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Simple Summary: A238L, a non-structural protein of the African swine fever virus (ASFV), inhibits
the activation of NF-κB by suppressing the HAT activity of p300. Whether A238L also affects the
transcriptional activity of IRF3 remains unexplored. Here we first confirmed the ability of A238L
to suppress NF-κB-activity in L929 cells. In contrast, A238L did not inhibit but rather increased
TBK1 and IRF3 phosphorylation and enhanced innate antiviral immunity in the absence or presence
of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus type 1 (HSV-1) or Sendai virus
(SeV) infection. This study reveals an unrecognized role for A238L in promoting antiviral immune
responses by activating the TBK1-IRF3 pathway.

Abstract: African swine fever virus (ASFV) is a double-stranded DNA virus with an envelope. ASFV
has almost the largest genome among all DNA viruses, and its mechanisms of immune evasion are
complex. Better understanding of the molecular mechanisms of ASFV genes will improve vaccine
design. A238L, a nonstructural protein of ASFV, inhibits NF-κB activation by suppressing the HAT
activity of p300. Whether A238L also affects the transcriptional activity of IRF3 remains unexplored.
Here we first confirmed the ability of A238L to suppress NF-κB-activity in L929 cells. A238L inhibits
the expression of proinflammatory cytokine genes. In contrast, A238L increased the phosphorylation
levels of TBK1 and IRF3 in three different cell lines. A238L increases the IRF3-driven promoter activity
and induces IRF3 nuclear translocation. Furthermore, A238L enhanced innate antiviral immunity
in the absence or presence of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus type 1
(HSV-1) or Sendai virus (SeV) infection. This study reveals a previously unrecognized role of A238L
in promoting antiviral immune responses by TBK1-IRF3 pathway activation.

Keywords: African swine fever virus; A238L; TBK1; IRF3; NF-κB

1. Introduction

African swine fever (ASF) is an acute contagious disease of domestic swine and wild
boar [1–3]. ASF has spread from Africa to Europe, and recently to China as well as Southeast
Asian countries. ASF is a major threat to the global swine industry and food security [4].
ASF virus (ASFV), a double-stranded DNA virus, belongs to the genus Asfivirus [5]. The
pathological change of ASFV infections includes widespread hemorrhages in lymphoid
tissues and depletion of macrophages and T and B lymphocytes. The ASFV genome
(170–193 kb) harbors approximately 150–167 open reading frames [5]. These open reading
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frames encode many structural and nonstructural proteins, many of which are capable of
interfering with the immune response of host cells [6–8]. Because of insufficient knowledge
of the functions of many ASFV genes, developing an effective vaccine for ASF has met
with great challenges. Characterization of the ASFV genes involved in regulating antiviral
immunity may help in designing novel strategies for ASF vaccines.

Pattern recognition receptors (PRRs) play important roles in the inflammatory re-
sponse and innate immunity. These receptors include Toll-like receptors (TLRs), Nod-like
receptors (NLRs), RIG-I-like receptors (RLRs), and cytosolic DNA sensors. TLR3 and RLRs
sense extracellular and intracellular viral RNA, respectively. RIG-I primarily recognizes
viral double-stranded RNA (dsRNA) and short dsRNA from RNA viruses. MDA5 preferen-
tially binds to long dsRNA derived from encephalomyocarditis virus (EMCV). Upon RNA
binding to RIG-1 or MDA5, MAVS is recruited and forms an aggregate with a prion-like
filament structure in mitochondria. This aggregate functions as a platform for the activation
of TANK-binding kinase 1 (TBK1) and IRF3 [9]. Cyclic GMP-AMP synthase (cGAS) senses
cytosolic DNA and produces cyclic GMP-AMP (cGAMP) [10]. cGAMP binding to a stimu-
lator of interferon gene-encoded protein (STING), a transmembrane protein in endoplasmic
reticulum and mitochondria, triggers STING aggregation and recruitment of TBK1 and
other two adaptor proteins, TAB1 and TAB2/3 [11]. The TBK1 complex is relocated to
the perinuclear space where it recruits and phosphorylates interferon regulatory gene 3
(IRF3) [12]. Phosphorylated IRF3 forms a dimer and is translocated to the nucleus, then
IRF3 induces transcription of type I interferon genes as a transcription factor [13]. ASFV has
a long double-stranded DNA (dsDNA) genome and can readily activate the cGAS-STING
pathway. However, many nonstructural proteins encoded by the ASFV genome suppress
the cGAS-STING pathway by blocking TBK1 activation.

A238L contains several ankyrin repeats homologous to IκBα and can bind to NF-κB
and inhibit its transcriptional activity [14,15]. Inhibition of the transcriptional activity of
NF-κB downregulates the expression of inflammatory genes such as TNF-α, iNOS, and
IL-6 [16,17]. A238L-deficient ASFV produces higher levels of TNF-α in vitro in porcine
macrophages and in vivo in pigs than its parental virus [18]. ASFV deficient of A238L and
CD2v (EP402R), a glycoprotein that is homologous to the host adhesion molecule CD2
of T and NK cells, induces both humoral and cellular immune responses that partially
protect against challenges with the virulent wild-type ASFV virus [19]. Whether A238L
regulates IRF3-mediated antiviral immunity remains unknown. Here we report that A238L
did not inhibit but rather enhanced the activation of the TBK1-IRF3 axis and antiviral innate
immunity. Our study reveals a previously unrecognized role of A238L in stimulating the
antiviral immune response.

2. Materials and Methods
2.1. Reagents

Poly d (A:T) (Cat# tlrl-patn) and poly (I:C) (Cat# tlrl-pic) were obtained from Invivo-
Gen (Shanghai, China). Antibodies against Sp1 (Cat# SC-59) and GAPDH (s Cat# c-47724)
were obtained from Santa Cruz Biotechnology, Inc. (Shanghai, China). Antibodies against
phosphorylated TBK1 (Ser172) (Cat# 5483), IRF3 (Ser396) (Cat# 4947), TBK1 (Cat# 3504),
IRF3 (Cat# 4302), FLAG (DYKDDDDK Tag) (9A3) (Cat# 8146), GFP (Cat# 2955), rabbit
IgG (Cat# 7074), and mouse IgG (Cat# 7076) were obtained from Cell Signaling Technol-
ogy (Danvers, MA, USA). The A238L gene cloned in the pcDNA3.1-3 × flag vector was
reported [20]. Alex488-conjugated anti-rabbit IgG (Cat# IC1051G) and Alex594-conjugated
anti-mouse IgG (Cat# IC002T) were obtained from R&D Systems (Minneapolis, MN, USA).

2.2. Viruses

The GFP-tagged HSV-1 (GFP is fused to the VP26 protein) was a gift from Zengfan
Jiang (Peking University, Beijing, China). The GPF-tagged Sendai virus was a gift from Feng
Ma (Suzhou Institute of Systems Medicine, Suzhou, China). HSV-1 was propagated and
replicated in Vero cells. By inoculating 10-day-old embryonic chicken eggs free of specific
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pathogens, the Sendai virus was prepared. The titer of Sendai virus was determined by
serial dilution by 10 times (101 to 109) and at each dilution (105 to 109) in Vero cells. The
standard Reed and Muench method was used to determine the 50% tissue culture infection
dose (TCID50/100 µL).

2.3. Cells

L929 (Cat #CCL-1) and 3D4/21 (Cat #CRL-2843) cells were obtained from the American
Tissue Culture Collection (Manassas, VA, USA). L929 cells were cultured in DMEM (Cat #
11965092) supplemented with 10% fetal bovine serum (FBS) (Cat # 10099158). The IPEC-DQ
cells are a subclone of the IPEC-J2 cells, which are a porcine intestinal epithelial cell line.
IPEC-DQ cells was obtained from Dr. Dongwan Yoo [20]. IPEC-DQ and 3D4/21 cells were
cultured in RPMI-1640 (Cat# 11875093) containing 10% FBS.

2.4. RT-PCR Analyses

L929 cells were seeded in 12-well plates and transfected with pcDNA3.1 (2 µg) and
A238L (2 µg). After a 36 h transfection, the cells were transfected with poly d (A:T) or poly
(I:C) (1 µg/mL of each) for another 12 h. The iScript cDNA synthesis kit (Bio-Rad, Hercules,
CA, USA) was used for reverse transcription. Quantitative PCR was performed in triplicate
using TB Green® Premix Ex TaqTM II (Takara, Dalian, China). The primer sequences are
shown in Table 1. The relative mRNA levels were normalized to the β-actin mRNA level
according to the ∆∆CT.

Table 1. The primers for RT-PCR.

Primer Sequence

TNF-α-F CCCTCACACTCAGATCATCTTCT
TNF-α-R GCTACGACGTGGGCTACAG

IL-6-F TGAGATCTACTCGGCAAACCTAGTG
IL-6-R CTTCGTAGAGAACAACATAAGTCAGATACC

IL-1β-F TGGACCTTCCAGGATGAGGACA
IL-1β-R TTCATCTCGGAGCCTGTAGTG
IFN-β-F CAGCTCCAAGAAAGGACGAAC
IFN-β-R GGCAGTGTAACTCTTCTGCAT
ISG56-F TAGCCAACATGTCCTCACAGAC
ISG56-R TCTTCTACCACTGGTTTCATGC
Mx1-F GACCATAGGGGTCTTGACCAA
Mx1-R AGACTTGCTCTTTCTGAAAAGCC
Actin-F CATCCGTAAAGACCTCTATGCCAAC
Actin-R ATGGAGCCACCGATCCACA

2.5. Immunoblotting

The L929, IPEC-DQ, and 3D4/21 cells seeded in 12-well plates were incubated with
pcDNA (2 µg) and A238L (1, 2, 4 µg) and incubated for 48 h. Alternatively, L929 cells
transfected with pcDNA or A238L at 36 h post-transfection were re-transfected with poly d
(A:T) or poly (I:C) or infected HSV-1 (1 MOI) or Sendai virus (1 MOI) and then incubated
for 12 h. The cells were collected and lysed in NP-40 lysis buffer [20]. Cytosolic and nuclear
fractions were separated by using a cell lysate extraction kit (Beyotime Biotechnology,
Nanjing, China). Specific primary antibodies were used to detect the proteins of interest,
followed by second antibodies and SuperSignal® Western Pico Chemiluminescent Substrate
(Pierce Chemical Co., Rockford, IL, USA).
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2.6. Luciferase Assay

The L929 cells were transfected with the IRF3 or IFN-β promoter-driven luciferase
reporter gene minus or plus pcDNA3.1 or A238L using TurboFect Transfection Reagent
(Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s in-
structions. The Renilla luciferase reporter driven by the β-actin promoter was included
as an internal control. After transfection for 48 h, the cells were collected to analyze the
luciferase activity using the luciferin substrate, and the results were read on a TECAN
plate reader (Phenix Research Products, Hayward, CA, USA). β-actin promoter-driven
Renilla luciferase control was used to normalize the relatively light units in each sample.
Means ± standard deviations (SD) of triplicate data from one experiment are presented.
The experiments were performed at least twice.

2.7. Immunofluorescence Staining

The L929 cells seeded on coverslips in 12-well plates were transfected with pcDNA3.1
or A238L (2 µg each) and incubated for 36 h or transfected with poly d (A:T) (1 µg/mL)
or poly (I:C) (1 µg/mL) and incubated for 12 h. The cells were fixed and permeabilized
with cold 100% methanol with 0.1% Triton X-100 for 20 min and rinsed with PBS. The
coverslips were blocked with 5% BSA at room temperature for 1 h and then probed
with anti-phosphorylated IRF3 and anti-Flag antibodies (1:100) overnight at 4 ◦C. Then,
the cells were stained with Alex488 anti-rabbit IgG and Alex594 anti-mouse IgG (1:100)
at room temperature for 1 h. The cells were then stained with 10 µM DAPI for 5 min.
Fluorescent images were observed under a Leica SP8 confocal laser scanning microscope.
The percentage of the cells with the pIRF3-positive nucleus in eight randomly selected fields
among all cells was calculated. The experiment was repeated twice with similar results.

2.8. Flow Cytometry

The L929 cells were incubated with pcDNA (2 µg) or A238L plasmid DNA (2 µg).
After transfection for 36 h, the cells were re-transfected with poly d (A:T). The conditioned
media were harvested and added to L929 cells infected with GFP-Sendai virus (0.1 MOI)
and then incubated for another 12 h. After treatment, the cells were collected to detect
the GFP-positive cells using a Beckman Coulter flow cytometer (Model CyAn ADP). The
results were analyzed by the FlowJo 8 software. Statistical analysis was performed by
calculating the percentage of GFP-positive cells from three independent experiments.

2.9. Statistical Analysis

The mRNA levels, mean channel fluorescence index, luciferase activity, IRF3 nuclear
staining, and Western blot band densities were statistically analyzed by the unpaired
Student’s t-test. Statistically significant was defined as a p-value of <0.05.

3. Results
3.1. A238L Inhibits the Expression of Proinflammatory Cytokine Genes

Several prior studies have unveiled the ability of A238L to inhibit the NF-κB-mediated
transcription of inflammatory cytokine gene expression [14]. We first verified the ability of
A238L to suppress NF-κB promoter-driven luciferase reporter gene expression in L929 cells,
a murine fibroblastoma cell line that produces abundant IFNs and inflammatory cytokines.
As shown in Figure 1A, HSV-1 (Figure 1A) and SeV (Figure 1B) dramatically increased
the NF-κB-driven promoter activity, which was blocked by transfection with the A238L
expression vector. NF-κB plays a critical role in transcribing three inflammatory cytokine
genes, TNF-α, IL-6, and IL-1β [21]. RT-PCR analysis revealed that transfection of poly d
(A:T) (Figure 1C–E) and poly (I:C) (F–H) dramatically increased TNF-α, IL-6, and IL-1β
mRNA levels in L929 cells, which were further enhanced by transfection with the pcDNA3.1
vector but blocked by A238L.
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Figure 1. A238L inhibits NF-κB activity and inflammatory cytokine mRNA expression. (A,B) The
NF-κB promoter-driven luciferase reporter gene was transfected into L929 cells. After incubation for
24 h, the cells were infected with HSV-1 or SeV (1 MOI). After 12 h of infection, the cells were collected
to analyze the luciferase activity. (C–H) L929 cells were transfected with pcDNA (2 µg) or A238L
(2 µg). After 36 h of transfection, the cells were then mock-transfected or transfected with poly d (A:T)
(1µg/mL) or (C–E) poly (I:C) (1 µg/mL) and (F–H) incubated for 12 h. Total RNA was extracted.
TNF-α, IL-6, and IL-1β gene levels were analyzed by RT-PCR. The results are the means ± SD of
three independent experiments. **, ## p < 0.01.

3.2. A238L Enhances the Antiviral Immune Response

Here we tested if A238L also interfered with IRF3-mediated gene transcription. As
shown in Figure 2A–F, poly d (A:T) or poly (I:C) increased the mRNAs levels of IFN-β,
ISG56, and MX1 significantly. pcDNA3.1A transfection alone also weakly or modestly in-
creased the expression of these mRNAs, probably due to the stimulation of cGAS-STING by
plasmid DNA. Surprisingly, the mRNA levels of IFN-β, ISG56, and MX1 were much higher
in the L929 cells transfected with A238L than those transfected with the pcDNA vector.
A238L, in combination with poly d (A:T) (Figure 1A–C) or poly (I:C) (Figure 2D,E), further
increased the levels of IFN-β, ISG56, and MX1 mRNAs compared to those transfected with
A238L, poly d (A:T), or poly (I:C) alone. To determine whether A238L indeed possesses
antiviral activity, the L929 cells infected with GFP-tagged SeV were incubated in the pres-
ence of conditioned media from untransfected L929 cells or L929 cells transfected with
A238L or poly d (A:T) alone or in combination. As shown in Figure 2G, the conditioned
media collected from the L929 cells transfected with A238L or poly d (A:T) significantly
decreased GFP fluorescence intensity. The conditioned media collected from L929 cells
transfected with A238L plus poly d (A:T) further decreased the GFP-SeV fluorescence
intensity, compared to that transfected with pcDNA3.1 plus poly d (A:T) (Figure 2G).
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Figure 2. A238L promotes antiviral immunity. L929 cells were transfected with pcDNA (2 µg) or
A238L (2 µg). After 36 h of transfection, the cells were mock-transfected or transfected with poly d
(A:T) (1 µg/mL) or (A–C) poly (I:C) (1 µg/mL) and (D–F) incubated for 12 h. Total RNA was extracted
and quantified. Real-time RT-PCR analysis was performed for the IFN-β, ISG56, and MX1 genes.
(G) L929 cells were transfected with pcDNA, A238L, and poly (dA:dT) alone or in combination. After
48 h of transfection, the conditioned media were collected, diluted 1:10, and added to the L929 cells
infected with SeV-GFP (0.1 MOI). Virus replication was analyzed by flow cytometry. The results are
the means ± SD of three independent experiments. # p < 0.05; &&, **, ## p < 0.01.

3.3. A238L Increases the IRF3-Driven Promoter Activity

IRF3 plays a crucial role in inducing IFN-I and ISG expression [22]. We next explored
the effect of A238L on IRF3- and IFN-β-promoter-driven luciferase gene expression. As
shown in Figure 3A–D, A238L, poly d (A:T), or poly (I:C) alone significantly increased the
IRF3- and IFN-β-promoter-driven luciferase expression. A238L in combination with poly
d (A:T) (Figure 3A,B) or poly (I:C) (Figure 3C,D) further increased the IRF3- and IFN-β-
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promoter-driven luciferase expression, compared to that transfected with poly d (A:T) or
poly (I:C) alone. HSV-1 or SeV infection alone increased the IRF3- and IFN-β-promoter-
driven luciferase expression significantly (Figure 3E–H). A238L also enhanced the HSV-1- or
SeV-induced IRF3- and IFN-β-promoter-driven luciferase expression (Figure 3E–H). These
observations collectively suggest that A238L enhances ISG expression by activating IRF3.
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Figure 3. A238L enhances the IRF3- and IFN-β-promoter-driven activity. (A) L929 cells were
transfected with the IRF3- (A–G) or IFN-β-promoter (B–H)-driven luciferase reporter gene plus
A238L or pcDNA3.1 as a control. After 36 h of incubation, the cells were transfected with poly d (A:T)
or poly (I:C) or infected with HSV-1 or SeV (1 MOI). After 12 h of incubation, the cells were collected
to analyze the luciferase activity. The results are the means ± SD of three independent experiments.
& p < 0.05, &&, **, ## p < 0.01.

3.4. A238L Enhances TBK1 and IRF3 Phosphorylation

Cytosolic DNA and RNA activate the TBK1-IRF3 pathway through their sensors and
induce the expression of type I interferons [10,23]. We next investigated the effect of A238L
on TBK1 and IRF3 phosphorylation. As shown in Figure 4A, A238L increased TBK1 and
IRF3 phosphorylation in a dose-dependent manner in L929 cells and two cell lines of swine
origin: IPEC-DQ, a porcine intestinal epithelial cell line, and 3D4/21, a porcine macrophage
cell line. The levels of A238L expression were also dose-dependently elevated in these cells
transfected with increasing amounts of A238L plasmid DNA (Figures 4A and S1–S6). Poly
d (A:T) or A238L alone significantly induced TBK1 and IRF3 phosphorylation (Figure 4B).
Poly d (A:T) plus A238L further increased TBK1 and IRF3 phosphorylation, compared to
that transfected with poly d (A:T) and pcDNA or A238L alone. Similar observations were
made with poly (I:C) (Figures 4C and S1–S6). Consistently, A238L enhanced HSV-1- or
SeV-induced TBK1 and IRF3 phosphorylation in L929 cells (Figures 4D,E, S1–S6 and S8).
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Figure 4. A238L enhances TBK1 and IRF3 phosphorylation. (A) L929, IPEC-DQ, and 3D4/21 cells
were transfected with pcDNA (2 µg) or different amounts of A238L plasmids. After incubation for 48
h, the cells were collected to analyze the phosphorylation of TBK1 and IRF3 and then re-probed for
total proteins by Western blot. GAPDH and FLAG were detected as loading control and transfection
control, respectively. ** p < 0.01, compared to the pcDNA3.1 control. (B–E) L929 cells were transfected
with pcDNA(2 µg) or A238L plasmid DNA (2 µg). After 36 h incubation, the cells were transfected
with poly d (A:T) (B) or poly (I:C) (C) or infected with HSV-1 or Sendai virus (0.1 MOI) and incubated
for 12 h. The cells were collected to analyze the phosphorylation of TBK1 and IRF3 and then re-
probed for total proteins by Western blot. GAPDH and FLAG were detected as loading control and
transfection control, respectively. Relative phosphorylation levels were semi-quantified using Image
J (v1.8.0.345) software. The results are presented as bar graphs. The results are the means ± SD of
three independent experiments. * p < 0.05; &&, **, ## p < 0.01.

3.5. A238L Induces IRF3 Nuclear Translocation

Phosphorylated IRF3 is translocated into the nucleus where it functions as a transcrip-
tion factor to induce IFN gene expression [24]. A238L increased the levels of phosphorylated
IRF3 protein in the nucleus. A238L increased the levels of unphosphorylated IRF3 in the
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cytoplasm in a dose-dependent manner (Figures 5A and S3–S7). Of note, only a small
fraction of IRF3, which was phosphorylated, was present in the nucleus. Immunofluores-
cence (IF) staining revealed that A238L, poly d (A:T), and poly (I:C) significantly increased
the number of cells with nuclear pIRF3, compared to the mock- or pcDNA3.1-transfected
control (Figure 5B,C).
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Figure 5. A238L promotes IRF3 nuclear translocation. (A) L929 cells were transfected with pcDNA (2
µg) or A238L (1, 2, or 4 µg) plasmids and then incubated for 48 h. Cytosolic and nuclear fractions
were analyzed for TBK1 and IRF3 phosphorylation and then re-probed for their total proteins by
Western blot. GAPDH and Sp1 were detected as a loading control of cytosolic and nuclear fractions,
respectively. Relative IRF3 and phosphorylated IRF3 levels were semi-quantified using Image-J
software. The results are presented as bar graphs. ** p < 0.01, compared to the pcDNA control.
(B) L929 cells were transfected with pcDNA or A238L and incubated for 48 h or transfected with
poly d (A:T), poly (I:C) and incubated for 12 h. The cells were fixed and analyzed for pIRF3 and
A238L expression by immunofluorescence with an anti-phosphorylated IRF3 and anti-FLAG antibody.
(C) The percentage of the cells with the phosphorylated IRF3 nuclear staining was calculated. The
results are the means ± SD of three independent experiments. **, ## p < 0.01.

4. Discussion

Widespread ASF epidemics over the past few years have instigated strong interest in
understanding the function of uncharacterized or previously poorly characterized ASFV
genes. For example, recent studies show that many ASFV genes such as EP364R, pI215L,
and A137R can block the activation of the cGAS–STING pathway and inhibit IRF3 activity
and IFN-I production [25–28]. ASFV can participate in evading the host immune response
through multiple regulatory mechanisms. A variety of structural and nonstructural proteins
of ASFV are involved in evading the host immune response. ASFV EP153R evades the host
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immune response by inhibiting the expression of major histocompatibility complex class
I (MHC-I) [29]. CD2v promotes virus spread by adsorption to erythrocytes [30]. A238L,
a relatively well-studied nonstructural protein, inhibits NF-κB activation and inflamma-
tory cytokine production by inhibiting p300 activation [14]. Whether A238L affects the
TBK1-IRF3 pathway and regulates innate immunity remains unknown. Our present study
confirmed the inhibitory effect of A238L on NF-κB but unexpectedly found that A238L was
able to activate the TBK1-IRF3 axis and induce IFN-β and ISG gene expression. Mechanisti-
cally, A238L activated the TBK1-IRF3 axis and increased TBK1 phosphorylation. Our study
reveals a previously unanticipated role of A238L in enhancing antiviral immunity.

Upon sensing cytosolic dsDNA, cGAS binds to STING and then recruits TBK1 onto
the endoplasmic reticulum [31]. Similarly, upon sensing viral RNA, RIG-I binds to MAVS
in mitochondria to activate TBK1 and IKKε [32,33]. Activated TBK1 recruits and phospho-
rylates IRF3. Phosphorylated IRF3 becomes dimerized and is translocated to the nucleus
where it functions to transcribe the IFN-I genes [34]. Several ASFV genes suppress cGAS–
STING pathway activation. For example, DP96R inhibits cGAS–STING pathway activation,
leading to the suppression of TBK1 and IRF3 phosphorylation and the downregulation of
IFN production [35]. I329L inhibits dsRNA-mediated NF-κB and IRF3 activation and IFN
production in 293T cells, probably by interfering with TRIF activity [36]. E120R interacts
with IRF3, prevents its recruitment to TBK1, and inhibits IRF3 phosphorylation, leading
to decreased interferon production [37]. Recently, Li et al. showed that MGF-505 inhibits
the cGAS–STING pathway by increasing ULK1 expression and promoting autophagy-
mediated cGAS degradation [38]. In contrast to these observations, we found that A238L
increased TBK1 and IRF3 phosphorylation as well as IRF3 nuclear localization. A238L
increased IRF3- and IFN-β-promoter-driven luciferase expression, IFN-β and ISG gene
transcription, and antiviral activity. These findings suggest that A238L did not inhibit but
rather enhanced the activation of the TBK1–IRF3 pathway. It should be noted that the
activation of innate immunity by viral proteins is not unprecedented. Several enveloped
viruses, such as respiratory syncytial virus, hepatitis C virus, measles virus, HIV, and
coronavirus, encode proteins that bind and activate the TLR pathway [39].

NF-κB plays an essential role in transcribing a variety of genes involved in the in-
flammatory response [40–42]. Recent studies have shown that several ASFV genes inhibit
NF-κB activation. For example, MGF360-12L interferes with NF-κB nuclear translocation
by blocking its interaction with Importin α and inhibits type I IFN production [43]. ASFV
ubiquitin-conjugating enzyme UBCv1 inhibits inflammatory signaling through NF-κB and
AP-1 [44]. A238L shares homology with IκBα and binds to the p65 subunit of NF-κB to
prevent its activation [45]. In addition, A238L disrupts p300 interaction with PKC-θ and
represses p300-mediated NF-κB transactivation [17,46]. Our present study shows that
A238L inhibited the expression of the pro-inflammatory cytokines, TNF-α, IL-6, and IL-1β.
Thus, ASFV dampens the anti-inflammatory response by inactivating NF-κB via multiple
genes through different mechanisms.

We are aware of a couple of weaknesses in our current study. First, whether A238L dele-
tion in ASFV would downregulate the antiviral response was not investigated. However,
this cannot be tested since the TBK-IRF3 pathway is not activated anyway by pathogenic
ASFV strains [47]. Nevertheless, our study provides evidence that A238L inhibited NF-κB
activation and downregulated the expression of several inflammatory cytokine genes. In
contrast, A238L enhanced the activation of the TBK1-IRF3 pathway, leading to increased
IFN-βand ISG gene expression and antiviral activity. Our study unveils an unanticipated
function of the A238L gene in enhancing innate immunity.

5. Conclusions

A238L inhibits the activation of NF-κB by suppressing the HAT activity of p300.
Whether A238L also affects the transcriptional activity of IRF3 remains unexplored. Here
we first confirmed the ability of A238L to suppress NF-κB-activity in L929 cells. In contrast,
A238L increased TBK1 and IRF3 phosphorylation and enhanced innate antiviral immunity
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in the absence or presence of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus
type 1 (HSV-1) or Sendai virus (SeV) infection. This study reveals an unrecognized role for
A238L in promoting antiviral immune responses by activating the TBK1-IRF3 pathway.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vetsci11060252/s1.
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