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Simple Summary: Chinchillas (Chinchilla lanigera) are cecal fermenters; the health of their gastroin-
testinal system contributes significantly to their overall wellbeing, yet minimal data are available
regarding the composition of the microbiota present in different segments of their gastrointestinal
tract. This study addresses the knowledge gap regarding the gastrointestinal microbiota in healthy
chinchillas. Notably, the cecum and colon displayed significantly higher microbiota abundance
compared with the proximal gastrointestinal segments, with cellulose-degrading bacteria as the core
microbiota. In contrast, the stomach and small intestine exhibited lower microbiota abundance, with
characteristic microbiota possessing acid-resistant properties. Moreover, the Atopobiaceae family
was discovered in the proximal gastrointestinal tract of the chinchilla, which is the first report of its
presence in the gastrointestinal tract of cecal fermenters.

Abstract: The gastrointestinal microbiota develop alongside the host and play a vital role in the health
of cecal fermenters such as chinchillas. However, little is known about the microbiota architecture in
healthy chinchillas. Illumine-based 16S rRNA gene amplicon sequencing was used to investigate the
microbiota present in six different gastrointestinal tract regions of three healthy adult chinchillas. The
findings revealed significantly more abundant microbiota in the large intestine compared with the
proximal segments. In addition, the cecum exhibited better evenness compared to the colon. The core
microbiota are Firmicutes, Bacteroidota, Actinobacteriota, and Proteobacteria at the phylum level. The
signature microbiota of each segment were identified. The cecum had 10 signature microbiota, which
had the widest coverage and overlapped with that of the cecum. The stomach had five signature
microbiota, exhibiting the second widest coverage and overlapping with the duodenum. No signature
microbiota were detected in the jejunum and ileum. While similarities exist with the microbiota of
other cecal fermenters, chinchillas exhibit distinct microbiota closely related to their unique digestive
mechanisms. This study is a preliminary study of the gastrointestinal microbiota architecture and
distribution in healthy chinchillas. Further study is needed in order to better understand the effect of
gastrointestinal microbiota on the health of the chinchilla.

Keywords: chinchillas; gastrointestinal microbiota; 16S rRNA

1. Introduction

Chinchillas are cecal fermenters with a unique gastrointestinal digestive system. Chin-
chillas have a large and well-developed cecum that accounts for up to 22% of the total
gastrointestinal tract, and chinchillas rely on the microbiota within the cecum to ferment
plant fibers and produce volatile fatty acids (VFAs) as a crucial energy source. Chinchillas
practice coprophagy. The mucus on the surface of cecotropes protects the microorgan-
isms within it from the gastric acid, which allows these microorganisms to return to the
gastrointestinal tract with minimal loss [1–4].
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“Gastrointestinal microbiota” refers to the entire bacterial community residing in an
animal’s gastrointestinal tract, which maintains a symbiotic relationship with the mucosal
lining. The microbiota are believed to be able to provide insights into the health status
of the animals [1]. In healthy chinchilla, the gastrointestinal microbiota play crucial roles
in the host’s metabolisms, immune responses, and anti-inflammatory functions, serving
as a vital defense barrier against invasive pathogenic microorganisms [1,5,6]. Minimal
data are available regarding the composition of the microbiota present in the chinchilla
gastrointestinal tract. O’Donnell et al. have studied the core fecal microbiota of three
chinchillas living on a farm in Ireland along with nine other animal species. The result
of the study showed that the Firmicutes and Bacteroidetes phyla were the dominant
microbiota in the chinchilla [6]. Our team evaluated the effect of ivermectin treatment
on the fecal bacterial microbiota of healthy chinchillas [7]. In addition to the effect of
gastrointestinal drugs on the fecal microbiota, differences in microbial composition between
compartments of the chinchilla gastrointestinal tract are also of clinical interest. The present
study investigates microbial composition and distribution in different segments of the
chinchilla gastrointestinal tract via 16S rRNA gene amplicon sequencing and is therefore
a valuable reference for further research on chinchilla microbiota and potential clinical
applications thereof in diagnosis and treatment.

2. Materials and Methods
2.1. Animal Selection

Three healthy adult chinchillas from a commercial farm in Beijing were selected in this
study, including one male and two female chinchillas, aged between one to two years old.
All the chinchillas had not received any drugs, especially antibiotics, for six months before
this experiment. The chinchillas were housed in individual cages at consistent temperatures
of 21–23 ◦C, and the light was present for 12 h a day. All the animals were fed a commercial
pellet feed (Jolly® Chinchilla Fullvit JP05, Double Trees Company Ltd., Dongguan, China)
and tap water ad libitum. The commercial pallet feed was composed of rosehip, corn,
soybean, evening primrose powder, yeast powder, salt, and various vitamins. Additionally,
they were provided with apple tree branch for teeth grinding every two days and given
sand baths every week. All animals had been healthy during the experiment based on the
results of physical examination, appetite, urination, and feces consistency. This experiment
was approved by the Experimental Animal Welfare and Animal Experiment Ethics Review
Committee of China Agricultural University.

2.2. Sample Collection

All animals were anesthetized with 0.5 mg/kg butorphanol and 5 mg/kg alfaxalone
intramuscular injection. Euthanasia of these three chinchillas via cervical dislocation was
performed after they became unconscious. The abdomen was clipped and prepped in the
standard sterile fashion. The stomach, duodenum, jejunum, ileum, cecum, and colon were
excised using sterile dissecting instruments. Approximately 1–2 mL of gastrointestinal
contents were collected through gently scooping the gastrointestinal content with a sterile
scalpel [8]. All samples were collected within 30 min after euthanasia. All samples were
placed in sterile 2 mL cryogenic tubes and stored at −80◦ C before being sent for inspection.

2.3. DNA Extraction and 16S rRNA Sequencing

Bacterial genomic DNA was extracted from gastrointestinal content samples using a
commercial extraction kit (E.Z.N.A.® DNA Extraction Kit, Norcross, GA, USA: Omega Bio-
Tek), according to the manufacturer’s recommendations. The quality of the extracted DNA
was detected by 1% agarose gel electrophoresis, and its concentrations were determined by a
NanoDrop2000 ultramicro spectrophotometer. The V3 and V4 hypervariable region of the 16S
rRNA gene was amplified using the upper primer 338F (5′-ACTCCTACGGGAGGCAGCAG-
3′) and the lower primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The amplicons were
then sequenced using Illumina Miseq PE300.
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2.4. Statistical Analysis

The 16S rRNA raw amplicon sequences obtained from each sample were merged
using FLASH (v1.2.11). All bioinformatic analyses were conducted using the USEARCH
pipeline (v11), clustering filtered reads into Operational Taxonomic Units (OTUs) at 97%
nucleotide identity level. Normalization was performed to the OUT matrices to a total of
20,000 counts. Taxonomic assignments were performed via the RDP classifier using 0.5 as
the confidence threshold, against the Silva 16S rRNA database (v138). The QIIME pipeline
was used to generate a table of the abundance in each taxonomic group.

For α-diversity analysis, the richness of OTUs was assessed using the Chao 1 and
the ACE estimator. In addition, the Simpson index and the Shannon index were used
for assessing the evenness. β-diversity analysis was performed via Bray–Curtis similar-
ity indices and visualized using principal coordinates analysis (PCoA) and nonmetric
multidimensional scaling (NMDS). Finally, linear discriminant analysis effect size (LEfSe)
was used to determine the marker flora of each sample according to the all-against-all
multigroup comparison strategy with LDA > 4 and p < 0.05 as the standard. The difference
among different gastrointestinal segments was tested by the Kruskal–Wallis rank sum test.
The Welch t-test was applied to all samples to determine whether the differences in the
microbiota among the segments were statistically significant. A p-value of less than 0.05
was considered statistically significant.

3. Results
3.1. Microbiota Profile Analysis

All samples of chinchilla gastrointestinal content contained a total of 1120 bacterial
OTUs; among them, the out numbers of the stomach, duodenum, jejunum, ileum, cecum,
and colon group were 304, 665, 413, 492, 841, and 802, respectively. The microbiota in
the large intestine, including in the cecum and the colon, exhibited the highest richness
and showed significant difference to the proximal segments (p < 0.05). The large intestine
showed the most diverse microbiota, and there was significant difference between the large
intestine and the stomach (p < 0.05). In addition, there was significant difference in the
diversity between the cecum and the colon (p < 0.05, Figure 1).

The microbiota of the 18 samples were classified into two categories: the large intestine
(cecum and colon) and the proximal gastrointestinal tract (stomach, duodenum, jejunum,
and ileum). The PCoA results revealed that there was greater difference between different
segments than within the same segments (R = 0.37, p = 0.014). In addition, the microbiota
in the large intestine were significantly different to the proximal gastrointestinal tract
(p < 0.05). In this experiment, the stress value of NMDS was 0.079, indicating a meaningful
interpretation of the NMDS analysis and a significant difference between the large intestine
and the proximal gastrointestinal tract (p < 0.05) (Figure 2). Both PCoA and NMDS analyses
consistently demonstrated a high similarity in the microbiota of the cecum and colon. The
elliptical ranges of stomach, duodenum, jejunum, and ileum overlapped, suggesting no
significant difference among these different segments. The microbiota of the jejunum and
ileum showed high similarity but were distinct from those of the stomach and duodenum.

3.2. Compositional Analysis

The abundance of taxa in all different gastrointestinal content samples were analyzed
at both the phylum level and genus level. Four major phyla (Firmicutes, Bacteroidota, Acti-
nobacteriota, and Proteobacteria) collectively accounted for more than 95% of the relative
abundance. Firmicutes were the most abundant phylum across all gastrointestinal seg-
ments, with the stomach exhibiting the highest abundance (89.34%) among all segments. In
the duodenum, Actinobacteriota were the second dominant phylum. In the jejunum, ileum,
cecum, and colon, Bacteroidota had the second highest relative abundance (Figure 3a).
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The top 10 abundant microbiota bacterial genera in the gastrointestinal tract of chin-
chillas were Lactobacillus, Muribaculaceae, Sarcina, and Streptococcus, Erysipelotrichaceae,
Ruminococcus, Clostridia_UCG-014, Atopobiaceae, and Lachnospiraceae. Among these
genera, Lactobacillus, Sarcina, and Streptococcus accounted for 86.29% of the bacteria in
the stomach. This decreased to greater than 1% in the small intestine and less than 1%
in the large intestine, respectively. In the duodenum, Lactobacillus was the most domi-
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nant genus, followed by Atopobiaceae, together comprising 54.38% of the total duodenal
microbiota. Both the jejunum and ileum were dominated by Muribaculaceae and Lacto-
bacillus (Figure 3b). In the large intestine, the Muribaculaceae and Ruminococcus were the
dominate genera. The abundance of Muribaculaceae (p < 0.05) in the large intestine was
significantly higher than that in the stomach. The abundance of Ruminococcus in the large
intestine was significantly higher than in the proximal segments (p < 0.05).
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3.3. Gastrointestinal Signature Microbiota

In this experiment, the cecum signature microbiota had the widest coverage, followed
by the stomach. The colon signature microbiota overlapped with that of the cecum, and
the duodenum signature microbiota overlapped with that of the stomach. However, no
signature microbiota were detected in the jejunum and ileum.

Nineteen taxa were identified to be associated with different gastrointestinal locations
(LDA > 4, p < 0.05), including four orders, six families, and nine genera (Figure 4). The ce-
cum had 10 signature microbiota, with the order Oscillospirales contributing the most to the
differences (p = 0.021), followed by Lachnospirales (p = 0.026). Besides Prevotellaceae_UCG-
001, all the other signature families or genera belonged to either Oscillospirales or Lach-
nospirales. Prevotellaceae_UCG-001 (p = 0.045) belonged to the order Bacteroidales and was
also a signature microbiota in the cecum.
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The characteristic taxa in the colon included the genus Ruminococcus (p = 0.024) and
UCG-005 (p = 0.045). The stomach had a total of five signature microbiota, including the
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order Clostridiales (p = 0.03) and its family Clostridiaceae (p = 0.03), as well as the order
Lactobacillales (p = 0.034) and its family Streptococcaceae (p = 0.039) and genus Streptococcus
(p = 0.039). The characteristic taxa in the duodenum included the family Lactobacillaceae
(p = 0.033) and the genus Lactobacillus (p = 0.033).

4. Discussion

This study is a pilot study to analyze the composition and distribution characteristics of
the gastrointestinal microbiota in healthy chinchillas. Two clusters of bacterial populations
were observed in the digestive system: (i) stomach and small intestine and (ii) large intestine.
Among all the gastrointestinal segments, the cecal microbiota had the highest diversity,
while the stomach exhibited the lowest diversity. The diversity of microbiota within the
cecum and colon was significantly higher than in the proximal segments. Despite the
similar microbiota abundances in the cecum and the colon, the cecum microbiota were
more evenly distributed. Due to the mechanisms of colonic separation, the contents of the
cecum and the colon may mix during intestinal peristalsis [2], which corresponds with
the high diversity and similar composition of the microbiota in the cecum and colon as
observed in the study.

At the phylum level, the core phyla in the gastrointestinal tract of chinchillas include
Firmicutes, Bacteroidota, Actinobacteriota, and Proteobacteria. The results of this study
indicate some similarity in the microbiota composition between chinchillas and other cecal
fermenters like rabbits [6,9]. At the genus level, Ruminococcus and Muribaculaceae showed
similar composition between chinchillas and other cecal fermenters [6,9]. However, to
our knowledge, there has been no previous research on the detection of the Atopobiaceae
family in the gastrointestinal microbiota of cecal fermenters. In our study, Atopobiaceae
was found to be the second most abundant genus in the duodenum of healthy chinchillas.
Atopobiaceae, which belongs to Actinobacteriota phylum, is beneficial bacteria found
in the gastrointestinal tracts of other mammals such as humans, mice and pigs. Many
bacteria within the Atopobiaceae family are capable of fermenting and producing lactic
acid and short-chain fatty acids [10]. Some Atopobiaceae bacteria have been reported to
exhibit a high bile resistance ability, which makes them potential targets for future probiotic
research [10].

In our study, the characteristic microbiota in the cecum comprised three major cate-
gories: the Oscillospirales order, Lachnospirales order, and Prevotellaceae_UCG-001 genus.
This finding correlated with other studies on the microbiota of cecal fermenters [6,9]. The
Ruminococcaceae family and Oscillospiraceae family belong to the Oscillospirales order.
Ruminococcaceae can degrade polysaccharides to produce short-chain fatty acids as butyric
acid, providing an energy source for intestinal epithelial cells and maintaining the stability
of the intestinal mucosa [11]. Oscillospiraceae is involved in protein degradation and
metabolism and are beneficial bacteria that produce butyric acid [12,13]. This bacterial
family has the potential to degrade benzoic acid, a capability that is significantly positively
correlated with resistance to parasitic infections [14]. The Lachnospiraceae family and the
Lachnospiraceae_NK4A136_group genus within it belong to the order Lachnospirales. The
Lachnospiraceae family can hydrolyze starch and other sugars and produce short-chain
fatty acids as a primary source of nutrition for intestinal epithelial cells. It also plays
a role in alleviating inflammation and enhancing host immunity [15]. The genus Lach-
nospiraceae_NK4A136_group consists of fiber-degrading bacteria that primarily produce
butyrate. It plays a crucial role in maintaining intestinal barrier integrity, suppressing
inflammation, and exhibiting anti-tumor effects [12,16]. In studies of gut microbiota in
mice, the Lachnospiraceae_NK4A136_group has shown a significant negative correlation with
intestinal permeability and plasma lipopolysaccharide levels, suggesting its positive impact
on controlling obesity [17]. The Prevotellaceae_UCG-001 is capable of digesting dietary
proteins and amino acids but cannot directly participate in cellulose degradation [18,19]. In
research conducted by Ma et al., Prevotellaceae_UCG-001 was found to have a relatively low
abundance in the gut of animals with colitis. It was suggested that this genus can activate
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the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway to
improve the overall intestinal health of the host [20].

In this study, the genus Ruminococcus and UCG-005 were characteristic microbiota
found in the colon of chinchilla, and their distribution pattern is similar to that observed in
rabbits [9]. The UCG-005 can degrade cellulose and produce metabolic products such as
acetic acid and butyric acid, which are strongly positively correlated with the concentration
of short-chain fatty acids in the host’s body [21,22]. Research by Chen et al. found that its
abundance in the cecum of rabbits was positively correlated with the levels of IL-10 and total
antioxidant capacity in the ileum [23]. Therefore, UCG-005 may have anti-inflammatory
properties [23].

The characteristic microbiota in the stomach included Clostridiales and Lactobacil-
lales. Their dominant presence in the stomach is believed to be related to its acid
tolerance [24–26]. The Streptococcus genus, belonging to the order Lactobacillales, is a
common Gram-positive opportunistic pathogen [27,28]. Despite its significant associa-
tions with various gastrointestinal diseases, several studies have identified Streptococcus
as one of the core microbial groups in the stomach and small intestine of healthy peo-
ple [24,29]. In this study, the Streptococcus genus is one of the dominant microbial genera
in the chinchilla gastrointestinal tract, particularly in the stomach and small intestine,
with a distribution pattern similar to that in horses [30]. The Lactobacillaceae family,
and the Lactobacillus genus within it, represents the characteristic microbiota found in
the duodenum. Their presence was a result of their robust acid tolerance [24,31,32].

5. Conclusions

In conclusion, despite the limitation of a low number of animals used in the study, the
present study led to a better understanding of the microbiota of the different segments of the
gastrointestinal tract of chinchillas. The microbiota in the large intestine were significantly
different to those in the proximal gastrointestinal segments. The cecum and colon exhibited
the highest richness and diversity among all different segments of the gastrointestinal tract.
The core microbiota are Firmicutes, Bacteroidota, Actinobacteriota, and Proteobacteria,
with Firmicutes as the most abundant phylum in all the segments. Although there are
similarities to the signature microbiota in other cecal fermenters, the Atopobiaceae family
was first reported to be found in the gastrointestinal tract of cecal fermenters. Overall, this
study provides a basis for further research on the effect of gastrointestinal microbiota upon
the health of chinchillas.
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