed on 11 April 2023).
- Weber, J.; Peng, H.; Rader, C. From Rabbit Antibody Repertoires to Rabbit Monoclonal Antibodies. Exp. Mol. Med. 2017, 49, e305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sela-Culang, I.; Kunik, V.; Ofran, Y. The Structural Basis of Antibody-Antigen Recognition. Front. Immunol. 2013, 4, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, R.B.; Wilkinson, T.; Schofield, D.J. Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2018, 32, 339–355. [Google Scholar] [CrossRef]
- El-Attrouny, M.M.; Habashy, W.S. Correlated Response on Litter Traits and Milk Yield in New Zeland White Rabbits Selected for Litter Size at Birth. Egypt. Poult. Sci. J. 2020, 40, 599–612. [Google Scholar] [CrossRef]
- Lebas, F.; Coudert, P.; de Rochambeau, H.; Thébault, R.G. The Rabbit: Husbandry, Health and Production, Volume 21; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997; ISBN 1010-9021. [Google Scholar]
- Associação Portuguesa de Cunicultura (ASPOC). Available online: http://aspoc.pt/wp/wp-content/uploads/2023/07/Loncun-302023.pdf (accessed on 21 July 2023).
- Pollesel, M.; Tassinari, M.; Frabetti, A.; Fornasini, D.; Cavallini, D. Effect of Does Parity Order on Litter Homogeneity Parameters. Ital. J. Anim. Sci. 2020, 19, 1189–1195. [Google Scholar] [CrossRef]
Sexing Principle | Methodology | Accuracy | X or Y | References |
---|---|---|---|---|
Density | Differential sedimentation in an ordinary centrifuge | No effect | X and Y | [21] |
Sedimentation in a colloidal medium (egg yolk and glycocoll solution) of a particular viscosity and density | More males in upper fractions (77%) than lower (28%) | X and Y | [22] | |
Sedimentation with a customized medium | No effect | X and Y | [23] | |
Separation accordingly to buoyant density of the spermatozoa | No effect | X and Y | [24] | |
Discontinuous dextran density gradients (4–24%) | 68% males | Y | [25] | |
Albumin gradients | No effect | Y | [26] | |
11 discontinuous Percoll gradients | No effect | X | [4] | |
Percoll gradient and swim-up | Percoll gradient: 68 ± 2% females; swim-up: 64 ± 2% males | X and Y | [27] | |
Percoll gradient and swim-up | Percoll gradient: 66% females; swim-up: 75% males | X and Y | [28] | |
Surface electric charge | Electrophoretic separation in a Michaelis apparatus | 100% females (anode); 80% males (cathode); 50% males and 50% females (central fraction) | X and Y | [29] |
Electrophoretic separation in different conditions | No effect | X and Y | [30] | |
Electrophoretic separation in different conditions | No effect | X and Y | [31] | |
Electrophoretic separation at pH 7.1 | 71% females (anode); 64% males (cathode) | X and Y | [32] | |
Electrophoresis of spermatozoa using V-shaped electrophoretic cells having agar gel stoppers between each electrode and its related lateral chamber. The three-chambered cell was used in the first three experiments, and the seven-chambered cell was used in the fourth experiment. | Inconclusive | X and Y | [33] | |
pH susceptibility | Control of the pH of the seminal plasma or the vagina | Higher seminal plasma pH: more male offspring; lower vaginal pH: more female progeny | X and Y | [34] |
Control of the vaginal pH | Lower pH (6.55–7.34): more female offspring; higher pH (>7.55): more males | X and Y | [35] | |
Altering the seminal fluid pH | No effect | X and Y | [36] | |
Antisera reaction | Antisera (cock sperm) | 58% | X | [37] |
Antisera: anti-cock sperm sera incubated with rabbit semen | 58% | X | [38] | |
Intra-vaginal administration of H-Y antisera | 74% | X | [39] | |
Other approaches | Increased sexual activity | 78% | X | [40] |
Increased frequency of ejaculation | No effect | X | [41] | |
Flow cytometry | Rabbit semen sorted simultaneously at a rate of approximately 80–90 intact X-sperm and 80–90 intact Y-sperm per second by a modified EPICS V flow cytometer/cell sorter, based on DNA content of X- and Y-sperm | Purity of 86% for X-sperm (94% in vivo) and 81% for Y-sperm (81% in vivo) | X and Y | [42] |
Sexing Principle | Cost | Scalability | Production Efficiency |
---|---|---|---|
Sperm sexing through density gradients | Relatively low cost as it involves simple laboratory equipment and reagents [17,21,24,47] | Can be scaled up easily [27,49,55] | Low to moderate impact on production efficiency due to the need for additional processing steps. However, its possible effectiveness and accuracy depend on several factors. The lack of consistency may further impact the overall production efficiency [21,25,27,28,48,49,51,55] |
Sperm sexing through electrophoresis based on surface electric charge differences | Moderate cost due to the specialized equipment required for electrophoresis [33,58,109] | May be challenging to scale up [58,110] | Low to moderate impact on production efficiency. The results seem to be influenced by different experimental conditions and variables, such as sperm quality, viability, and surface glycoproteins, potentially affecting the efficiency and reliability of the method [29,32,33,46] |
Sperm sexing based on pH susceptibility | Relatively low cost as it involves simple laboratory equipment and reagents [35,36,61] | Can be scaled up easily [60,61] | Low impact on production efficiency. However, the relation between pH and sex ratio is not clear and seems to be influenced by other factors, which makes the method unreliable [34,35,60,111] |
Sperm sexing through antisera reaction | Moderate to high cost due to the need for specific antisera and specialized reagents [37,39] | May be challenging to scale up [38,63] | Low impact on production efficiency. There is not sufficient accurate evidence that H-Y is differently expressed between X- and Y-sperm. It may have limitations in terms of accuracy and speed [18,37,38,64] |
Sperm sexing through flow cytometry | Relatively high cost due to the need for specialized flow cytometry equipment and expertise [18,75,76] | Can be scaled up, but costs and technical expertise may limit implementation, depending on resources [4,42,72,73] | High impact on production efficiency as it allows rapid and accurate sex sorting of sperm cells. However, it requires skilled operators and sophisticated equipment [69,71,112] |
Sperm sexing through immunological methods | Moderate to high cost depending on the specific method and reagents used [15,76,90] | May be challenging to scale up [88] | Moderate to high impact on production efficiency. It requires additional processing steps and may have limitations in terms of speed and accuracy depending on the target [15,88,91] |
Sperm sexing through CRISPR-Cas9 genetic tools | Relatively high cost due to the need for gene editing reagents and equipment [96,97] | Can be challenging to scale up [95,96] | High potential for production efficiency if optimized properly. It offers precise genetic manipulation, but further development and validation are needed for commercial applications [94,95,96] |
Sperm sexing with magnetic nanoparticles | Moderate to high cost due to the need for specialized nanoparticles and equipment [100] | Can be scaled up, but may require optimization for large-scale implementation [113,114] | Moderate to high impact on production efficiency. It enables efficient separation of sperm cells but requires additional steps and optimization for different species [100,114] |
Sperm sexing with Raman spectroscopy combined or not with digital holography | Relatively high cost as it requires advanced spectroscopy and imaging equipment [104] | Can be challenging to scale up [105] | High impact on production efficiency as it offers label-free and non-invasive analysis. However, it requires further development and validation [104,105,115] |
Sexing through the feed of mothers | Varies depending on the nutritional requirements and supplements needed [107,108] | Can be scaled up easily. However, it may require careful consideration of feed formulation and management practices [106] | Variable impact on production efficiency and reliability depending on the species, nutritional adjustment used, and the desired sex ratio. It may be challenging, not providing the same level of precision as direct sperm sexing methods [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto-Pinho, P.; Ferreira, A.F.; Pinto-Leite, R.; Fardilha, M.; Colaço, B. The History and Prospects of Rabbit Sperm Sexing. Vet. Sci. 2023, 10, 509. https://doi.org/10.3390/vetsci10080509
Pinto-Pinho P, Ferreira AF, Pinto-Leite R, Fardilha M, Colaço B. The History and Prospects of Rabbit Sperm Sexing. Veterinary Sciences. 2023; 10(8):509. https://doi.org/10.3390/vetsci10080509
Chicago/Turabian StylePinto-Pinho, Patrícia, Ana F. Ferreira, Rosário Pinto-Leite, Margarida Fardilha, and Bruno Colaço. 2023. "The History and Prospects of Rabbit Sperm Sexing" Veterinary Sciences 10, no. 8: 509. https://doi.org/10.3390/vetsci10080509
APA StylePinto-Pinho, P., Ferreira, A. F., Pinto-Leite, R., Fardilha, M., & Colaço, B. (2023). The History and Prospects of Rabbit Sperm Sexing. Veterinary Sciences, 10(8), 509. https://doi.org/10.3390/vetsci10080509