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Simple Summary: The microbiome refers to the vast community of microorganisms such as bacteria
that inhabit a particular host or ecosystem. Recently, it was discovered that the urine from healthy
dogs hosts its own unique microbiome, known as the urobiome. These microbial organisms play
important roles in maintaining urinary system health and preventing disease. Although the gut
microbiome is heavily influenced by diet, it remains unknown how nutritional features impact the
urobiome. Therefore, the purpose of this work was to determine how dietary features alter the
urobiome’s composition in clinically healthy dogs. Specifically, we examined how nutrient intake
(protein, fat, and crude fiber), commercial diet brands, and dietary diversity (i.e., the number of
unique food sources consumed each day) altered the abundance and diversity of bacteria present in
the canine urobiome. We discovered that both commercial diet brands and dietary diversity were
associated with distinct shifts in the composition of the urobiome. This discovery highlights the
complex relationships between diet and urinary microbes, and these findings could ultimately lead
to novel dietary strategies to promote urobiome health.

Abstract: Nutrition plays an important role in shaping the gut microbiome composition, although
the impact of diet on the urinary microbiome (i.e., urobiome) remains unknown. The aim of this pilot
study was to discover how nutritional features affect the diversity and composition of the urobiome
in dogs. Dietary histories were obtained for 15 clinically healthy adult dogs, including limited
nutrient (protein, fat, crude fiber), commercial diet brand, and dietary diversity profiles. The urine
samples were collected via cystocentesis, followed by sequencing of the bacterial 16S rRNA gene.
The data were analyzed to determine associations between major nutrients and dietary sources with
the urobiome’s composition. The protein, fat, and crude fiber contents had no statistically significant
effect on the alpha or beta diversity. However, the beta diversity values differed (PERMANOVA;
p = 0.017, R2 = 0.10) between dogs fed one commercial diet brand compared to dogs consuming any
other brand. The beta diversity values also differed (p = 0.019, R2 = 0.10) between dogs consuming
more diverse daily diets compared to those consuming less diverse diets (≥3 or <3 unique food
sources, respectively). Overall, the results of this pilot study suggest that diet might impact the
urobiome and support further exploration of the relationship between diet and the urobiome’s
composition in dogs.
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1. Introduction

The previous dogma maintained that urine, in the absence of infection, is sterile.
However, emerging research shows that even urine from healthy individuals contains
diverse populations of bacteria, collectively known as the urobiome [1–6]. These microbial
populations play essential roles in maintaining urinary tract health, and alterations within
the urobiome are linked to several urogenital diseases [6–11]. Delineating the dynamics of
host–microbe interactions within the urinary tract is necessary to understand how specific
features of the urobiome promote or protect against disease. Ultimately, such information
could be harnessed to manipulate the urobiome as a novel disease management tool for a
variety of disorders. The diet is readily modifiable and an attractive target for strategically
altering the urinary microenvironment to support resident bacteria, yet the impact of
nutrition on the urobiome’s composition remains unknown.

Defining the relationship between nutritional features and the urobiome is an essential
first step in leveraging diet to produce targeted effects on the urobiome. Diet is one of the
largest contributors shaping the gut microbiome [12,13], and in theory has the potential
to produce both direct and indirect effects on urinary microbial communities. Urobiome
colonization is not well understood, although growing evidence supports the presence of
a gut–bladder axis [14,15]. For instance, the gut is a known reservoir for uropathogens
that cause urinary tract infections [16,17]. Urobiome colonization could occur secondary to
perineal contamination by gut microbes, which subsequently ascend the urinary tract. Thus,
diet-induced shifts in the gut microbiome could alter the urobiome through direct organism
transmission. Furthermore, many metabolites produced from microbial interactions with
dietary substrates have systemic effects on the host, including the urinary tract. For
example, short-chain fatty acids produced from the microbial breakdown of dietary fibers
can reduce inflammatory responses in the kidneys [18], which could have indirect effects
on urinary microbes. Finally, dietary features exert downstream effects on the urinary
microenvironment, such as the urine pH and urinary metabolomic profiles [19–21], which
could subsequently affect urobiome communities. In a study of patients with type 2 diabetes
mellitus, specific dietary factors altered the relationships between urinary microbes and
urinary interleukin-8 levels, suggesting that dietary strategies could be used to augment
bladder inflammation [22]. Despite these potential mechanisms, the currently available
research is focused largely on relationships between diet and the gut microbiome, with
growing data to support a gut–urinary microbiome axis [12–15]. Minimal data are available
that directly investigate if or how dietary features impact the urobiome’s composition.

Evaluating the impact of diet on the human urobiome raises specific challenges, partic-
ularly given the high degree of daily variation in human food consumption. Dogs typically
consume more consistent diets and also represent an emerging animal model for urobiome
research. Like humans, dogs harbor a diverse urobiome and suffer from several of the
same urogenital disorders that have been linked to human urobiome alterations [23–27].
The dominant taxa comprising the urobiomes of dogs and humans are similar [27], and
parallel taxonomic shifts have been observed between dogs and humans in certain dis-
ease states, such as urinary stone disease [23]. Furthermore, the gut microbiome in dogs
displays more similarities in taxonomic and microbial genomic profiles to that of humans
than do those of mice or pigs, and dogs demonstrate similar shifts in gut microbial pop-
ulations in response to diet as those observed in humans [28]. Thus, dogs represent a
powerful translational model for studying the relationships between nutritional features
and urobiome composition.

The aim of this pilot study was to characterize the impact of nutritional features on
urobiome composition in healthy dogs, including limited nutrient profiles, commercial diet
brand, and dietary diversity. We hypothesized that nutritional profiles are associated with
differences in urobiome diversity and composition. The characterization of the relation-
ship between diet and urobiome composition in dogs could expose novel strategies for
augmenting urobiome health through diet and nutrition.
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2. Materials and Methods
2.1. Animals

The study participants were recruited through an email announcement to the Univer-
sity of Minnesota’s College of Veterinary Medicine employees and students in May 2021
for urobiome research [29]. This study did not involve human participants. All clients
provided written, informed consent for their dog’s participation, with the study protocol
approved by the University of Minnesota’s Institutional Animal Care and Use Committee
(protocol number 2005-38140A) [29]. Only spayed or neutered dogs between the ages of 1
and 7 years were eligible. The exclusion criteria were antimicrobial or immunosuppressive
therapies within 3 months of enrollment; a history or clinical signs of lower urinary tract
disease (hematuria, stranguria, pollakiuria, or dysuria); active dermatologic disease or
visible dermatologic lesions in the perivulvar, preputial, or inguinal areas; a history or
clinical signs of recent (within 3 weeks of the study) gastrointestinal disease (vomiting,
diarrhea, hematochezia, borborygmus, hyporexia, anorexia, or abdominal bloating); or a
change in the primary diet within one month prior to study participation. The signalment,
body weight, body condition score (BCS, 1–9 scale), medical history, and dietary history
data were recorded for each participant.

2.2. Diet History Collection

The current diet histories were collected directly from each owner using a thorough
dietary history questionnaire that included questions about the brand, specific product
name, and amount fed per day of any food or treats consumed by the study participant.
Details about the source (i.e., commercial brand and specific product name) and nutritional
content were recorded for each dog’s primary diet and for any reported treats. The primary
diet was defined as the diet comprising at least 60% of the dog’s daily caloric intake. For
commercially available diets and treats, the guaranteed analyses for each food or treat
source were used to collect the nutrient data. This information was collected directly from
the manufacturer and product guides. For dogs that consumed human foods as treats or
as a component of the primary diet, the nutritional information was collected from the
U.S. Department of Agriculture Nutrient Database (https://fdc.nal.usda.gov, accessed
on 1 July 2022) [30]. The nutrient features recorded for all dogs included diet ingredient
lists and caloric information (kcal/kg of food, kcal/cup or can of food, and kcal from each
dietary source as a percent total of daily intake). Additionally, the amounts of protein, fat,
and crude fiber (recorded as g/100 kcal) consumed daily by each dog were recorded. The
nutrients for each dog were calculated by adding the respective nutrient content (protein,
fat, crude fiber) from each daily food source, relative to the percent of daily caloric intake for
that food source. Two clients reported that their dogs consumed treats from a commercial
service that delivers mixed treat sources (BarkBox™, New York, NY, USA). The specific
treats from this source given prior to urine collection were not always known, although
the number of treats given daily was reported. Thus, the maximum daily calories possibly
consumed via treats were calculated using the most caloric treats available in the delivery.
This ensured that the primary diet still comprised >60% of daily calories, even if only the
highest calorie treats were consumed. The downstream statistical analyses for these two
dogs used the average nutrient values from all treats that the dogs might have consumed
during the month prior to urine collection.

The dogs were assigned into one of two diet groups based on the commercial brand of
the primary diet. Diet group 1 included a subset of dogs that were all consuming diets of
the same commercial brand (Purina®, Nestlé Purina Petcare, St. Louis, MO, USA), while
diet group 2 included dogs consuming any other commercial brand (Royal Canin® USA
Inc., Mars Inc., Saint Charles, MO, USA; NutriSource® Pet Foods, Perham, MN, USA;
Fromm® Family Pet Food, Mequon, WI, USA). The dogs were also assigned to one of two
dietary diversity groups based on the overall number of dietary and treat sources [31]. The
groups were designated as low dietary diversity (LDD) if fed < 3 dietary and treat sources
and high dietary diversity (HDD) if fed ≥ 3 sources. Both dogs consuming treats from the

https://fdc.nal.usda.gov
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commercial delivery service were designated as HDD. The dogs were also classified as
high or low for each nutrient category (protein, fat, and crude fiber) based on whether the
nutrient was above or below the median value for each nutrient across the participants.

2.3. Sample Collection

Here, 5 mL of urine was collected via antepubic cystocentesis from each participant.
Prior to collection, the skin at the collection site was thoroughly cleansed with 70% isopropyl
alcohol. The collection needle was exchanged for a new, sterile needle prior to transfer of
the urine to a sterile storage tube. Following urine collection, the samples were immediately
refrigerated and then transported to a freezer (−80 ◦C) within 2 h. Mid-stream voided
urine was also collected for each patient within 6 h following cystocentesis, and an aliquot
ranging from 1 to 6 mL of the voided urine was submitted for a urinalysis and aerobic
bacterial culture.

Dogs were excluded from further analyses if pyuria (defined as >5 white blood
cells/hpf) or cytologic bacteriuria was present. The urine specific gravity (USG) was
measured using a digital veterinary refractometer (MISCO Palm Abbe, Solon, OH, USA).
The urine pH was determined using a urine dipstick chemistry test (Siemens MultiStix,
Malvern, PA, USA). For the bacterial culture, approximately 0.5 mL of urine was gently
mixed, followed by streak plate inoculation of a Blood Agar Plate (Hardy Diagnostics,
Santa Maria, CA, USA) using a 1 µL inoculation loop (Globe Scientific, Mahwah, NJ, USA).
The sample was incubated at 37 ◦C for 48 h and then assessed for colony growth. The
samples with bacterial growth ≥105 CFU/mL were excluded [32].

2.4. DNA Isolation and Amplicon Sequencing

Bacterial 16S rRNA gene amplification and sequencing was performed on each 5 mL
urine sample. Each sample was centrifuged at 3000 rpm for 15 min to pellet the urine
prior to additional processing [33]. The extraction of microbial DNA, library preparation,
PCR amplification, and amplicon sequencing were performed at the University of Min-
nesota Genomics Center. The microbial DNA was extracted from each sample using the
DNeasy PowerSoil Pro Kit (QIAGEN, Hilden, Germany). Two negative controls consisting
only of DNA extraction reagents were included to assess for contaminants introduced
during DNA isolation, library preparation, and PCR amplification. The extraction of mi-
crobial DNA from a commercially available mock bacterial community (ZymoBIOMICS
Microbial Community Standard, Irvine, CA, USA) was performed as a positive control
to evaluate the performance of the DNA isolation and sequencing methods. The DNA
extractions and library preparation were performed in a single batch. The concentration
and purity of the DNA were assessed using a Quanti-iT PicoGreen dsDNA Assay Kit
(Invitrogen, Waltham, MA, USA) and NanoDrop spectrophotometry (Thermo Fisher Sci-
entific, Waltham, MA, USA). The amplification of the V4 region of the bacterial 16S rRNA
gene was performed using the primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R
(GGACTACHVGGGTWTCTAAT) [34], followed by amplicon sequencing using the MiSeq
sequencing platform, with 2 × 300 base pair paired-end reads, as well as v3 chemistry
(Illumina, San Diego, CA, USA). The raw sequence data are available at the National Center
for Biotechnology Information BioProject PRJNA995758.

2.5. Processing of Raw DNA Sequence Reads

The primers were removed from raw, paired-end sequence reads using Cutadapt [35],
followed by additional processing using QIIME2 (v 2020.8) [36] and DADA2 [37]. The
outputs of high-resolution amplicon sequence variants (ASVs) were assigned taxonomic
designations using the Silva reference database (v 138) [38]. Filtration of raw sequence data
included the removal of chimeras, mitochondria, chloroplasts, ASVs with unassigned tax-
onomy, and ASVs present in only a single sample. Additionally, sequences were removed
if represented in fewer than 10 total reads across all samples, as previously described [23].
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Putative contaminants were identified and removed using the decontam package (v.
1.10.0) [39], based on the prevalence method and a threshold of 0.5. Using these criteria,
ASVs were classified as a contaminant if identified in a larger proportion within negative
controls than in clinical samples. After filtration and contaminant removal, a minimum
of 300 sequence reads was required for inclusion in the downstream analyses, and any
sample with fewer than 300 reads was removed from the dataset [29]. A relative abundance
transformation was performed on all sequence read counts to normalize the data prior to
the downstream analysis.

2.6. Statistical Analysis

The data analyses were performed using various packages within the R statistical
software program. The normality of the continuous variables was analyzed using the
Shapiro–Wilk test. The age and body weight demonstrated a normal distribution and are
reported as mean values (±standard deviation, SD). The variables that did not exhibit a
normal distribution (calories, protein, fat, and crude fiber) or ordinal variables (BCS) were
reported as a median (range).

Alpha and beta diversity analyses were performed using the vegan (v. 2.5-7) [40]
and phyloseq (v. 1.34.0) [41] packages. The alpha diversity (microbial diversity within
groups) was calculated using the Shannon diversity index, inverse Simpson diversity index,
and observed richness [42]. The alpha diversity values were compared between sex, diet
groups (diet group 1 vs. 2), and dietary diversity groups (LDD versus HDD) using the
Wilcoxon rank-sum test. Three measures of beta diversity (microbial diversity between
groups) were calculated—Bray–Curtis dissimilarity, weighted UniFrac, and unweighted
UniFrac [42]. The statistical differences in beta diversity between groups were determined
using a permutational analysis of variance (PERMANOVA) with 1000 permutations. The
differential abundance of specific taxa between groups was assessed using an indicator
species analysis from the labdsv package (v. 2.0-1) [43,44], which assigns an indicator
value (IV) to each ASV based on its relative frequency and abundance between groups.
Taxa with an IV > 0.5 and a p value < 0.05 were considered differentially abundant, as
previously described [23]. For taxa meeting these criteria, Wilcoxon rank-sum tests were
also performed. The figures were generated using the ggplot2 graphical imaging package
(v. 3.3.6) [45].

3. Results
3.1. Study Participants

Nineteen dogs were recruited. One dog was excluded due to an owner-reported
diet transition within one month of sample collection, and three dogs were excluded for
insufficient sequence depth of urine samples (<300 reads). Therefore, the final study group
consisted of 15 dogs, including 9 spayed females and 6 neutered males. The breeds included
mixed (n = 6); Labrador Retriever (n = 3); and one each of Beagle, Cavalier King Charles
Spaniel, Doberman Pinscher, English Bulldog, Miniature Goldendoodle, and Standard
Poodle. Two of the 15 dogs (one male and one female) were from the same household.
Additional participant and sample metadata are summarized in Table 1.

No dogs had glucosuria, ketonuria, or gross hematuria, although nine dogs exhibited
microscopic hematuria in the urinalysis. One urine sample showed scant bacterial growth,
below the level of exclusion, on the aerobic culture (<105 CFU/mL). The remaining samples
exhibited no observable bacterial growth. Nine dogs were not receiving any systemic
medications aside from routine flea, tick, and heartworm preventatives. One dog had
a history of well-controlled hypothyroidism and was receiving L-thyroxine. Two dogs
received nutraceutical joint supplements, and three dogs received medications for anxiety
only when needed (trazodone, n = 2; cannabidiol, n = 1).
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Table 1. Summary of participant metadata from 15 healthy dogs.

Variable Value

Age (years) 3.7 (±1.8)
Weight (kg) 19.3 (±11.2)
BCS (scale 1–9) 5.5 (4.5–6.5)
Sex FS (9), MN (6)
USG 1.042 (1.006–1.045)
Urine pH 7.3 (±0.82)

Normally distributed data are displayed as the mean ± standard deviation, while ordinal data or those that did not
follow a normal distribution are reported as the median (range). BCS = body condition score; FS = female spayed;
MN = male neutered; USG = urine specific gravity.

3.2. Dietary Histories

All dogs consumed diets commercially formulated to meet maintenance nutritional
needs. Eleven total diets were represented across the 15 dogs; 8 diets were consumed by
a single participant, 2 diets were consumed by 2 dogs each, and 1 diet was consumed
by 3 dogs (Table S1). One dog routinely consumed a daily mixture of two diets; one of
these diets represented 60% of the dog’s daily caloric intake and was classified as the
primary diet. Of the 11 diets represented across participants, 7 were produced by the same
commercial brand (Purina®, Nestlé Purina Petcare, St. Louis, MO, USA), including each
of the 3 diets consumed by more than 1 participant. Therefore, 11 dogs were consuming
diets from this commercial brand and were designated diet group 1. The remaining 4 dogs
consumed diets from 3 distinct commercial brands (Royal Canin® USA Inc., Mars Inc.,
Saint Charles, MO, USA; NutriSource® Pet Foods, Perham, MN, USA; Fromm® Family Pet
Food, Mequon, WI, USA) and were classified as diet group 2. No dogs were consuming
prescription urinary diets.

Six dogs consumed 3 or more unique diets or treat sources (HDD group: 2 with 3 food
sources, 2 with 5 food sources, and 2 with an unknown quantity of mixed treat sources)
and 9 dogs consumed less than 3 unique food sources (LDD group: 5 with 1 food source
and 4 with 2 food sources). An overlap between the HDD group and diet group 2 was
observed. Of the 4 dogs in diet group 2, 3 were also in the HDD group. For the two dogs
from the same household, both were in diet group 1; one was in the HDD group and the
other was in the LDD group. The dietary data across all study participants are summarized
in Tables 2 and S2.

Table 2. Summary of dietary data from 15 healthy dogs.

Variable Value

% of RER consumed 123 ± 49.2 1

Kcal from treats (%) 7.5 ± 13.2 2

Protein (g/100 kcal) 7.1 (5.4–23.1)
Fat (g/100 kcal) 3.5 (2.1–10.4)
Crude fiber (g/100 kcal) 1.1 (0.6–2.7)
Dogs in Diet Group 1 11
Dogs in Diet Group 2 4
Unique diet and treat sources 2 (1–5) 3

Dogs in HDD Group (≥3) 6
Dogs in LDD Group (<3) 9

Normally distributed data are displayed as the mean ± standard deviation and data that did not follow a
normal distribution are reported as the median (range). The reported calories and nutrient values include
the sum from the respective nutrient across all reported food sources, including both primary diet and treats.
HDD = high dietary diversity; LDD = low dietary diversity; RER = resting energy requirement. 1 RER was
calculated using the following formula: RER (kcal/day) = (ideal body weight kg 3/4) × 70. 2 Two dogs consumed
mixed treats from a commercial treat delivery service. The kcal totals of treats reported here are based on the
average calorie content from all treats. 3 The exact number of unique treats consumed by these two dogs was
unknown and may have exceed this reported range.
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3.3. Data Processing and Bacterial Composition of Urine Samples

Eight sequences were identified as contaminants by the decontam package and were
removed from the dataset prior to the downstream analysis (Table S3). After data filtering
and contaminant removal, a total of 303,839 sequence reads were identified across the
15 urine samples (median 3373; range 337 to 134,198), represented by 76 unique ASVs.
No sequence reads were present in the negative controls after filtering and contaminant
removal. Each of the 8 organisms reported to be present in the commercial mock community
was identified via 16S rRNA amplicon sequencing in the positive control, and no additional
DNA sequences were identified from this sample. The most common phyla represented
across samples were Bacillota, Pseudomonadota, and Actinomycetota, and the most common
genera across all samples were Streptococcus (order Lactobacillales), Bifidobacterium (order
Bifidobacteriales), and Anaerobacillus (order Bacillales). The dominant taxa differed between
the two dogs from the same household. A taxa bar plot of each urine sample reporting the
relative abundance of bacteria at the order level is displayed in Figure 1.
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Figure 1. Bar plots of bacterial orders present in urine samples from 15 healthy dogs. Relative
abundance of bacterial orders are shown from individual canine urine samples. Twenty-six orders
were represented across all samples. Dog 7 and dog 12 were from the same household.

3.4. Impact of Nutritional Features on Urobiome Composition

The results of the statistical analyses of alpha and beta diversity across the comparison
groups are summarized in Table 3. No differences in alpha or beta diversity (Figure 2)
were detected in relation to the three nutrient profiles. However, multiple differences were
observed between the diet groups. The dogs in diet group 1 exhibited significantly lower
alpha diversity than those in diet group 2 according to the Shannon (p = 0.018; Figure 3) and
inverse Simpson indices of diversity (p = 0.026). The beta diversity based on Bray–Curtis
distances also differed between the dogs in diet group 1 compared to those in diet group 2
(R2 = 0.10, p = 0.017, Figure 4). The dogs in the HDD group exhibited significant differences
in Bray–Curtis dissimilarity (R2 = 0.10, p = 0.019, Figure 4) as compared to the LDD group.
The alpha diversity measures (Figure 5) did not significantly differ between the dietary
diversity groups. No statistical differences in any alpha or beta diversity metrics were
observed between the male and female study participants.
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Table 3. Summary of alpha and beta diversity values between comparison groups.

Diversity
Metric Protein Fat Crude

Fiber
Diet
Groups

Dietary
Diversity
Groups

Alpha Diversity
(p value)

Shannon 1 0.23 0.39 0.018 0.61
Inverse Simpson 0.87 0.34 0.28 0.026 0.61
Observed Richness 0.82 0.56 0.91 0.077 0.26

Beta Diversity
(p value, R2)

Bray–Curtis 0.73,
0.066

0.88,
0.061

0.11,
0.084

0.017,
0.10

0.019,
0.10

WUF 0.46,
0.067

0.46,
0.070

0.50,
0.067

0.13,
0.090

0.51,
0.070

UUF 0.12,
0.091

0.31,
0.080

0.63,
0.064

0.062,
0.11

0.19,
0.090

The p values for Wilcoxon rank-sum tests of three measures of alpha diversity are reported for each comparison
group—high- and low-nutrient categories (protein, fat, and crude fiber), diet group (diet group 1 and diet group
2), and dietary diversity group (HDD and LDD). The p values and R2 values based on the PERMANOVA for each
measure of beta diversity are reported. For beta diversity, statistical testing using a PERMANOVA was performed
using continuous nutrient values. WUF = weighted UniFrac; UUF = unweighted UniFrac; HDD = high dietary
diversity; LDD = low dietary diversity.Vet. Sci. 2024, 11, x FOR PEER REVIEW 9 of 16 
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Figure 2. Bray–Curtis measures of beta diversity in 15 healthy canine urine samples, in association
with protein, fat, and crude fiber contents. A principal coordinates analysis (PCoA) plot of beta
diversity, as measured by the Bray–Curtis dissimilarity matrix, is presented for the three nutrients.
Each point represents the urobiome of an individual dog. green, red, and blue represent the protein,
fat, and crude fiber levels, respectively. Darker colors indicate higher respective nutrient intake
and lighter colors indicate lower nutrient intake. Scales show the ranges of values for each nutrient
(g/100 kcal): (A) protein (p = 0.73, R2 = 0.066); (B) fat (p = 0.88, R2 = 0.061); (C) crude fiber (p = 0.11,
R2 = 0.084). Two points representing the urobiome from two separate female dogs are overlapping
and are indicated by an asterisk (*).
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between groups, p = 0.018. The boxes represent the 25th and 75th percentiles. Whiskers represent
1.5 times the interquartile range.
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Figure 4. Bray–Curtis beta diversity values by diet group and dietary diversity. A principal coordi-
nates analysis (PCoA) plot of beta diversity, as measured by the Bray–Curtis dissimilarity matrix, is
presented for diet group and dietary diversity. Each point represents the urobiome of an individual
dog. Black points indicate diet group 1 and red points indicate diet group 2. Closed circles indicate
the LDD group and cross-hatched circles indicate the HDD group. A PERMANOVA was performed
by diet group (p = 0.017, R2 = 0.10) and by dietary diversity group (p = 0.019, R2 = 0.10). Two points
representing the urobiome from two separate female dogs are overlapping and are indicated by an
asterisk (*). LDD = low dietary diversity; HDD = high dietary diversity.
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Figure 5. Shannon index of alpha diversity by dietary diversity group. A box plot of the Shannon
diversity index measure of alpha diversity is reported for the urine samples of dogs in the HDD
group (cross-hatched circles) and the LDD group (closed circles). A Wilcoxon rank-sum test of alpha
diversity was calculated between groups, p = 0.61. The boxes represent the 25th and 75th percentiles.
Whiskers represent 1.5 times the interquartile range. HDD = high dietary diversity; LDD = low
dietary diversity.

The differential abundance testing between the dogs in diet group 1 versus diet group
2 revealed that the dogs in diet group 1 harbored lower relative abundance levels of
Staphylococcus (IV = 0.75, p for IV < 0.01, p for Wilcoxon rank-sum test < 0.01), Bacillus
halodurans (IV = 0.67, p for IV = 0.036, p for Wilcoxon rank-sum test = 0.062), and Paracoccus
(IV = 0.60, p for IV = 0.027, p for Wilcoxon rank-sum test = 0.036). Anaerobacillus was
enriched in the HDD group (IV = 0.97, p for IV < 0.01, p for Wilcoxon rank-sum test < 0.01)
compared to the LDD group.

4. Discussion

The aim of this pilot study was to identify associations between nutrient intake and
urobiome composition in healthy adult dogs. The dietary intake levels of protein, fat, or
crude fiber did not explain the bacterial composition of the urine samples in this study.
While the taxonomic profiles of the canine gut microbiome are affected by diet, large
variations in macronutrient profiles are typically required to produce observable taxonomic
changes [46]. In the current study, a relatively narrow range of nutrient intake profiles for
the primary diets was present across the study participants, which could explain the lack
of urobiome effects based on the overall nutrient profiles. Furthermore, nutrient profiles
alone do not capture all dietary information that may influence microbial communities
and their impact on host health [47,48]. Microbial shifts secondary to diet might be more
affected by nutrient subcategories (e.g., fiber types), specific ingredients, or micronutrient
profiles than macronutrient intake alone. A more diverse spectrum of diets, represented by
a broader range of nutrient profiles and commercial diet brands, might improve the ability
to detect microbial shifts secondary to diet.

Dogs consuming a single brand of commercial dog food (diet group 1) exhibited lower
alpha diversity scores and differences in the Bray–Curtis measure of beta diversity as com-
pared to dogs consuming any other diet brand fed to dogs in this study. Three organisms
(Staphylococcus, Bacillus halodurans, and Paracoccus) were lower in abundance in the urine
samples of the dogs in diet group 1. Each of these genera have been previously identified
as components of the urobiome in dogs [23,24], although the biological significance of their
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variation in abundance by diet brand remains unclear. A proposed explanation for the
differences between diet groups is that urobiome shifts secondary to commercial diet brand
result from differences in ingredient sourcing and processing between diet companies. For
instance, dietary ingredients can influence the urine pH and the gut microbiome, particu-
larly individual fiber sources [19,49]. By pairing microbiome analysis of urine with that of
both stool samples and of food sources themselves, the origin of specific microbes could be
identified, allowing better definition of the diet-gut-urinary microbiome axis. Importantly,
this study was not designed to determine how specific diets relate to urobiome health, and
the clinical relevance of urobiome differences between diet brands is unknown.

The Bray–Curtis measures of beta diversity and urine microbial profiles also differed
based on the extent of dietary diversity. One organism (Anaerobacillus) was over-represented
in the urine samples of the dogs consuming more diverse diets. To the authors’ knowledge,
this organism has not been previously associated with dietary diversity in gut microbiome
studies and is of unknown significance in the canine urobiome. In humans, increased
dietary diversity positively correlates with gut microbiome stability [47] and diversity [50],
although the relationship between dietary and microbiome diversity levels has been in-
consistent across studies [47]. When evaluating the effect of dietary diversity on the gut
microbiome or urobiome, the definition used for dietary diversity is important to consider.
Various definitions have been proposed, ranging from simple counts of unique food items
to more complex indices incorporating categorical food groups and relative proportions of
consumed foods [31]. Given that all dogs in this study consumed a balanced commercial
primary diet, dietary diversity was defined as the number of unique food sources consumed
daily. We did not test whether using a different definition would change the results.

Importantly, differences in beta diversity based on both the diet and dietary diversity
groups were only observed by the Bray–Curtis dissimilarity test and not by the weighted
or unweighted UniFrac tests. Overall, this suggests that these factors produced minimal
shifts in the abundance of phylogenetically related organisms. This finding also highlights
the importance of testing multiple measures of beta diversity to assess for different patterns
of microbial diversity.

This pilot study is limited by the high representation of a single commercial diet
company and the small sample size overall, reducing the ability to detect smaller effects of
nutrients or other dietary components on the urobiome. Additionally, the numbers of dogs
in each diet and dietary diversity group were particularly small, and there was substantial
overlap between these groups, with 3 of 4 dogs in diet group 2 also in the HDD group. Thus,
we cannot definitively conclude whether one or both of these variables was truly driving the
variations in urobiome composition. Household and environmental factors also contribute
to the microbiome’s composition [12,51], and two dogs were from the same household in
this study. Both dogs were in diet group 1 but they were in different dietary diversity groups.
Although the impact of cohabitation on the canine urobiome is not fully understood, these
dogs exhibited distinct urobiome taxonomic profiles despite a shared home environment
(Figure 1). Additionally, both menstruation and menopausal status influence the urobiome’s
composition in women, although the effects of spay and neuter status on the urobiome
of dogs remains incompletely understood [52,53]. Therefore, sexually intact animals were
excluded from the study given the potential confounding variables related to reproductive
hormones on urobiome composition in dogs. Future studies evaluating the impact of the
reproductive status on the canine urobiome’s composition and the effects of diet on the
urobiome of sexually intact animals are warranted.

Another limitation of the study is the characterization of the urobiome through short-
amplicon sequencing of the bacterial 16S rRNA gene. While this method offers an effective
and efficient method for taxonomically profiling microbial communities, it does not de-
termine microbial viability, function, or biological significance factors. In human urine
samples, more than 80% of microbial DNA sequences detected with 16S rRNA gene se-
quencing are culturable when using an expanded quantitative urine culture (EQUC) [5].
Standard urine cultures are primarily designed to detect uropathogens and lack sensitivity
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for detecting most commensal urinary microbes, whereas the EQUC method uses more
diverse growth conditions for enhanced culture sensitivity [5]. In future studies, we could
gain more insight into microbial viability by pairing DNA sequencing with EQUC testing.
Additionally, expanding this study to include shotgun metagenomics and metabolomics
would offer greater insight into the functional responses of the urobiome to different diet
brands, dietary diversity, or other dietary features. The other limitations pertained to our
ability to extract and analyze nutrient data. Two dogs had known treat amounts from a se-
lect group of treats, although the precise number of each individual treat type was unknown.
Some study participants received medications or supplements with unknown effects on
urobiome composition. Additionally, several food sources, particularly treats, only had
guaranteed analyses available, creating limitations when extracting comprehensive nutrient
data. For instance, analyses were performed using crude fiber rather than total dietary fiber
due to the inconsistent availability of total dietary fiber measurements. The total dietary
fiber is the preferred measure for comparing fiber across diets, as crude fiber does not
incorporate soluble fiber and does not reliably reflect the total dietary fiber [54]. This study
was also unable to incorporate the relative digestibility levels of different food sources
into the analyses. For human food sources, the U.S. Department of Agriculture Nutrient
Database was used to obtain details about calorie and nutrient contents, as recommended
in current veterinary nutrition guidelines [30].

5. Conclusions

This pilot study provides important foundational evidence that dietary features might
impact the urobiome’s composition in healthy adult dogs. Specifically, both the type of
commercial diet brand and dietary diversity correlated with the urobiome’s structure and
diversity, although associations between protein, fat, or crude fiber and the urobiome were
not observed in this small study group. Given the emerging evidence that the urobiome
affects urinary tract health, the relationship between diet and urinary microbes has potential
clinical relevance and could lead to the development of diet-based, clinical interventions
for urobiome health. Moving forward, dietary data should be collected and incorporated
into urobiome analyses when possible. Prospective, controlled, cross-over feeding trials are
recommended to better define the relationships between the diet and urobiome.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/vetsci11070286/s1: Table S1. Diet brands and formulations consumed
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