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Simple Summary: The rise of drug-resistant bacteria, particularly in animals, poses a major challenge
in veterinary medicine. Antibiotic development lags behind the increasing resistance. To tackle this,
alternative therapies have been explored, such as the use of natural products and plant extracts. This
study evaluates the laboratory efficacy of plant derivatives of the Alliaceae group (which includes
garlic and onion) as antimicrobial agents, with encouraging results. Although further research is
needed, these findings suggest a potential role for these natural compounds in veterinary medicine.

Abstract: Background: The increase of multi-resistant bacteria, especially Staphylococcus spp. and
Enterobacteriaceae, constitutes a challenge in veterinary medicine. The rapid growth of resistance
is outpacing antibiotic discovery. Innovative strategies are needed, including the use of natural
products like Allium species (Allium sativum L. and Allium cepa L.), which have been used empirically
for centuries to treat infectious diseases in humans and farm and aquaculture animals due to their
antibacterial properties. Methods: This study aimed to evaluate the in vitro activity of two Allium-
derived compounds, propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO),
against multi-resistant Staphylococcus spp. (n = 30) and Enterobacteriaceae (n = 26) isolated from dogs
referred to a veterinary teaching hospital in Madrid. Results and Discussion: The results indicated
the in vitro efficacy of PTSO/PTS against the tested bacterial strains, and 56.7% of Staphylococcus
pseudintermedius and 53.8% of Enterobacteriaceae showed sensitivity to PTS and PTSO compared
with classic antibiotics. In addition, 50% of S. pseudintermedius strains resistant to erythromycin,
ibofloxacin, difloxacin and orbifloxacin and 50% of Enterobacteriaceae strains resistant to tetracycline
and doxycycline were sensitive to PTS and PTSO. Although studies are needed to verify their efficacy
in vivo, the combined use of PTS and PTSO exhibits promise in enhancing bacterial sensitivity against
S. pseudintermedius and Enterobacteriaceae infections, providing a first insight into the potential of both
compounds in veterinary practice.

Keywords: antibiotic resistance; Allium extracts; dogs; multidrug-resistant Enterobacteriaceae; multidrug-
resistant Staphylococcus spp.
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1. Introduction

The World Health Organization (WHO) recognizes antimicrobial resistance as one
of the most important issues affecting public, animal and environmental health [1]. The
proximity between dogs and humans entails a potential risk of pathogen transmission,
including antibiotic-resistant bacteria [2]. Canines can transmit many pathogens to humans,
causing infections ranging from skin rashes to life-threatening bacteremia [3].

Antibiotics are critical for combating infectious diseases [4]. However, their exces-
sive and inappropriate use combined with inadequate waste management and spread to
the environment has contributed to the development of antibiotic-resistant strains and
increased mortality due to infectious diseases [5]. Recent studies have shown that Gram-
negative bacteria often exhibit multidrug resistance (MDR), including to critically important
antimicrobials (CIAs), highlighting the complex challenge they pose in antimicrobial resis-
tance [6,7]. Primary Gram-negative bacteria with zoonotic potential that cause healthcare
complications, such as nosocomial, urinary tract and bloodstream infections, belong to
the genus Enterobacteriaceae, which includes Escherichia coli, Klebsiella spp. and Enterobacter
spp. Among Gram-positive bacteria, methicillin-resistant Staphylococcus spp. (MRS) and
vancomycin-resistant Enterococcus spp. (VRE) are of particular concern [8,9].

Resistance outpaces the rate at which new antibiotics are discovered, making antibi-
otics a finite healthcare resource [10]. As a result, we are currently faced with a situation
where the therapeutic options for infections are limited because certain pathogenic strains
are resistant to all existing groups of antibiotics [11]. Addressing this challenge requires
urgently exploring new antimicrobials, developing additional agents and investigating
innovative chemical structures for enhanced efficacy. These efforts are crucial not only for
curing existing infections but also for reducing the risk of future infections in both animals
and humans. An integral part of this approach includes controlling bacterial growth in
animal feed, which is a key factor in preventing zoonosis and may involve the use of
specialized feed additives [12–14].

Medicinal plants are rich sources of novel compounds with potential antimicrobial
properties [15]. However, few veterinary medicine studies have evaluated the efficacy of
these plant extracts against antibiotic-resistant bacteria [16,17]. Among different medicinal
plants, Allium species have been used worldwide for centuries to treat infectious diseases.
A substantial amount of historical evidence is available, including documents dating
back more than 3500 years from ancient Egypt describing the medicinal properties of this
genus [18–20]. In recent years, the antibacterial properties of Allium plant extracts have been
extensively studied, including their efficacy against multidrug-resistant bacteria [21,22].

One of the most well-known components of this botanical family is diallyl thiosulfinate
(allicin), which is present in Allium sativum L., and its antimicrobial activity has been
widely reported [23–26]. However, its instability limits its suitability as a therapeutic
agent in pet food. Allicin degrades easily to other organosulfur compounds such as
ajoenes, vinyl dithiins and diallyl polysulfides (DAPS) at 20 ◦C [27–30]. The proportion
of these degradation products can vary depending on the Allium sativum L. processing
conditions. In addition, allicin degradation in DAPS raises safety concerns because high
concentrations of these molecules with multiple sulfur atoms have a higher potential to
oxidize canine erythrocytes than non-degraded thiosulfonates [30]. This could explain the
conflicting results regarding the safety of Allium sativum L. in pet diets, with a few studies
considering it harmful [31]. However, others report improved animal health with dietary
supplementation [32,33].

In contrast, the organosulfur compounds present in Allium cepa L., propyl propane
thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO), have been reported to be safe
and not cause toxicity [34–36]. These molecules exhibit greater stability because, although
PTS leads to propyl disulfide (PDS) and PTSO through a disproportion reaction, PDS can
be transformed into PTSO in the presence of oxygen [37]. PTS and PTSO have demon-
strated significant antimicrobial activity in vitro and in vivo against different pathogenic
strains in livestock, including Staphylococcus spp., Enterobacteriaceae spp. and Enterococcus
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spp. [38–40]. In addition, PTS and PTSO have shown in vitro antimicrobial activity against
multidrug-resistant bacteria and yeasts isolated from human clinical samples [41]. However,
information on the antimicrobial activity of these compounds against antibiotic-resistant
bacteria, which commonly affect dogs, is lacking. Methicillin-resistant S. pseudintermedius
(MRSP) is an important pathogen commonly encountered in canine infections. Due to its
genetic similarities to S. aureus, MRSP poses a considerable concern for veterinary medicine
and public health, as it can be transmitted between animals and humans. Enterobacteriaceae
strains such as K. pneumoniae and E. coli are among the most common bacterial pathogens
observed in dogs [42].

This study evaluated the in vitro antimicrobial activity of the Allium-derived com-
pounds PTS and PTSO, compared to commonly used antibiotics, against different strains
of multi-resistant Staphylococcus spp. and Enterobacteriaceae isolated from dogs.

2. Materials and Methods
2.1. Study Design and Setting

In this study, a total of 56 multi-resistant bacterial strains obtained as etiological agents
from hospitalized dogs in a previous study performed at Alfonso X El Sabio University
in Madrid were selected [2]. Of these, 30 strains, identified as S. pseudintermedius, showed
the presence of the mecA gene, which confers resistance by producing a penicillin-binding
protein PBP 2A, and 26 species of Enterobacteriaceae [43] (19 E. coli and 7 K. pneumoniae) had
at least one extended-spectrum beta-lactamase resistance gene (blaCTX-M1, blaCTX-M9, blaSHV,
blaTEM). E. coli CECT 516 and S. pseudintermedius DSM 21284 were used as reference strains.
Samples were stored at −20 ◦C at Alfonso X El Sabio Veterinary Hospital (Madrid, Spain).

2.2. Sensitivity of the Selected Strains to Antibiotics and Allium-Derived Compounds

The antimicrobial susceptibility of Staphylococcus pseudintermedius and Enterobacte-
riaceae strains was tested in an external laboratory (Laboklin, Madrid, Spain) using a
microdilution test and microtiter plates (Micronaut S Kleintiere, Merlin Diagnostika GmbH,
Bornheim-Hersel, Germany). Resistance patterns were determined using a set of standard-
ized antimicrobials, following recommendations of the National Committee for Clinical
Laboratory Standards (CLSI) [44] guidelines and clinical breakpoints established by the
European Committee of Antimicrobial Susceptibility Testing (EUCAST), including en-
rofloxacin, marbofloxacin, orbifloxacin, difloxacin, ibafloxacin, pradofloxacin, gentamicin,
neomycin, kanamycin, tobramycin, sulfamethoxazole-trimethoprim, doxycycline, tetra-
cycline, lincomycin, clindamycin, spiramycin-trimethoprim, erythromycin, fusidic acid,
chloramphenicol, colistin, nitrofurantoin, rifampicin, streptomycin-trimethoprim, penicillin
G, ampicillin, amoxicillin, amoxicillin-clavulanic acid, cephalexin, cefotixin, cefquinome,
cefoperazone and cefovecin. All antibiotics were purchased from Sigma-Aldrich (Madrid,
Spain) and dissolved according to the manufacturer’s recommendations. Erythromycin,
clindamycin, fusidic acid and rifampicin were not tested against Gram-negative bacteria.
Moreover, colistin has not been tested against Gram-positive bacteria.

PTS and PTSO from Allium cepa L. were supplied with high purity (97%) by Panadog-
Enzim-Orbita (Tavira, Portugal) and dissolved in polysorbate-80 to a final concentration of
500 g/L.

To evaluate the antibiotic sensitivity of Allium compounds, the Minimum Inhibitory
Concentration (MIC) was selected according to CLSI guidelines [44]. For this purpose,
decreasing concentrations of the antimicrobial agents (2000—0.48 µg/mL) were prepared
in 1:2 dilutions in wells of microtiter plates in Mueller–Hinton medium buffer (Scharlab,
Barcelona, Spain) with a bacterial inoculum of the different strains in the logarithmic
growth phase (approx. 105 CFU/mL). In addition, uninoculated broth was used as a
negative control, and another well with only a bacterial suspension (without antibiotics)
was used as a positive control. All samples were performed in duplicate. Samples were
incubated in a tube rotator (VWR; Barcelona, Spain) for 24 h at 20 rpm. Subsequently,
they were measured using a Multiskan FC Microplate Reader Spectrophotometer (Thermo
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Scientific, Waltham, MA, USA) at a wavelength of 620 nm. The microorganism was expected
to grow in the control tube and in tubes that did not contain sufficient antimicrobials
to inhibit its development. Subsequently, according to the methodology described by
Turnidge and Paterson (2007) [45], the probability of clinical success for each compound
was predicted by establishing a cut-off point of 62.5 µg/mL. Consequently, MICs above
this value were considered resistant, whereas those equal to or lower than this value were
considered sensitive.

2.3. Statistical Analysis

Data analysis was performed using IBM SPSS Statistics v19 software. The percent-
age of observed bacterial resistance was described along with the frequency distribution.
McNemar’s test was performed to evaluate the association between resistance to Alli-
aceae compounds and the different antimicrobials tested. Statistical significance was set at
p < 0.05.

3. Results
3.1. Staphylococcus pseudintermedius

The number and percentages of resistant strains obtained from the 30 previously
selected antibiotic-resistant Staphylococcus pseudintermedius strains tested with PTS and
PTSO, as well as with various antibiotics, are detailed in Table 1.

Table 1. Resistance percentages of Staphyloccocus pseudintermedius containing the mecA gene to Allium
extracts and antibiotics.

n (N = 30) %

PTS 13 43.3
PTSO 13 43.3

Erythromycin 27 90.0
Ibafloxacin 25 83.3
Difloxacin 25 83.3

Enrofloxacin 25 83.3
Orbifloxacin 25 83.3
Clindamycin 24 80.0

Sulfamethoxazole Trimethoprim 24 80.0
Streptomycin Trimethoprim (TSH) 24 80.0

Spiramycin Trimethoprim (TSS) 24 80.0
Lincomycin 23 76.7

Marbofloxacin 23 76.7
Amoxicillin-clavulanic acid 17 56.7

Gentamicin 17 56.7
Pradofloxacin 15 50
Tetracycline 14 46.7
Doxycycline 14 46.7
Fusidic acid 13 43.3
Neomycin 11 36.7
Kanamycin 10 33.3
Rifampicin 9 30.0
Tobramycin 6 20.0

Chloramphenicol 3 10.0
Nitrofurantoin 0 0.0

NOTE: Sensitivity and resistance are classified using a previously established MIC cut-off, following Turnidge
and Paterson (2007) [45].

The reference strain S. pseudintermedius DSM 21284 had an MIC value of 31.25 µg/mL
for PTS/PTSO, which provides a baseline of the activity of these Allium cepa-derived
compounds. The highest resistance rates were observed against erythromycin (90.0%),
ibafloxacin, difloxacin, enrofloxacin and orbifloxacin (83.3% each). In addition, among all
multi-resistant strains, 43.3% of the evaluated S. pseudintermedius showed resistance to both
PTS and PTSO. Despite observed variations in MIC values for PTS and PTSO, with two of
the studied strains showing higher values for PTSO compared to PTS, the sensitivity results
are still comparable for both compounds when considering the defined cut-off points.

The sensitivity to Alliaceae compounds and various antimicrobials was compared,
revealing that a larger proportion of strains were sensitive to PTS and PTSO, as de-
termined by the MIC cut-off of 62.5 µg/mL, in comparison to other tested antimicro-
bials. In contrast, resistance was observed to the following antibiotics: erythromycin,
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clindamycin, lincomycin, ibafloxacin, difloxacin, enrofloxacin, marbofloxacin, orbifloxacin,
sulfamethoxazole-trimethoprim, streptomycin-trimethoprim and spiramycin-trimethoprim.
All Staphylococcus strains containing the mecA gene were considered resistant to amoxicillin,
ampicillin, cephalexin, cefotixin, cefquinome and cefoperazone. No nitrofurantoin-resistant
strains were detected in this study. In addition, there was a higher proportion of tested
strains that showed sensitivity to both Allium-derived compounds and resistance to ery-
thromycin, clindamycin, ibafloxacin, difloxacin, enrofloxacin, marbofloxacin, orbifloxacin,
chloramphenicol and trimethoprim/sulfamethoxazole, showing the highest percentage
(50%) of the S. pseudintermedius strains resistant to erythromycin, ibafloxacin, enrofloxacin
and orbifloxacin (Table 2; Supplementary Material: Tables S1 and S2).

Table 2. Comparison of percentages of Staphylococcus psedintermedius strains sensitive to PTS/PTSO
and resistant to the other antibiotics tested.

PTS and PTSO

Sensitive Resistant p-Value

Amoxicillin-clavulanic acid Sensitive 23.3 20.0 0.454Resistant 33.3 23.3

Gentamicin Sensitive 30.0 13.3 0.388Resistant 26.7 30.0

Neomycin Sensitive 40.0 23.3 0.774Resistant 16.7 20.0

Kanamycin Sensitive 40.0 26.7 0.581Resistant 16.7 16.7

Tobramycin Sensitive 46.7 33.3 0.092Resistant 10.0 10.0

Erythromycin Sensitive 6.7 3.3 0.001Resistant 50.0 40.0

Clindamycin Sensitive 16.7 3.3 0.003Resistant 40.0 40.0

Lincomycin Sensitive 16.7 6.7 0.130Resistant 40.0 36.7

Ibafloxacin Sensitive 6.7 10.0 0.008Resistant 50.0 33.3

Difloxacin Sensitive 6.7 10.0 0.008Resistant 50.0 33.3

Enrofloxacin Sensitive 6.7 10.0 0.008Resistant 50.0 33.3

Marbofloxacin Sensitive 13.3 10.0 0.021Resistant 43.3 33.3

Pradofloxacin Sensitive 36.7 13.3 0.754Resistant 20.0 30.0

Orbifloxacin Sensitive 6.7 10.0 0.008Resistant 50.0 33.3

Tetracycline Sensitive 33.3 20.0 >0.999Resistant 23.3 23.3

Doxycycline Sensitive 33.3 20.0 >0.999Resistant 23.3 23.3

Chloramphenicol Sensitive 50.0 40.0 0.013Resistant 6.7 3.3

Fusidic acid Sensitive 33.3 23.3 >0.999Resistant 23.3 20

Sulfamethoxazole/Trimethoprim Sensitive 16.7 3.3 0.003Resistant 40.0 40.0

Nitrofurantoin Sensitive 56.7 43.3 -Resistant 0.0 0.0

Rifampicin Sensitive 43.3 26.7 0.388Resistant 13.3 16.7

Streptomycin/Trimethoprim Sensitive 16.7 3.3 0.003Resistant 40.0 40.0

Spiramycin/Trimethoprim Sensitive 16.7 3.3 0.003Resistant 40.0 40.0

NOTE: Beta-lactams have been excluded due to the presence of the mecA gene. Colistin was not tested because it
has no effect against Gram-positive bacteria. Sensitivity and resistance are classified using a previously established
MIC cut-off, following Turnidge and Paterson (2007) [45]. A p-value < 0.05 indicates statistically significant
differences between sensitivity to Alliaceae compounds and sensitivity/resistance to other antimicrobials.
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3.2. Enterobacteriaceae

Enterobacteriaceae strains in the study exhibited different percentages of resistance
to antibiotics, PTS and PTSO. The reference strain E. coli CECT 516 showed an MIC for
PTS/PTSO of 62.5 µg/mL, which establishes a comparative baseline for the activity of
these Allium cepa-derived compounds against Enterobacteriaceae. The highest resistance
percentages were observed for tetracycline and doxycycline (96.2%), followed by ibafloxacin
and difloxacin (88.5% each) and enrofloxacin, marbofloxacin and orbifloxacin (84.6% each),
as shown in Table 3.

Table 3. Percentages of antibiotic and PTS/PTSO resistance in ESBL-Enterobacteriaceae.

Enterobacteriaceae n (N = 26) %

PTS 12 46.2
PTSO 12 46.2

Tetracycline 25 96.2
Doxycycline 25 96.2
Ibafloxacin 23 88.5
Difloxacin 23 88.5

Enrofloxacin 22 84.6
Marbofloxacin 22 84.6
Orbifloxacin 22 84.6

Pradofloxacin 20 76.9
Colistin 17 65.4

Spiramycin/Trimethoprim 15 57.7
Gentamicin 13 50.0

Sulfamethoxazole/Trimethoprim 13 50.0
Streptomycin/Trimethoprim 13 50.0
Amoxicillin clavulanic acid 11 42.3

Nitrofurantoin 11 42.3
Chloramphenicol 10 38.5

Tobramycin 7 26.9
Neomycin 3 11.5
Kanamycin 3 11.5

NOTE: Penicillins and cephalosporins were excluded due to the presence of extended-spectrum β-lactamases
(ESBLs). Erythromycin, clindamycin, fusidic acid and rifampicin were not tested against Gram-negative bacteria.
Sensitivity and resistance are classified using a previously established MIC cut-off, following Turnidge and
Paterson (2007) [45].

Additionally, 46.2% of the Enterobacteriaceae strains were resistant to PTS and PTSO.
A statistically significant difference was observed in the sensitivity of PTS and PTSO
compared with that of ibafloxacin, difloxacin, enrofloxacin, marbofloxacin, orbifloxacin,
tetracycline and doxycycline. Due to intrinsic extended-spectrum beta-lactamase resistance
genes, these strains have been classified as resistant to amoxicillin, ampicillin, cephalexin,
cefotixin, cefquinome and cefoperazone.

Finally, Enterobacteriaceae strains demonstrated significantly lower resistance to kanamycin
and neomycin than to PTS and PTSO. A higher proportion of the tested strains showed
sensitivity to PTS/PTSO and resistance to neomycin, kanamycin, ibafloxacin, difloxacin,
enrofloxacin, marbofloxacin, orbifloxacin, tetracycline and doxycycline, with the highest
percentage (50%) of Enterobacteriaceae strains resistant to tetracycline and doxycycline. The
results are detailed in Table 4.

Finally, when comparing the higher percentages (50%) of strains resistant to antibiotics
and sensitive to PTS/PTSO (Tables 2 and 4), a higher proportion of antibiotic-resistant
S. pseudintermedius strains was observed than that for Enterobacteriaceae, indicating greater
sensitivity to PTS/PTSO.
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Table 4. Comparison of percentages of Enterobacteriaceae strains sensitive to PTS/PTSO and resistant
to the antibiotics tested.

PTS and PTSO

Sensitive Resistant p-Value

Amoxicillin-clavulanic acid
Sensitive 23.1 34.6

>0.009Resistant 30.8 11.5

Gentamicin
Sensitive 26.9 23.1

>0.009Resistant 26.9 23.1

Neomycin Sensitive 46.2 42.3
0.022Resistant 7.7 3.8

Kanamycin Sensitive 46.2 42.3
0.022Resistant 7.7 3.8

Tobramycin Sensitive 30.8 42.3
0.332Resistant 23.1 3.8

Ibafloxacin
Sensitive 7.7 3.8

0.003Resistant 46.2 42.3

Difloxacin
Sensitive 7.7 3.8

0.003Resistant 46.2 42.3

Enrofloxacin
Sensitive 7.7 7.7

0.013Resistant 46.2 38.5

Marbofloxacin
Sensitive 7.7 7.7

0.013Resistant 46.2 38.5

Pradofloxacin
Sensitive 11.5 11.5

0.057Resistant 42.3 34.6

Orbifloxacin
Sensitive 7.7 7.7

0.013Resistant 46.2 38.5

Tetracycline Sensitive 3.8 0.0
<0.001Resistant 50.0 46.2

Doxycycline Sensitive 3.8 0.0
<0.001Resistant 50 46.2

Chloramphenicol Sensitive 30.8 30.8
0.791Resistant 23.1 15.4

Sulfamethoxazole/Trimethoprim Sensitive 30.8 19.2
>0.009Resistant 23.1 26.9

Colistin
Sensitive 19.2 15.4

0.267Resistant 34.6 30.8

Nitrofurantoin
Sensitive 30.8 26.9

>0.009Resistant 23.1 19.2

Streptomycin/Trimethoprim Sensitive 30.8 19.2
>0.009Resistant 23.1 26.9

Spiramycin/Trimethoprim Sensitive 26.9 15.4
0.549Resistant 26.9 30.8

NOTE: Sensitivity and resistance are classified using a previously established MIC cut-off, following Turnidge and
Paterson (2007) [45]. A p-value < 0.05 indicates statistically significant differences between sensitivity to Alliaceae
compounds and sensitivity/resistance to other antimicrobials.

4. Discussion

Antibiotic overuse has led to the development of multidrug-resistant bacterial strains,
making it increasingly challenging to treat infections in humans and animals [46,47]. There-
fore, it is important to explore alternative therapeutic options. Natural products have
emerged as valuable novel antimicrobial agent sources due to their diverse chemical com-
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positions and potential therapeutic properties [48,49]. Allium spp., including Allium cepa,
have been extensively studied for their medicinal properties, including antimicrobial ac-
tivity [27,50,51]. Organosulfur compounds observed in Allium cepa L. and Allium sativum
L. have shown promising antibacterial effects, making them potential candidates for use
against multidrug-resistant bacteria [52,53].

Despite the considerable attention natural products have received in human medicine,
their application in veterinary medicine remains largely unexplored. Limited studies have
assessed the efficacy of natural products against canine bacterial strains. This lack of
research highlights the need for further studies investigating the potential therapeutic uses
of natural compounds in veterinary applications.

In our study, the combination of conventional antimicrobials with PTS and PTSO has
demonstrated promising results in increasing the sensitivity of bacterial strains against
infections caused by S. pseudintermedius and Enterobacteriaceae. This approach, as high-
lighted in our findings, suggests a significant alternative to traditional synergy, aligning
with the guidelines for antimicrobial therapy combination [54] and underscoring the need
for innovative strategies in the face of rising antibiotic resistance. The in vitro antibacterial
activity of PTS and PTSO, as compared with other antimicrobials, has been shown to be
effective against multidrug-resistant bacteria [41], supporting the potential of this combi-
nation. Furthermore, the importance of systematic mapping of the long-term clearance
efficacy of drug combinations, as discussed in recent research [55], is crucial for designing
more effective multidrug regimes, especially against persistent infections.

Canine-originating bacterial strains, such as multidrug-resistant Staphylococcus spp.
and Enterobacteriaceae, are of great concern to both veterinary and public health [56,57].
These strains exhibit substantial diversity and can cause various infections in dogs and other
domestic animals, with potential zoonotic implications for humans [58–61]. Furthermore,
the ability of these strains to develop multi-drug resistance impairs treatment. Therefore,
research on canine-specific bacterial strains is crucial for developing effective therapeutic
strategies [62].

Several veterinary medicine studies have investigated the antimicrobial activities of
natural products against canine Staphylococcus and Enterobacteriaceae spp. These studies
explored a variety of natural sources, including herbal extracts, honey products and bacte-
riophages, among others [63–65]. These investigations provided valuable insights into the
potential efficacy of natural compounds as alternative therapies, with botanical products
being the most promising solutions, such as Garcinia mangostana or Harungana madagas-
cariensis extracts [66,67]. Organosulfur derivatives from garlic, such as allicin-inspired
compounds, have been reported to exhibit antibacterial activities against Staphylococcus
spp. [68]. Similarly, in previous studies, PTS and PTSO from onions showed antimicrobial
activity against Staphylococcus and Enterobacteriaceae multidrug-resistant strains isolated
from human samples [41]. However, to our knowledge, this is the first study to evaluate
the in vitro activity of these compounds against multidrug-resistant canine strains.

S. pseudintermedius is commonly isolated from superficial and deep pyoderma, otitis
externa, urinary tract infections and other canine tissues [58,69–72], and it does not normally
colonize humans, although transfer between owners and their pets has been described
and, in certain cases, has been associated with pathologies [73–77]. Additionally, many
Staphylococcus spp. carry the mecA gene, which encodes a penicillin-binding protein (PBP2a)
that confers resistance to beta-lactams [78–80]. Recently, the prevalence of methicillin-
resistant Staphylococcus (MRS) has increased [79]. MRS can express resistance to any
combination of antibiotics, including aminoglycosides, fluoroquinolones, lincosamides,
macrolides, tetracyclines, potentiated sulphonamides and rifampicin [72].

Based on the results of this study, it can be hypothesized that PTS/PTSO can effectively
treat a higher percentage of methicillin-resistant S. pseudintermedius infections than beta-
lactams. Furthermore, the tested strains showed lower resistance to PTS and PTSO than to
most quinolones, which should be prescribed as a last resort. Additionally, as previously
reported, MRS acquires resistance to fluroquinolones [81]. Most publications show similar
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results regarding resistance to these antibiotics and consider these drugs not to be good
therapeutic alternatives for MRS treatment [71,82].

This study observed that PTS and PTSO did not show lower resistance rates than
aminoglycosides, tetracyclines, rifampicin, chloramphenicol or fusidic acid. Regarding the
susceptibility of S. pseudintermedius strains to the different antibiotics tested, our results
agree with those obtained by other authors [83]. Although moderate-to-high resistance
patterns have been described for aminoglycosides, their clinical efficacy as single agents
against infections caused by Staphylococcus strains is not well established [84–86]. Ri-
fampicin, an antibiotic developed in the past, has been of recent interest due to its activity
against MRS. The moderate resistance described in this study is consistent with other
publications [69,87–91], although resistant strains have been described [92]. The tetracy-
cline resistance rates observed in this study are consistent with those reported in other
studies [90]. Tetracyclines are more effective in vitro than in vivo against different species
of Staphylococcus [88]. Fusidic acid resistance in this study was higher than that reported in
other publications [65,93]. However, more studies are required to determine the correlation
between in vitro studies and clinical efficacy. Chloramphenicol was used decades ago;
however, it is not now widely used because of its narrow safety margin, the need for
frequent administration and the lack of presentations suitable for small animals in most
countries [88]. Nitrofurantoin did not induce in vitro resistance against any of the Staphylo-
coccus isolates tested in this study. High susceptibility to this drug has been reported in
other studies [94]. However, this drug is highly toxic and not used in clinical practice [95].

The global problem of antimicrobial resistance includes the emergence of extended-
spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae that cause considerable mor-
bidity and mortality, especially E. coli and K. pneumoniae species [96]. The prevalence of
canine isolates resistant to beta-lactams, including broad-spectrum cephalosporins, has
increased in recent years [97,98], leading to urinary infections. Companion animals that
live in close contact with humans may contribute substantially to their owners’ exposure to
ESBL-producing Enterobacteriaceae [98].

In this study, all ESBL-producing Enterobacteriaceae isolates were found to be multidrug-
resistant. The resistance percentages of ESBL-producing strains to PTS and PTSO were
similar to those observed for amoxicillin-clavulanate, with a low resistance to amoxicillin-
clavulanic acid, consistent with recent studies [99]. However, other authors reported higher
values [100]. Bacteria with ESBL genes are associated with resistance to other non-beta-
lactam antimicrobials, such as tetracyclines, quinolones, lincosamides, macrolides and,
to a lesser extent, chloramphenicol and aminoglycosides [98,101–106]. Moreover, PTS
and PTSO showed higher sensitivity percentages for ESBL strains than most quinolones
and tetracyclines. The sensitivity percentages for these groups of antibiotics were similar
to those observed in other studies [101,104–106] and do not usually represent a good
therapeutic alternative. As observed in other surveys, aminoglycosides presented low
resistance percentages, probably because of their limited use in the clinic due to their
pharmacokinetics and potential side effects [107,108]. Allium compounds showed similar
resistance to colistin, nitrofurantoin, chloramphenicol and potentiated sulfonamides in the
ESBL strains. Colistin was discontinued because of nephrotoxicity. However, the emergence
of carbapenem resistance in clinically important bacteria such as Pseudomonas aeruginosa,
Acinetobacter baumannii, K. pneumoniae and E. coli has propitiated its reintroduction into
clinical practice as a last-resort treatment option [109]. Resistance to nitrofurantoin has
been described in low percentages of ESBL-producing Enterobacteriaceae [95]; however, its
toxicity and poor pharmacokinetic characteristics have led to its low use in clinical practice.
Chloramphenicol and potentiated sulfonamides have shown low to moderate resistance
rates in recent publications [100], probably due to lower antibiotic pressure.

Finally, considering the historically safe use of PTS and PTSO in farm animal species
and their dietary origin, both compounds are presumed safe for dog health. The toxicologi-
cal aspects of PTS and PTSO have previously been tested in experimental animals. In vivo
studies have demonstrated the low acute and subchronic oral toxicity of PTSO [34–36]. In
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addition, recent studies on rats orally administered with PTS and PTSO for 90 days showed
no toxic effects [35]. Some studies found in the scientific literature show contradictory
results about the safety of alliaceous derivatives in the canine diet, even considering them
to be harmful food [31]. This fact largely contradicts the results of trials conducted by other
authors in which the incorporation of alliaceous in the diet of dogs leads to an improvement
in animal health [32,110]. For example, the trial conducted by Yamato et al. [33] involved
orally administering a daily dose of garlic extract at 90 mg/kg of weight to Beagle dogs for
12 weeks, which not only resulted in the absence of adverse effects, but also improved the
health of the animals by increasing the gene expression of antioxidant enzymes.

While PTS/PTSO is currently being commercialized for use in farm animals, such as
pigs and poultry, research into its application in pets is a more recent development. This
paper serves as a pioneering contribution in this field, exploring the use of PTS/PTSO in
pet nutrition, and specifically for dogs. This study aims to provide foundational knowledge
and encourage further research. Our findings contribute to an increase in the knowledge
of this area, highlighting the need for continued research into the safe and effective use
of PTS/PTSO in canine diets. Despite these promising results, further pharmacokinetic
studies must establish their safe use in clinical practice.

5. Conclusions

In this study, we investigated the antibacterial properties of PTS and PTSO, two
organosulfur derivatives of Allium cepa. These findings provide initial insights into the
potential of both Allium species for further investigation in veterinary practice. However,
in vivo trials are required to evaluate their efficacy in dogs.
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