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Simple Summary: In this study, pathogen-free Rhipicephalus bursa colonies were established
for vector competence research, and their life cycle parameters were analyzed. Initially,
engorged R. bursa females were collected from naturally infested sheep, goats, and cattle.
The engorged females were placed in an incubator to lay eggs and produce larvae (F1
larvae). Two New Zealand rabbits and two pathogen-free splenectomized sheep were used
to obtain subsequent generations. The F1 and F2 unfed larvae were fed on rabbits, and F1
and F2 unfed adults were fed on sheep. F3 larvae were obtained from engorged F2 females.
At the end of all developmental stages, tick pools were screened using nPCR for tick-borne
pathogens and found to be pathogen-free. The sheep were clinically monitored for 63 days,
during which no clinical signs of disease were observed, and all tests for the presence of
tick-borne pathogens yielded negative results. F3 larvae were confirmed as pathogen-free
and suitable for vector competence studies. Under laboratory conditions, the R. bursa
life cycle was completed in 72–153 days. This study demonstrated that pathogen-free R.
bursa colonies can be maintained over multiple generations, offering a reliable model for
vector competence research. Establishing these colonies and documenting their biological
parameters is crucial for advancing strategies in vector-borne disease control.

Abstract: Rhipicephalus bursa, the primary vector of Babesia ovis, is also considered to trans-
mit Theileria, Babesia, and Anaplasma spp. These claims are based on pathogen detections
rather than experimental validation. To confirm vector competence, sterile ticks must
acquire pathogens from infected hosts and transmit them to other hosts. The basic step
is establishing a pathogen-free tick colony. In this study, engorged R. bursa females were
collected from 12 infested livestock and allowed to lay eggs. The carcasses and larvae were
screened for tick-borne pathogens using nPCR. The 0.150 g pathogen-free F1 larvae were
fed on New Zealand rabbits, resulting in 592 engorged nymphs that molted into F1 adults.
Eighty F1 adults were fed on pathogen-free splenectomized sheep, producing the next
larval generation (F2). This protocol was repeated to produce F3 larvae. At the end of all
developmental stages, ticks were screened via nPCR and found to be negative for tick-borne
pathogens. The sheep were monitored for 63 days with no clinical signs or positive nPCR
results, confirming F3 larvae as pathogen-free and suitable for vector competence studies.
The R. bursa life cycle was completed in 72–153 days, providing a reliable model for vector
competence research and offering valuable insights into its biological parameters.

Keywords: Rhipicephalus bursa; tick colony; tick-borne pathogen-free; vector competence
study
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1. Introduction
Ticks are obligate hematophagous ectoparasites that transmit numerous significant

pathogenic microorganisms [1–4]. Ticks (Acari: Ixodidae) are known to infest a wide range
of hosts, including humans, livestock, pets, wildlife, reptiles, and birds, and are the second
most common arthropod vector for disease transmission after mosquitoes [5,6]. Tick-borne
diseases (TBDs) such as theileriosis, babesiosis, anaplasmosis, and ehrlichiosis are critical
health challenges for small ruminants in tropical and subtropical regions [7–14].

Among TBDs, theileriosis, babesiosis, and anaplasmosis are notable for their impact
on sheep and goats. These diseases are transmitted primarily by Hyalomma, Rhipicephalus,
and Haemaphysalis ticks [15–22]. Theileria lestequardi, a pathogenic agent causing theileriosis
in small ruminants, is known to be transmitted by Hyalomma spp.; however, R. bursa is also
suggested as a potential vector [23]. Although typically non-pathogenic, T. ovis is commonly
found in R. bursa and other Rhipicephalus species feeding on sheep and goats [24,25].
Rhipicephalus bursa, a two-host tick widely distributed throughout the Mediterranean
region, is the primary vector associated with Babesia ovis, in which it transmits through
both transtadial and transovarial routes [7,19,21,26–28]. However, R. bursa lacks vector
competence for Babesia aktasi, a newly identified species infecting goats [29]. Babesia motasi
is exclusively transmitted by ticks of the Haemaphysalis genus [22]. Given its widespread
presence and vector potential in small ruminants, understanding the role of R. bursa in
transmitting various tick-borne pathogens remains crucial for disease management in these
animals.

The developmental stages of R. bursa have seasonal activity. It has been stated that
the larvae of R. bursa, which complete one generation per year under natural conditions,
are most active during the winter months, and the adult stage is most active during the
summer months when temperatures increase [30,31]. The high incidence of babesiosis
caused by B. ovis in sheep and goats during the summer months has been associated with
the activeness of R. bursa adults during this period. However, this process exhibits a life
cycle ranging from 99 to 214 days under laboratory conditions [19,21,26,31–33]. Both the
immature and adult stages of R. bursa infest sheep, goats, cattle, horses, donkeys, and rarely,
wild ungulates, although the preferred hosts are sheep and goats [31,34,35].

Accurate determination of vector competence is vital for understanding the epidemiol-
ogy of tick-borne pathogens. Many reports rely on the co-occurrence of ticks and diseases,
rather than experimental infection studies, to infer transmission, which can complicate
epidemiological understanding and lead to errors in identifying vector-parasite relation-
ships [36]. Detecting pathogens’ DNA in ticks alone is insufficient to confirm vector
competence [37,38]. In ixodid ticks, the terms “vectorial capacity” and “vector competence”
are concepts commonly used to describe an arthropod’s ability to act as a vector for a
pathogen [39]. The vectorial capacity of a tick can be recognized if the existing epidemiolog-
ical relationship (for example, the correlation between tick presence and disease occurrence)
is experimentally supported by tick transmission studies [36]. Elucidating the mechanisms
involved in tick–pathogen interactions that influence vector competence is essential for
identifying the molecular drivers of tick-borne diseases, which in turn, facilitates the devel-
opment of paradigms for disease control and prevention [40]. Identifying which tick species
transmits a specific pathogen is reported to be crucial for understanding and studying the
biology of that pathogen [37]. To determine whether a tick has vector competence for any
blood parasite, one of the most established experimental approaches involves allowing
sterile ticks to feed on an experimentally infected host (or infected blood in in vitro ex-
periments) to acquire TBP forms. Before starting experimental tick transmission studies,
the fundamental step is establishing a sterile laboratory colony of ticks to be used in the
experiments [37,41].
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Understanding the life cycle of ticks is essential for studying tick-borne pathogens
and developing effective control strategies. This study focuses on the development of a
pathogen-free R. bursa colony under controlled laboratory conditions, a prerequisite for
experimental vector competence research. We examined the life cycle of R. bursa, including
its developmental stages, feeding behavior, and pathogen acquisition potential, to establish
a reliable model for studying the transmission dynamics of tick-borne pathogens.

2. Materials and Methods
2.1. Tick Collection, Identification, and Molecular Screening for Tick-Borne Pathogens

In the surrounding villages of Elazığ province in eastern Türkiye, 19 apparently
healthy animals (13 sheep, 4 goats, and 2 cattle) grazing outdoors were examined for tick
infestations in May 2021. A total of 327 ticks were collected from these animals and brought
to the Department of Parasitology at the Veterinary Faculty of Fırat University for species
identification. Each tick’s sex was recorded, and species identification was performed using
a stereomicroscope and a taxonomic key [42]. Blood samples (2 mL each) were collected
from the jugular vein of each animal and preserved in EDTA tubes. Among the collected
ticks, 12 engorged female ticks identified as Rhipicephalus bursa were kept in an incubator
set to 27 ± 1 ◦C and 70–80% relative humidity (RH) for egg-laying and hatching of larvae.
After oviposition, 12 engorged female tick carcasses were removed from the incubator,
bisected longitudinally with a sterile scalpel, and stored at −20 ◦C for DNA extraction.
Four larvae pools (each containing approximately 100 larvae) were obtained from larval
batches belonging to each engorged female tick. Engorged female tick carcasses and the
larval pools from each engorged female tick were crushed using sterile plastic rods in liquid
nitrogen and prepared for genomic DNA extraction [20,43]. The representative scheme of
the experimental study is presented in Figure 1.
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Figure 1. The representative scheme of the study design. (A) Collecting engorged ticks from cattle,
sheep, and goats naturally infested with ticks, oviposition of R. bursa engorged female adults, hatching
larvae, and the determination of pathogen-free (Babesia, Theileria, Anaplasma, and Ehrlichia spp.) larval
bathes. (B,C) Infestation of the rabbits and splenectomized sheep by immature and adult stages of R.
bursa, respectively, and screening by nPCR for the detection of Babesia spp., Theileria spp., Anaplasma
spp., and Ehrlichia spp. Figure 1 was created using BioRender.com (https://www.biorender.com/
accessed on 14 November 2024).

https://www.biorender.com/
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Genomic DNA was extracted using a PureLink™ Genomic DNA Mini Kit (Invitrogen,
Invitrogen, Carlsbad, CA, USA), and nPCR was performed for Babesia, Theileria, Anaplasma,
and Ehrlichia species using specific primers [44–48] (Supplementary Table S1). Positive
(B. ovis and A. ovis genomic DNA from GenBank accession numbers no.EF092454.1 and
no.MG693754.1, respectively) and negative (DNase/RNase-free water) controls were in-
cluded in each PCR reaction. Reactions were conducted in an automated DNA Sensequest
thermal cycler (Labcycler Gradient, Göttingen, Germany). Ten microliters of the PCR
products were electrophoresed on a 1.4% agarose gel for 30 min and visualized using the
Quantum Vilber Lourmat (Marne-la-Vallee, France) gel imaging system. To verify the DNA
of R. bursa, PCR was conducted using 16S + 1 and 16S − 1 primers [49] (Supplementary
Figure S1).

2.2. Feeding of R. bursa Larvae on Rabbits

Two larval batches from engorged female ticks (#202 and #212) confirmed to be
pathogen-free by nPCR were used for rabbit infestation. Approximately 0.150 g of active
larvae from sheep #212 (F1 larvae) were placed in EVA foam capsules attached to a New
Zealand rabbit (#Rabbit-1) as described by Almazan et al. [50]. Engorged nymphs were
collected daily, incubated at 27 ± 1 ◦C and 70 ± 10% RH, and allowed to molt into F1 unfed
adults. DNA extracted from 16 pools of F1 unfed adults (8 male, 8 female, and 3 ticks per
pool) was screened by nPCR to confirm pathogen-free status.

2.3. Feeding of R. bursa Adult on Sheep

Two splenectomized sheep (#026 and #934), confirmed to be pathogen-free by nPCR
and microscopy, were used to feed unfed R. bursa adults. Splenectomy was performed at
the Fırat University animal hospital following standard anesthesia, analgesia, and aseptic
procedures [51,52]. After surgery, sheep were monitored for three weeks for clinical signs
and retested for Theileria, Babesia, and Anaplasma spp.

EVA foam feeding capsules were attached to the thoracic region of sheep #026, and 80
F1 unfed adults (30 females, 50 males) were introduced. Engorged females were collected,
incubated for oviposition, and their carcasses, along with F2 larval pools, were screened
by nPCR. F2 larvae were fed on Rabbit-2, and the resulting F2 adults were fed on sheep
#934, following the same procedures. Sheep #026 and #934 were monitored clinically and
by nPCR for 63 days post-infestation.

F2 engorged females from sheep #934 were incubated for oviposition, generating F3
larvae. Both F2 female carcasses and F3 larval pools were screened for Theileria, Babesia,
and Anaplasma spp. to confirm a pathogen-free status before subsequent use.

2.4. Assessing the Development and Biological Parameters of Immature and Adult R. bursa

During the completion of their life cycles, the feeding periods of R. bursa larvae on
rabbits and adults on sheep were carefully monitored. Key biological parameters were
evaluated, including the weight of engorged females, the duration of the pre-oviposition
period, oviposition period, egg incubation period, and molting period.

3. Results
In this study, a total of 327 adult ticks (87 females and 240 males) were collected

from 19 animals, consisting of 13 sheep, 4 goats, and 2 cattle. Morphological identification
revealed three tick species: Rhipicephalus bursa (39 females and 96 males), R. turanicus
(37 females and 100 males), and H. marginatum (11 females and 44 males) (Table 1). Among
the 39 female R. bursa, 12 were fully engorged and suitable for oviposition (Table 2).



Vet. Sci. 2025, 12, 54 5 of 13

Table 1. Number of collected ixodid tick species from sheep, goat, and cattle in the field.

Animal ID Host Collected Tick Species

R. bursa R. turanicus H. marginatum

Female (♀) Male (♂) Female (♀) Male (♂) Female (♀) Male (♂)

#201 Sheep 1 1 - - - -
#202 Sheep 1 3 2 8 - -
#203 Goat 3 4 4 6 - -
#204 Sheep 5 14 - - 3 11
#205 Goat 1 1 - 4 - -
#206 Sheep 2 2 5 4 - -
#207 Sheep 3 4 1 1 - -
#208 Goat 1 3 2 3 - -
#209 Sheep 3 7 - - 1 1
#210 Sheep 2 5 3 17 - 1
#211 Sheep 2 2 - - - -
#212 Sheep 2 6 1 5 - -
#213 Sheep - 2 3 3 - -
#214 Goat - - 1 3 - -
#215 Sheep 3 18 3 21 3 2
#216 Sheep 6 16 4 14 1 6
#217 Sheep 2 2 1 1 - -
#218 Cattle - - 4 6 3 18
#219 Cattle 2 6 3 4 - 5

Total 39 96 37 100 11 44

Table 2. Nested PCR results for R. bursa engorged females, carcasses, larval pools, and host blood
samples for detection of Theileria, Babesia, Anaplasma, and Ehrlichia spp.

Animal ID R. bursa nPCR Results

Number of Engorged
Female * Carcass ID Theileria/Babesia spp. Anaplasma/Ehrlichia spp.

Blood Carcass Larvae Pools Blood Carcass Larvae Pools

#202 1 * #202-1 - - - - - -
#204 1 #204-1 + - - - - -
#207 2 #207-1 + + - + + -

#207-2 + - + -
#209 1 #209-1 + + - - - -
#211 1 #211-1 + + + - - -
#212 2 * #212-1 - - - - - -

#212-2 - - - - -
#216 4 #216-1 + + + + + -

#216-2 + + + -
#216-3 + + + -
#216-4 + + + -

* Number of engorged females kept in an incubator for oviposition and larval hatching.

After incubation, the 12 engorged R. bursa females initiated oviposition within
4–7 days. The first larvae began hatching between days 29 and 33 post oviposition, with
larval hatching completing within 5–14 days. Nested PCR results indicated that only 2
of the 12 engorged female carcasses, along with their larval pools (#202 and #212) tested
negative for Theileria, Babesia, Anaplasma, and Ehrlichia spp. (Figure 2). Additionally, the
blood samples from the host animals from which these two engorged females were also
negative for these tick-borne pathogens. In contrast, the remaining host blood samples, tick
carcasses, and larval pools tested positive by nPCR (Table 2).
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Figure 2. Gel imaging of nPCR results of carcasses and larvae from engorged R. bursa females
collected from animals. (A) Gel image showing positive and negative nPCR amplification products
representing Babesia and Theileria species obtained using Nbab1F/Nbab1R [47] and RLB-F2/RLB-
R2 [48] primers. M: 100 bp marker, N: negative control (distilled water), P: Babesia ovis (EF092454),
Lanes 1, 3, 5, 7, 9, 11, and 13 show DNA from engorged R. bursa females (#202-1, #204-1, #207-1, #209-1,
#211-1, #212-1, and #216-1, respectively). Lanes 2, 4, 6, 8, 10, 12, and 14 represent their corresponding
larval pools. (B) Gel image showing positive and negative nPCR amplification products representing
Anaplasma and Ehrlichia species obtained using Ec9/Ec12a [45] and 16S8FE/BGA1B [46] primers. P:
Anaplasma ovis (MG693754). Sample order is identical to Panel A.

Based on nPCR analysis results, larval pools #202 and #212, which were negative,
were selected. The more active larval batch (F1 larvae) from pool #212 was used to feed
on #Rabbit-1. Approximately 0.150 g of F1 unfed larvae were placed in a capsule attached
to #Rabbit-1 and allowed for around 18 days. Following the feeding period, 644 en-
gorged nymphs were collected from the capsule 29 days after initial attachment. Of these,
592 nymphs (91.9%) successfully molted into adult ticks (F1 unfed adults), comprising
266 females and 326 males (Table 3). In 4 days, 345 engorged nymphs dropped, producing
286 (82.6%) male adults and 60 (17.4%) female adults. Sixteen pools of adult ticks, with
each pool containing three F1 unfed adults (48 unfed adults) were screened using nPCR.
The results indicated that all pools were negative for Theileria, Babesia, Anaplasma, and
Ehrlichia spp.

Nested PCR-negative thirty F1 unfed female adults were attached to splenectomized
sheep #026 for feeding, and 26 of them had fed and become engorged females after
6–10 days. The heaviest engorged female weighed 0.673 g on day 8, producing an egg mass
of 0.348 g after detachment from the sheep. Engorged females that separated from the
egg mass survived up to 4 days. Approximately 30 days after the oviposition period, next
generation-larvae (F2 unfed larvae) were obtained from the engorged females (Table 4).
All fifty-two pools and the carcasses of the engorged females were screened by nPCR for
Theileria, Babesia, and Anaplasma spp. with all samples testing negative (Table 5).

The splenectomized sheep #026 and #934 used in the experimental period showed no
clinical signs of tick-borne diseases for 63 days. Body temperature remained within the
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normal range in both sheep (Figure 3), and nPCR analysis results were negative for both
animals (Figure 4).

Table 3. Life cycle and biological parameters of immature R. bursa fed on New Zealand rabbits under
laboratory conditions.

Life Stage Parameters Number of Days

Rabbit-1 Rabbit-2

Min-Max Mean Min-Max Mean

Larva Pre-feeding period 1–3 2 1–4 2.5
Feeding period 13–20 18.1 14–22 19.2

Engorged nymph Dropp-off period 7 7 8 8
Incubation and molting period 12–29 19.2 13–22 21

Table 4. Developmental parameters of engorged female ticks collected from sheep #026 and #934,
including oviposition, egg mass, and larval development periods.

Life Stage Parameters #026 #934

Min–Max Mean Min–Max Mean

Engorged female Engorged females weight (g) 0.362–0.673 0.558 0.139–0.747 0.550
Pre-oviposition (days) 2–7 5.1 3–8 5.6

Oviposition period (days) 7–17 12.4 6–18 13.1
Post-oviposition survival (days) 1–4 1.5 1–4 1.4

Eggs Eggs mass weight (g) 0.165–0.348 0.284 0.04–0.358 0.258
Incubation period (days) 30–36 31.8 21–39 28.9

Larva Larval hatching period (days) 4–13 7.4 7–13 7.8

(g; gram).

Table 5. Nested PCR results of Rhipicephalus bursa obtained at different generations and developmental
stages.

Tick Stage Generation No. of Ticks in
Each Pool No. of Pools No. of Total Ticks No. nPCR-Positive

Ticks/No. Pools Tested

Unfed larvae F1 100 4 400 0/4
Unfed adult F1 3 16 48 0/16

Engorged adult * F1 26 0/26 *
Unfed larvae F2 100 52 5200 0/52
Unfed adult F2 3 20 60 0/20

Engorged adult * F2 24 0/24 *
Unfed larvae F3 100 48 4800 0/48

* Individual tick sample.
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4. Discussion
Rhipicephalus bursa is a two-host tick species primarily associated with the transmission

of B. ovis and other pathogens that impact livestock health, particularly in the Mediterranean
and Middle Eastern regions [19,26]. This tick species completes its life cycle over one
generation per year and has a unique developmental pattern where both the immature
(larval and nymph) and adult stages parasitize similar primary hosts, including cattle,
sheep, and goats [21].

In this study, we aimed to obtain colonies of different stages of new-generation tick-
borne pathogen-free R. bursa for use in vector competence studies. Our findings indicated
that the life cycle of R. bursa from preoviposition to the next-generation engorged adult
female was completed within 72–153 days. This is notably shorter than the 99–254 days
reported by Yeruham et al. [33] for R. bursa when completing all developmental stages
on lambs. The observed difference is likely due to variations in pre-molting and molting
periods of engorged nymphs, which may result from feeding on different host species.
Additionally, the three-host tick R. sanguineus completes its life cycle in 70–126 days [53],
while another study reported this duration to be between 162 and 177 days [54]. The shorter
duration observed in our study compared to previous reports may reflect specific environ-
mental conditions under which the ticks were maintained, such as controlled laboratory
settings or differences in strain adaptability. These findings underscore the importance of
considering host, environmental, and strain-specific factors when interpreting the life cycle
dynamics of R. bursa and other tick species [53,55].

In this study, the preoviposition period showed similarity to findings reported in
previous research [33,56]. Specifically, the mean preoviposition period of engorged females
dropped from sheep #026 was 5.1 days, matching the value reported by Yeruham et al. [33].
Comparatively, the preoviposition period for R. sanguineus and R. turanicus have been
recorded as 5.9 and 4.5 days, respectively [57]. These slight variations among Rhipicephalus
likely reflect differences in metabolic rates and the female’s ability to convert body protein
content into eggs, independent of feeding [58]. In this study, the oviposition period was
determined to be 12.4 and 13.1 days, which is shorter than the 16.5 ± 2.44 days reported by
Yeruham et al. [33]. This difference may be attributed to variations in the feeding period
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and related physiological factors [58–60]. Additionally, the duration from unfed adult to
engorged female averaged 9 days in our study, whereas Yeruham et al. [33] reported a
shorter duration of 5.9 days. These findings suggested an inverse correlation between blood-
feeding duration and subsequent reproductive parameters, emphasizing the influence of
host–tick interactions and environmental conditions on tick development.

In this study, a positive correlation was found between the weight of engorged R.
bursa females and the weight of the eggs laid. Approximately 50.9% of the engorged
female’s weight was converted into egg mass, consistent with the findings of Yeruham
et al. [33]. Similar relationships have been reported in other Rhipicephalus species [53], as
well as in the species of the Dermacentor spp. [61] and Hyalomma spp. [62], highlighting the
conserved nature of this reproductive efficiency across different tick species. The incubation
period for R. bursa eggs until larval hatching was determined to be 28.9 and 31.8 days,
aligning with previous findings [33]. This period was also similar to that reported for
R. sanguineus [53]. It is well established that egg incubation and hatching periods are
influenced by environmental factors such as temperature [63], which could explain minor
variations observed across studies.

In the study, the weights of the engorged nymphs were not measured; however, based
on external observation, it was found that the majority of the early-dropping engorged
nymphs with lower weights produced male adults. On the other hand, the engorged
nymphs that fed for a longer period predominantly produced female adults. In the study
by Yeruham et al. [33], it was reported that 76.1% of nymphs weighing up to 8.9 mg
produced male adults. Nymphs that detached in the first half of the drop-off phase tended
to produce males, while those that detached in the second half tended to produce females.
Our findings further supported these observations, with 88.2% and 82.6% of nymphs
producing male adults. These results emphasize the significant role of feeding duration
and body weight in influencing sex determination in R. bursa.

Before and after being placed on the host, larvae and adults from different generations
were negative for Theileria, Babesia, Anaplasma, and Ehrlichia spp. through nPCR. The sheep
on which the adult ticks fed were monitored clinically and molecularly for 63 days. Clini-
cally, no symptoms related to tick-borne pathogens were observed, and nPCR confirmed
their negative status. Based on these findings, the F3 R.bursa unfed larvae obtained from
the laboratory colonies were considered sterile, and it was decided to use this colony in
vector studies. These results provide strong evidence that the laboratory-produced colonies
of R. bursa are free of pathogens and can be safely utilized in vector-related research. Nev-
ertheless, this study is limited by the relatively small sample size of ticks and animals used,
which may affect the generalizability of the findings. Larger-scale studies involving more
extensive tick and host populations would provide a more comprehensive understanding
of the life cycle dynamics and host-tick interactions. Additionally, future research could
explore genetic and environmental factors influencing tick development to further elucidate
the biological and ecological characteristics of R. bursa.

5. Conclusions
This study provided valuable insights into the life cycle dynamics and reproductive

parameters of R. bursa, emphasizing its importance as a vector of B. ovis and other livestock
pathogens in the Mediterranean and Middle Eastern regions. The results demonstrated
that laboratory-produced colonies of R. bursa can be successfully maintained pathogen-
free across multiple generations, offering a reliable model for vector competence studies.
Critical parameters such as preoviposition and oviposition periods, egg incubation duration,
and sex determination based on nymph feeding behaviors were found to align closely
with previous studies, highlighting the consistency of R. bursa biology across different
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environments. However, the study’s small sample size is a limitation that underscores the
need for larger-scale studies to confirm these findings and improve the generalizability
of the results. Future investigations should also focus on the genetic and environmental
factors that influence tick development and reproductive efficiency. The establishment of
pathogen-free tick colonies also underscores the feasibility of developing targeted strategies
for controlling vector populations in livestock settings. Given the significant role of R.
bursa in transmitting B. ovis and other pathogens, understanding its vectorial capacity is
crucial for mitigating tick-borne diseases. The findings of this study highlight the urgent
need to develop specific vaccines and preventative measures against R. bursa, as such
advancements are essential for protecting livestock health and ensuring sustainable animal
production systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci12010054/s1, Figure S1: Unfed larva, male, and female
Rhipicephalus bursa from colonies used in the study: (A) Larvae, (B) Male, and (C) Female. Scale
bar: 0.985 mm. Figure S2: Experimental design and infestation process for Rhipicephalus bursa: (A)
Infestation of rabbits with the immature stages (larvae and nymphs) of R. bursa using EVA foam,
followed by the collection of engorged nymphs. (B) Infestation of sheep with adult R. bursa, followed
by the collection of engorged females. Figure S3: Verification of Rhipicephalus bursa DNA using PCR
with 16S + 1 and 16S – 1 primers. Lane N: Negative control (DNase/RNase-free water); Lane 1:
F1 unfed larvae; Lane 2: F1 unfed adults; Lane 3: F2 unfed larvae; Lane 4: F2 unfed adults; and
Lane 5: F3 unfed larvae. Table S1: Primers and sequences used in this study for the detection of
tick-borne pathogens.
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