Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of CPE
2.2. Animals and Experimental Design
2.3. Preparation of Serum and Tissue
2.4. Measurement of Serum Cytokines Level
2.5. Histomorphometry of Small Intestine
2.6. Determination of Cytokines, sIgA and β-DF in Jejunum Tissue
2.7. Determination of Intestine mRNA
2.8. Microbiota 16S rDNA Amplicon Sequencing
2.9. Statistical Analysis
3. Results
3.1. Results of Body Weight and Immune Organ Index of Mice in Each Group
3.2. Detection Results of Intestinal Permeability Index in Each Group of Experimental Mice
3.3. Results of Intestinal Sections of Mice in Each Group
3.4. Detection Results of sIgA, β-DF, Oxidation, and Cytokines in Intestinal Tissue of Mice in Each Group
3.5. Detection Results of mRNA Relative Expression Levels of Intestinal Barrier Related Genes in Mice from Various Experimental Groups
3.6. CPE Modulated the Overall Structure of Gut Microbiota in Cy-Treated Mice
4. Discussion
4.1. Effect of CPE on Body Weight in Mice
4.2. Effect of CPE on Immune Function in Mice
4.3. Effect of CPE on the Organization of Intestinal Mucosa in Mice
4.4. Effects of CPE on Intestinal Oxidation Indicators in Mice
4.5. Effect of CPE on Intestinal the Barrier in Mice
4.6. Effect of CPE on the Intestinal Microbiota in Mice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Meheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef] [PubMed]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; He, D.; Xie, J.; Zhou, Q.; Zeng, H.; Li, H.; Huang, L. The Synergistic Effects of Polysaccharides and Ginsenosides from American Ginseng (Panax quinquefolius L.) Ameliorating Cyclophosphamide-Induced Intestinal Immune Disorders and Gut Barrier Dysfunctions Based on Microbiome-Metabolomics Analysis. Front. Immunol. 2021, 12, 665901. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, C.; Xia, H.; Liang, Y.; Li, Z. Oral administration of Urtica macrorrhiza Hand.-Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression. Exp. Ther. Med. 2019, 18, 2178–2186. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, J.; Li, Y.; Wang, Y.; Wang, F.; Qiu, X.; Liu, X.; Li, H. Sodium Alginate Modulates Immunity, Intestinal Mucosal Barrier Function, and Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed BALB/c Mice. J. Agric. Food Chem. 2021, 69, 7064–7073. [Google Scholar] [CrossRef]
- Zhao, Z.-L.; Xu, X.-G.; Chang, Y.-C.; Xu, Y.-P.; Zhou, X.-Q.; Su, H.-L.; Cui, X.-H.; Wan, X.-Q.; Mao, G.-X. Protective effect of mussel polysaccharide on cyclophosphamide-induced intestinal oxidative stress injury via Nrf2-Keap1 signaling pathway. Food Sci. Nutr. 2023, 11, 4233–4245. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Wang, Y.; Yang, H.; Cao, L.; Gan, S.; Ma, J.; Liu, H. Immuno-stimulatory activity of Astragalus polysaccharides in cyclophosphamide-induced immunosuppressed mice by regulating gut microbiota. Int. J. Biol. Macromol. 2023, 242, 124789. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.-X.; Qu, J.-M.; Wang, X.-D. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur. J. Pharmacol. 2013, 714, 120–124. [Google Scholar] [CrossRef]
- Bao, X.; Wu, J. Impact of food-derived bioactive peptides on gut function and health. Food Res. Int. 2021, 147, 110485. [Google Scholar] [CrossRef]
- Martínez-Augustin, O.; Rivero-Gutiérrez, B.; Mascaraque, C.; Sánchez de Medina, F. Food derived bioactive peptides and intestinal barrier function. Int. J. Mol. Sci. 2014, 15, 22857–22873. [Google Scholar] [CrossRef]
- Yang, Q.; Lyu, S.; Xu, M.; Li, S.; Du, Z.; Liu, X.; Shang, X.; Yu, Z.; Liu, J.; Zhang, T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. J. Agric. Food Chem. 2023, 71, 13168–13180. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.-H.; Fan, L.; Zhang, Y.; Zhu, Y.-K.; Zong, X.-L.; Peng, G.-N.; Cao, S.-Z. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022, 14, 5071. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, D.; Liu, W.; He, L.; Liang, P.; Hao, J.; Sun, Q. The immunity-promoting activity of porcine placenta in mice as an immunomodulator for functional foods. Food Sci. Hum. Wellness 2022, 11, 1475–1481. [Google Scholar] [CrossRef]
- Fang, X.-P.; Xia, W.-S.; Sheng, Q.-H.; Wang, Y.-L. Purification and characterization of an immunomodulatory Peptide from bovine placenta water-soluble extract. Prep. Biochem. Biotechnol. 2007, 37, 173–184. [Google Scholar] [CrossRef]
- Shen, L.-H.; Fan, L.; Zhang, Y.; Shen, Y.; Su, Z.-T.; Peng, G.-N.; Deng, J.-L.; Zhong, Z.-J.; Wu, X.-F.; Yu, S.-M.; et al. Antioxidant Capacity and Protective Effect of Cow Placenta Extract on D-Galactose-Induced Skin Aging in Mice. Nutrients 2022, 14, 4659. [Google Scholar] [CrossRef]
- Shen, L.; Fan, L.; Luo, H.; Li, W.; Cao, S.; Yu, S. Cow placenta extract ameliorates d-galactose-induced liver damage by regulating BAX/CASP3 and p53/p21/p16 pathways. J. Ethnopharmacol. 2024, 323, 117685. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, L.; Lu, C.; Dou, M.; Jiao, Y.; Bao, Y.; Shi, W. Effects of compound small peptides of Chinese medicine on intestinal immunity and cecal intestinal flora in CTX immunosuppressed mice. Front. Microbiol. 2022, 13, 959726. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Wang, R.; Chen, L.; Chen, Y.; Zheng, B.; Deng, S.; Liu, S.; Sun, P.; Shen, G. Immunomodulatory activity of a water-soluble polysaccharide extracted from mussel on cyclophosphamide-induced immunosuppressive mice models. NPJ Sci. Food 2022, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.-W.; Zheng, H.-Z.; Wang, R.; Chen, H.; Xiao, J.-X.; Zheng, B.; Liu, S.-L.; Ding, Y.-T. Ameliorative Effects of Peptides Derived from Oyster (Crassostrea gigas) on Immunomodulatory Function and Gut Microbiota Structure in Cyclophosphamide-Treated Mice. Mar. Drugs 2021, 19, 456. [Google Scholar] [CrossRef]
- Cai, G.; Wu, C.; Mao, N.; Song, Z.; Yu, L.; Zhu, T.; Peng, S.; Yang, Y.; Liu, Z.; Wang, D. Isolation, purification and characterization of Pueraria lobata polysaccharide and its effects on intestinal function in cyclophosphamide-treated mice. Int. J. Biol. Macromol. 2022, 218, 356–367. [Google Scholar] [CrossRef]
- Liu, J.P.; Wang, J.; Zhou, S.X.; Huang, D.C.; Qi, G.H.; Chen, G.T. Ginger polysaccharides enhance intestinal immunity by modulating gut microbiota in cyclophosphamide-induced immunosuppressed mice. Int. J. Biol. Macromol. 2022, 223, 1308–1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zheng, H.; Li, T.; Jiang, Q.; Liu, S.; Zhou, X.; Ding, Y.; Xiang, X. Protective Effect of Oyster Peptides Derived From Crassostrea gigas on Intestinal Oxidative Damage Induced by Cyclophosphamide in Mice Mediated through Nrf2-Keap1 Signaling Pathway. Front. Nutr. 2022, 9, 888960. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Huang, Z.; Yue, W.; Nawaz, S.; Chen, X.; Liu, J. Lactobacillus plantarum modulate gut microbiota and intestinal immunity in cyclophosphamide-treated mice model. Biomed. Pharmacother. 2023, 169, 115812. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Khan, A.I.; Rehman, A.U.; Farooqui, N.A.; Siddiqui, N.Z.; Ayub, Q.; Ramzan, M.N.; Wang, L.; Xin, Y. Effects of Shrimp Peptide Hydrolysate on Intestinal Microbiota Restoration and Immune Modulation in Cyclophosphamide-Treated Mice. Molecules 2022, 27, 1720. [Google Scholar] [CrossRef]
- Chen, C.; Su, X.; Hu, Z. Immune promotive effect of bioactive peptides may be mediated by regulating the expression of SOCS1/miR-155. Exp. Ther. Med. 2019, 18, 1850–1862. [Google Scholar] [CrossRef]
- Lee, H.B.; Son, S.U.; Lee, J.E.; Lee, S.H.; Kang, C.H.; Kim, Y.S.; Shin, K.S.; Park, H.Y. Characterization, prebiotic and immune-enhancing activities of rhamnogalacturonan-I-rich polysaccharide fraction from molokhia leaves. Int. J. Biol. Macromol. 2021, 175, 443–450. [Google Scholar] [CrossRef]
- Wang, Y.-K.; He, H.-L.; Wang, G.-F.; Wu, H.; Zhou, B.-C.; Chen, X.-L.; Zhang, Y.-Z. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs 2010, 8, 255–268. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.; Li, A.; Yang, M.; Huang, W.; Xu, H.; Zhao, Z.; Li, S. Immuno-enhancement effects of Yifei Tongluo Granules on cyclophosphamide-induced immunosuppression in Balb/c mice. J. Ethnopharmacol. 2016, 194, 72–82. [Google Scholar] [CrossRef]
- Gao, S.; Hong, H.; Zhang, C.; Wang, K.; Zhang, B.; Han, Q.-a.; Liu, H.; Luo, Y. Immunomodulatory effects of collagen hydrolysates from yak (Bos grunniens) bone on cyclophosphamide-induced immunosuppression in BALB/c mice. J. Funct. Foods 2019, 60, 103420. [Google Scholar] [CrossRef]
- Zuo, T.; Cao, L.; Sun, X.; Li, X.; Wu, J.; Lu, S.; Xue, C.; Tang, Q. Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food Funct. 2014, 5, 3189–3196. [Google Scholar] [CrossRef]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Luo, J.; Du, H.; Jiang, Y.; Tu, Y.; Yao, Y.; Xu, M. Ovotransferrin enhances intestinal immune response in cyclophosphamide-induced immunosuppressed mice. Int. J. Biol. Macromol. 2018, 120, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Lin, Q.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Mao, X.; Huang, Z.; Yu, J.; Luo, J.; et al. β-defensin 118 attenuates inflammation and injury of intestinal epithelial cells upon enterotoxigenic Escherichia coli challenge. BMC Vet. Res. 2022, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chang, Y.; Gao, Y.; Wang, X.; Chen, X.; Wang, Y.; Xue, C.; Tang, Q. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide. Food Funct. 2017, 8, 3383–3393. [Google Scholar] [CrossRef]
- Cai, G.; Wu, Y.; Wusiman, A.; Gu, P.; Mao, N.; Xu, S.; Zhu, T.; Feng, Z.; Liu, Z.; Wang, D. Alhagi honey polysaccharides attenuate intestinal injury and immune suppression in cyclophosphamide-induced mice. Food Funct. 2021, 12, 6863–6877. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Ma, L.; Luo, Z.; Huang, Y.; Li, Y.; Guan, J.; Zhou, T.; Du, Z.; Yong, K.; Yao, X.; Shen, L.; et al. Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits. Front. Microbiol. 2022, 13, 1074036. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Weng, M.; Jiang, S.; Gao, J. Diagnostic and Clinical Significance of Serum Levels of D-Lactate and Diamine Oxidase in Patients with Crohn’s Disease. Gastroenterol. Res. Pract. 2019, 2019, 8536952. [Google Scholar] [CrossRef]
- Kurashima, Y.; Goto, Y.; Kiyono, H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur. J. Immunol. 2013, 43, 3108–3115. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. Oxid. Med. Cell. Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Nichols, T.W.; Angstadt, A.R. Dietary bioactive peptides in maintaining intestinal integrity and function. Am. J. Gastroenterol. 2001, 96, S311. [Google Scholar] [CrossRef]
- Ramakrishna, B.S. Role of the gut microbiota in human nutrition and metabolism. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. S4), 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Duan, W.; Li, D.; Tang, X.; Duan, Z. Effects of Polysaccharides From Auricularia auricula on the Immuno-Stimulatory Activity and Gut Microbiota in Immunosuppressed Mice Induced by Cyclophosphamide. Front. Immunol. 2020, 11, 595700. [Google Scholar] [CrossRef]
- Ying, M.; Yu, Q.; Zheng, B.; Wang, H.; Wang, J.; Chen, S.; Nie, S.; Xie, M. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr. Polym. 2020, 235, 115957. [Google Scholar] [CrossRef] [PubMed]
- López, P.; de Paz, B.; Rodríguez-Carrio, J.; Hevia, A.; Sánchez, B.; Margolles, A.; Suárez, A. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci. Rep. 2016, 6, 24072. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, H.J.; Zhang, T.; Li, C.; Kim, M.J.; Kim, K.-N.; Park, S. Porcine Brain Enzyme Hydrolysate Enhances Immune Function and Antioxidant Defense via Modulation of Gut Microbiota in a Cyclophosphamide-Induced Immunodeficiency Model. Antioxidants 2024, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Zhu, K.; Li, C.; Zhao, Q.; Gu, F.; Xu, F.; Chu, Z. Microbiome-Metabolomic Analysis Revealed the Immunoprotective Effects of the Extract of Vanilla planifolia Andrew (EVPA) on Immunosuppressed Mice. Foods 2024, 13, 701. [Google Scholar] [CrossRef]
- Zhai, Q.; Feng, S.; Arjan, N.; Chen, W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019, 59, 3227–3236. [Google Scholar] [CrossRef]
- Haskey, N.; Ye, J.; Estaki, M.; Verdugo Meza, A.A.; Barnett, J.A.; Yousefi, M.; Birnie, B.W.; Gruenheid, S.; Ghosh, S.; Gibson, D.L. A Mediterranean-like fat blend protects against the development of severe colitis in the mucin-2 deficient murine model. Gut. Microbes 2022, 14, 2055441. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Wang, J.; Li, P.; Duan, Y.; Dai, H.; An, Y.; Cheng, L.; Wang, T.; Wang, C.; et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed. Pharmacother. 2020, 124, 109873. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-H.; Wang, J.; Zhang, C.-Y.; Zhao, L.; Sheng, Y.-Y.; Tao, G.-S.; Xue, Y.-Z. Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice. Front. Endocrinol. 2023, 14, 1133167. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, M.; Zhou, L.; Xu, D.; Qian, F.; Zhang, J.; Zhou, X. Effects of Qingluo Tongbi Decoction on Gut Flora of Rats with Adjuvant-Induced Arthritis and the Underlying Mechanism. Evid.-Based Complement. Altern. Med. 2019, 2019, 6308021. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Guo, M.; Zhang, M.; Duan, M.; Zheng, J.; Liu, Y.; Qiu, L. Sub-lethal concentration of metamifop exposure impair gut health of zebrafish (Danio rerio). Chemosphere 2022, 303, 135081. [Google Scholar] [CrossRef]
Gene | Forward Primers (5′-3′) | Reverse Primers (5′-3′) | Size (bp) |
---|---|---|---|
GAPDH | CCTCGTCCCGTAGACAAAATG | TGAGGTCAATGAAGGGGTCGT | 133 |
Mucin-2 | TCCTGACCAAGAGCGAACAC | ACAGCACGACAGTCTTCAGG | 102 |
ZO-1 | GCCGCTAAGAGCACAGCAA | GCCCTCCTTTTAACACATCAGA | 103 |
Occludin | TCTGCTTCATCGCTTCCTTAGT | AGCCGTACATAGATCCAGAAGC | 189 |
Claudin-1 | TGGTAATTGGCATCCTGCTG | CAGCCATCCACATCTTCTGC | 122 |
Time | Group | ||
---|---|---|---|
C | M | CPE | |
Day 0 | 43.81 ± 0.36 a | 43.66 ± 0.32 a | 43.79 ± 0.34 a |
Day 7 | 45.41 ± 0.32 b | 45.73 ± 0.28 b | 45.58 ± 0.44 b |
Day 14 | 45.95 ± 0.37 b | 46.13 ± 0.44 bc | 46.56 ± 0.43 bc |
Day 21 | 47.54 ± 0.36 c | 47.64 ± 0.39 c | 47.96 ± 0.42 c |
Day 28 | 48.34 ± 0.64 c | 46.03 ± 0.40 ba | 47.27 ± 0.39 cb |
Index | Group | ||
---|---|---|---|
C | M | CPE | |
Chao1 | 592.48 ± 51.75 ab | 703.68 ± 48.21 b | 582.40 ± 90.06 a |
Shannon | 5.71 ± 0.38 | 6.13 ± 0.27 | 5.74 ± 0.32 |
Simpson | 0.90 ± 0.03 | 0.93 ± 0.02 | 0.92 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Z.; Tang, A.; Zeng, Z.; Zheng, W.; Luo, Y.; Huang, Y.; Dai, X.; Lu, W.; Fan, L.; et al. Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Vet. Sci. 2024, 11, 505. https://doi.org/10.3390/vetsci11100505
Zhao Y, Zhang Z, Tang A, Zeng Z, Zheng W, Luo Y, Huang Y, Dai X, Lu W, Fan L, et al. Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Veterinary Sciences. 2024; 11(10):505. https://doi.org/10.3390/vetsci11100505
Chicago/Turabian StyleZhao, Yuquan, Zeru Zhang, Anguo Tang, Zhi Zeng, Weijian Zheng, Yuxin Luo, Yixin Huang, Xinyi Dai, Wei Lu, Lei Fan, and et al. 2024. "Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota" Veterinary Sciences 11, no. 10: 505. https://doi.org/10.3390/vetsci11100505
APA StyleZhao, Y., Zhang, Z., Tang, A., Zeng, Z., Zheng, W., Luo, Y., Huang, Y., Dai, X., Lu, W., Fan, L., & Shen, L. (2024). Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Veterinary Sciences, 11(10), 505. https://doi.org/10.3390/vetsci11100505