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Simple Summary: Ticks are a major threat to livestock health and productivity, especially
in Cameroon, where cattle farming is vital. In this study, we examined ticks from two
key cattle-rearing areas in Cameroon, agroecological zone I (AEZ I) and zone III (AEZ
III). A total of 1100 ticks were collected, revealing that the most common species were
Hyalomma truncatum (39.9%), Amblyomma variegatum (31%), and the invasive, acaricide-
resistant Rhipicephalus microplus (10.64%). The invasive R. microplus is outcompeting native
ticks and serves as a major vector for diseases significant to both animal and public health.
This research provides essential data on tick species and their distribution, emphasizing
the urgent need for more effective strategies to control R. microplus and protect livestock in
Cameroon and western Central Africa.

Abstract: Ticks are well-known vectors of pathogens, posing considerable risks to livestock
health and productivity. In Cameroon, where livestock production is vital, established
tick species such as Amblyomma variegatum and Hyalomma truncatum are prevalent in key
cattle-rearing areas. The recent introduction of the invasive, acaricide-resistant Rhipicephalus
microplus further complicates control efforts. In this study, we deliver baseline data on the
composition of tick species and their shifts within agroecological zone I (AEZ I) and agroe-
cological zone III (AEZ III) of Cameroon, providing a foundation for targeted vector control
strategies to ultimately reduce the risk of pathogen transmission. From 1100 ticks collected
across two Cameroonian agroecological zones, H. truncatum (39.9%), A. variegatum (31%),
and R. microplus (10.64%) were the most prevalent species, along with Rhipicephalus lunula-
tus (4.45%), Hyalomma rufipes (1.45%), Hyalomma marginatum (1.09%), Hyalomma dromedarii
(0.45%), and Rhipicephalus sanguineus (0.9%). Molecular identification using cytochrome C
oxidase subunit 1 (cox1) and 16s led to the identification of five additional species, Hyalomma
nitidum (0.73%), Rhipicephalus simus (3.54%), Rhipicephalus sulcatus (2.64%), Rhipicephalus
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praetextatus (2.1%), and Rhipicephalus pusillus (1.1%). R. microplus emerged as the most
dominant Rhipicephalus spp. in AEZ I, comprising 67.5% of the total Rhipicephalus ticks. In
conclusion, we demonstrate the further spread of R. microplus, which represents a major
source of vector-borne diseases, affecting both humans and animals.

Keywords: ticks; tick-borne diseases; cox1; 16s; Rhipicephalus microplus; Cameroon

1. Introduction
Ticks and tick-borne diseases (TBDs) are estimated to cause substantial economic losses

of around USD 20–30 billion annually worldwide. Specifically, Eastern Africa is experienc-
ing annual losses of approximately USD 364 million [1,2]. Ticks and TBDs are significant
threats to livestock production in sub-Saharan Africa and public health [3]. This threat is
expected to increase due to climate change and the increased movement of livestock [4].
The heterogeneity of livestock production systems, ranging from semi-intensive small-scale
operations in highlands to extensive pastoral systems in arid regions, complicates the un-
derstanding of TBD dynamics across the continent. Cameroon, a country in Central Africa,
through the transhumance of livestock and livestock trade, epidemiologically connects
West Africa and beyond [5], promoting the spread of ticks and TBDs. Recently, the invasive
cattle tick Rhipicephalus microplus, a key vector of Babesia bovis, Anaplasma marginale, and
Babesia bigemina was introduced to West Africa as a result of cattle imports from Brazil and
has since quickly expanded its range [6,7]. This tick is notorious for its invasive nature and
acaricide resistance, which pose a growing threat to livestock productivity and health across
the region [8,9]. Rhipicephalus microplus and other ticks, like R. simus and R. praetextatus, are
becoming increasingly common, spreading A. marginale, A. centrale, B. bovis, B. bigemina,
Theileria annulata, Rickettsia conorii, and the Nairobi sheep disease virus [10–13]. While
Amblyomma variegatum and Hyalomma truncatum remain predominant in the region, the
emergence and potential range expansion of new Rhipicephalus species underscores the
dynamic nature of tick communities and their evolving threat to livestock [14].

Tick surveillance in Cameroon has predominantly relied on morphological identifica-
tion methods, which are not always able to accurately distinguish between closely related
species, particularly when dealing with damaged, engorged, or immature specimens [15].
However, the accurate identification of tick species is pivotal for effective surveillance and
control measures. Therefore, we conducted a morphological and molecular survey of tick
species infesting cattle in Cameroon’s major livestock production zones, agroecological
zone 1 (AEZ I) and the Western Highlands, also known as agroecological zone 3 (AEZ
III), which account for nearly 66% of the cattle population. The aim was to assess whether
R. microplus and other Rhipicephalus species, alongside Amblyomma and Hyalomma, are
expanding their range.

2. Methodology
2.1. Sampling Collection

This study was conducted as a cross-sectional survey to assess tick species distribution
and infestation rates among cattle in Cameroon. The survey was carried out in two
agroecological zones (AEZs): the North and Far North (AEZ I) and the Western Highlands
(AEZ III), during their respective peak rainy seasons in 2022 (Figure 1). AEZ I, the Sudano-
Sahelian zone, has high temperatures and dry savannah and steppes. Around 1.89 million
heads of cattle are found there [16]. AEZ III (Western Highlands) features mountainous
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terrain, lower temperatures, and high rainfall, supporting an estimated cattle population of
1.98 million heads [17].
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Figure 1. Map highlighting the study districts from two different agroecological zones (AEZs)
of Cameroon.

Cattle were sampled from medium-sized farms (50–200 animals) across selected dis-
tricts: Kalfou, Touloum, and Kaélé in the Far North and Bangangté in the Western High-
lands. The number of farms visited was based on cattle density and the farmers’ willingness
to participate in the survey. Stratified random sampling was employed, with 10–15% of
animals per farm selected. The geographic coordinates of the study sites are as follows:

• Far North (AEZ I): Kalfou (N 10◦ 2′ 4.92′′, E 14◦ 26′ 3.84′′), Touloum (N 10◦ 15′ 50.40′′,
E 14◦ 30′ 30.60′′), and Kaélé (N 10◦ 6′ 34.56′′, E 14◦ 27′ 2.88′′).

• Western Highlands (AEZ III): Bangangté (N 05◦ 8′ 24′′, E 10◦ 31′ 12′′).

Adult ticks were collected from cattle using blunt steel forceps and preserved in 70%
ethanol at 4 ◦C. To ensure a representative sample of tick diversity, up to five ticks were
collected per infested animal. The majority of the sampled cattle were local breeds, with a
few crossbreed animals. They were mostly managed under open grazing systems, with
occasional combined stall-feeding practices.

2.2. Morphological Identification of Ticks

Ticks were identified morphologically exercising standard taxonomic keys under a
stereomicroscope at 100× magnification [13].

2.3. DNA Extraction and PCR

Of each morphologically identified tick species, a representative subset (20%) from
each genus was selected for DNA extraction and PCR. Ticks were dissected into small
pieces using sterile scalpels. The Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden,
Germany) was used for DNA extraction and the extracted DNA was stored at −20 ◦C until
it was used for PCR amplification. Nanodrop (Thermo Fisher Scientific, Waltham, MA,
USA) was used to measure the DNA concentration.
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PCR reactions for mitochondrial 16s ribosomal RNA (16s rRNA) and cox1 were per-
formed as described before [18]. The primers used in this study target conserved regions
that are applicable across multiple genera of ticks, allowing for broad amplification and
subsequent identification. Briefly, a total volume of 30 µL was used, containing 2.5 µL
100 ng genomic DNA, 10.5 µL of nuclease-free water (Thermo Fisher Scientific, Waltham,
MA, USA), 1 µL of each primer (10 pmol), and 15 µL of DreamTaq PCR master mix (2X)
(Thermo Fisher Scientific, Waltham, MA, USA). ProFlex thermocycler (Thermo Fisher Sci-
entific, Waltham, MA, USA) was used for PCR. For the 16s rRNA gene, the thermal cycling
conditions were an initial denaturation at 95 ◦C for 4 min, followed by 35 cycles of denat-
uration at 95 ◦C for 1 min, annealing at 50 ◦C for 1 min, and extension at 68 ◦C for 1 min.
This was followed by a final extension at 68 ◦C for 10 min. The following primers were
used: Forward: 16S + 1 (5′-CTGCTCAATGATTTTTTAAATTGCTGTGG-3′) and Reverse:
16S-1 (5′-CCGGTCTGAACTCAGATCAAGT-3′). The size of the amplified fragment was
460 base pairs [18]. For the cox1 gene, the conditions were as follows: initial denaturation
at 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 45 s, annealing at 50 ◦C for 45 s, and
extension at 72 ◦C for 1 min. This was followed by a final extension at 72 ◦C for 5 min. The
forward and reverse primer sequences used for amplifying the cox1 gene are as follows:
Forward: LCO1490 (5′- GGTCAACAAATCATAAAGATATTGG-3′) and Reverse: HCO2198
(5′-TAAACTTCAGGGTGACCAAAAAATCA-3′). The size of the amplified fragment was
710 base pairs [19].

PCR products were analyzed on 2% agarose gels, stained with SYBR Safe dye (Invitro-
gen Thermo Fisher, Waltham, MA, USA), and visualized under UV light using a Gel doc
EZ gel documentation system (Bio-Rad, Hercules, CA, USA).

2.4. Sequencing and Sequence Analysis

PCR products were sent for Sanger sequencing to BGI genomics (Hong Kong, China).
The resulting sequences were edited and trimmed using 4Peaks (v1.8) software. The
sequences were compared in the GenBank database using the BLASTn program for identifi-
cation of the ticks [20]. An identity percentage above 97% in BLAST analysis with GenBank
sequences is considered the threshold for tick species identification.

2.5. Phylogenetic Analysis

Multiple sequence alignments were performed using MUSCLE in MEGA11 (version
11.0.13) [21] and phylogenetic analyses were conducted using the maximum likelihood (ML)
method implemented in IQ-TREE 2 (v2.3.6) [22]. IQ-TREE’s ModelFinder module was used
to automatically select the best-fit substitution model based on the Bayesian Information
Criterion (BIC). ML analyses were conducted with 1000 ultrafast bootstrap replicates to
estimate branch support, ensuring a robust evaluation of the inferred phylogeny. Separate
trees were generated based on both cox1 and 16s genes. Final visualization and editing
were performed by interactive tree of life (iTOL v7) [22].

2.6. Statistical Analysis

Data were compiled using MS Excel, and the analysis was performed in R version
4.3.1. A chi-square test was employed to examine the relationship between different study
locations and tick species. A statistical significance level of 95% was established, with a
p-value of less than 0.05 considered statistically significant.
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3. Results
3.1. Tick Collection and Identification

A total of 1100 ticks were collected from 515 cattle across fifteen sites located in
four districts, covering two agroecological zones (AEZs). Ticks were collected during the
rainy season. Morphological identification revealed three genera: Amblyomma (341, 31%,),
Hyalomma (480, 43.64%), and Rhipicephalus (250, 22.73%) (Table 1). A bar plot illustrating
the detailed distribution of each tick species across both agroecological zones (AEZs) is
presented (Figure 2). There were statistically significant differences (p-value < 0.05) between
agroecological zones and various tick genera within AEZ I and AEZ III.

Table 1. Distribution and percentage of tick species across agroecological zones and their districts.

Tick Genus Tick Species No. of Ticks
Collected (%)

AEZ I
District (%)
Kaélé

District (%)
Kalfou

District (%)
Touloum

AEZ III
Districts (%)
Bangangté

Amblyomma A. variegatum 341 (31) 102 (24.7) 57 (28.79) 48 (37.21) 134 (37.22)
Hyalomma H. truncatum 439 (39.9) 196 (47.46) 114 (57.58) 75 (58.14) 54 (15)

H. rufipes 16 (1.45) 11 (2.66) 0 (0) 0 (0) 5 (1.39)
H. marginatum 12 (1.09) 7 (1.69) 5 (2.53) 0 (0) 0 (0)
H. nitidum 8 (0.73) 8 (1.94) 0 (0) 0 (0) 0 (0)
H. dromedarii 5 (0.45) 5 (1.21) 0 (0) 0 (0) 0 (0)

Rhipicephalus R. microplus 117 (10.64) 55 (13.32) 18 (9.09) 6 (4.65) 38 (10.56)
R. lunulatus 49 (4.45) 5 (1.21) 4 (2.02) 0 (0) 40 (11.11)
R. simus 39 (3.54) 7 (1.69) 0 (0) 0 (0) 32 (8.89)
R. sulcatus 29 (2.64) 11 (2.66) 0 (0) 0 (0) 18 (5)
R. praetextatus 23 (2.1) 0 (0) 0 (0) 0 (0) 23 (6.39)
R. pusillus 12 (1.1) 0 (0) 0 (0) 0 (0) 12 (3.33)
R. sanguineus 10 (0.9) 6 (1.45) 0 (0) 0 (0) 4 (1.11)
Total 1100 413 198 129 360
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A total of 210 samples from the microscopically identified ticks, a representative
subset (20%), were randomly selected for identification using PCR and sequencing. A total
of 13 different species were found: A. variegatum (341, 31%), H. truncatum (439, 39.9%),
H. rufipes (16, 1.45%), H. marginatum (12, 1.09%), H. nitidum (8, 0.73%), H. dromedarii (5,
0.45%), R. microplus (117, 10.64%), R. lunulatus (49, 4.45%), R. simus (39, 3.54%), R. sulcatus
(29, 2.64%), R. praetextatus (23, 2.1%), R. pusillus (12, 1.1%), and R. sanguineus (10, 0.9%). The
identification corresponded to the morphological identification.

Of the collected ticks, 53 samples were classified only to the genus level based on mor-
phology (17 from the genus Hyalomma and 36 from the genus Rhipicephalus). These samples
were further identified at the species level using PCR and sequencing. The 17 samples of
Hyalomma consisted of 10 H. truncatum, 3 H. rufipes, 2 H. marginatum, 1 H. dromedarii, and
1 H. nitidum. The 36 samples of Rhipicephalus were identified as 6 R. microplus, 5 R. sulcatus,
4 R. praetextatus, 7 R. simus, 11 R. lunulatus, 2 R. pusillus, and 1 R. sanguineus.

Rhipicephalus microplus was the dominant Rhipicephalus species in AEZ I, representing
67.52% (n = 79) of the Rhipicephalus spp. The remaining six Rhipicephalus species were
R. lunulatus, R. simus, R. sulcatus, R. praetextatus, R. pusillus, and R. sanguineus, who rep-
resented 20.38% (n = 33) of the total Rhipicephalus spp. Within the districts of Kaélé and
Kalfou, R. microplus prevalence was 47.01% (n = 55) and 15.38% (n = 18) of collected ticks,
respectively, with no R. microplus observed in Touloum. In AEZ III, which is represented
by the district Bangangté, R. microplus comprised 32.48% (n = 38) of the Rhipicephalus spp.
collected, with other Rhipicephalus species contributing 79.62% (n = 129) (Table 2).

Table 2. Distribution % of R. microplus compared to other Rhipicephalus spp. per district.

Agroecological Zone No. of Sites No. of R. microplus (%) No. of Other Rhipicephalus spp. (%)

AEZ I 12 79 (67.52) 33 (20.38)
Kaélé 6 55 (47.01) 29 (17.90)
Kalfou 4 18 (15.38) 4 (2.48)
Touloum 2 6 (5.13) 0 (0)
AEZ III 3 38 (32.48) 129 (79.62)
Bangangté 3 38 (32.48) 129 (79.62)

3.2. Phylogenetic Analysis of the 16s and cox1 Gene:

A total of thirteen partial 16s sequences representing all identified tick species were
included in this study, complemented by sixteen global reference 16s sequences sourced
from the GenBank database. These sequences were utilized to infer the phylogenetic
relationships among various taxa using the maximum likelihood method (Figure 3). The
resulting 16s phylogenetic tree revealed four distinct clades, each demonstrating strong
bootstrap values (exceeding 70%) at the majority of nodes.

The first clade consists of members of A. variegatum. The second clade comprises
sequences from the H. truncatum species. The third clade is formed by the members of
the ‘Rhipicephalus simus group’, exhibiting high bootstrap support above 99%. This group
includes sequences from R. simus, R. praetextatus, and R. lunulatus. Finally, R. microplus is
represented in a separate clade.

Based on partial cox1 sequences, a second phylogenetic tree was constructed, incor-
porating twenty reference sequences from the GenBank database worldwide, along with
fourteen sequences generated from this study, utilizing the maximum likelihood method
(Figure 4). The analysis resulted in the formation of six distinct clades. The first clade
includes sequences from the tick species R. microplus. The second clade comprises the
‘Rhipicephalus sanguineus group’, which includes R. sanguineus, R. pusillus, and R. sulcatus.
A. variegatum clustered closely together to form a third clade. The members of H. dromedarii
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were divided into two separate groups; sequences from Saudi Arabia and Tunisia formed
a small, distinct clade, while sequences from Cameroon, Ghana, and Ethiopia clustered
separately alongside the H. rufipes tick species. Hyalomma truncatum formed its own distinct
clade containing members of the same species.
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4. Discussion
Effective surveillance of various tick species and their pathogens is critical for alleviat-

ing the impact of tick-borne diseases (TBDs). Recently, the invasive tick R. microplus, which
is resistant to acaricides, has made its way into West Africa [7,8,23]. This development
has created significant challenges in managing tick infestations in cattle. Furthermore,
the cattle trade in this region is not controlled, creating risks of disease dissemination [5].
Notorious for its adaptability and capability to outcompete native species, R. microplus
presents a growing threat to animal health [7,24]. If its spread continues uncontrolled, it
could significantly increase the economic burden on the livestock sector. Current surveil-
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lance data are limited, restricting our understanding of species distribution and hindering
the development of effective control strategies.

Morphological identification, using sequencing and analyzing the sequences using
BLAST, is a widely used method for the identification of ticks; however, it has limitations,
particularly with species within the Hyalomma and Rhipicephalus genera, which often display
overlapping characteristics. Previous research has underscored the necessity of employ-
ing molecular techniques to achieve accurate species identification when morphological
analysis falls short [25,26]. In our study, molecular methods proved crucial for precisely
identifying certain Hyalomma and Rhipicephalus species. This included R. sulcatus from
R. praetextatus, R. lunulatus, R. pusillus, R. sanguineus, R. simus, as well as H. truncatum,
H. rufipes, H. marginatum, H. dromedarii, and H. nitidum, which could not be reliably distin-
guished based solely on morphological traits.

Identifying Rhipicephalus species using phylogenetic assessment of the sequences
poses challenges due to their high genetic similarity [27]. Phylogenetic analysis consistently
placed R. microplus in distinct clades for both cox1 and 16s, allowing clear differentiation
of this species. In contrast, based on the 16s gene marker, R. simus, R. praetextatus, and
R. lunulatus clustered in a single clade, reflecting close genetic ties within this group. Sim-
ilarly, the phylogenetic tree based on cox1 was unable to place R. sanguineus, R. pusillus,
and R. sulcatus in a separate clade. This also highlights the limitations of the cox1 and 16s
markers in distinguishing these species within this genus [28,29]. Moreover, the genes
do not allow more in-depth molecular epidemiological studies. Thus, additional or new
markers, such as ITS2, are necessary to enhance taxonomic resolution for closely related
species in complex groups as described before [29] and epidemiological studies. Similarly
in the genus Hyalomma, using phylogenetic analysis, H. dromedarii did not cluster in a
separate species.

The difficulties encountered with species identification can be explained by intro-
gressive hybridization, where one ’species’ incorporates genetic material from another
’species’ through ’interspecific hybridization’. Previous studies have demonstrated the
discrepancy between morphological and molecular identification, which is believed to
result from hybridization among Hyalomma taxa in Africa [26]. This difference can also be
explained based on the markers’ resolution capacities: 16s, a widely conserved gene for
species identification, often lacks the sensitivity to capture fine-scale, within-species varia-
tion, while cox1 can reveal regional or ecological sub-structuring, potentially highlighting
adaptations to environmental conditions or geographic isolation [28–32].

Among the various tick species studied, Hyalomma species emerged as the most
abundant, mainly in the AEZ I region, where H. truncatum was the predominant species.
However, in AEZ III, A. variegatum was identified as the major tick. These results are
consistent with previous studies [14,33,34], which also reported H. truncatum as the most
prevalent species in AEZ I and Amblyomma variegatum as the key tick species in AEZ III.
Along with that, H. rufipes is also detected, though to a limited extent, in both regions.
The presence of H. dromedarii, recently documented in Northern Cameroon, has also been
identified in this study within the northern districts of AEZ I albeit at low prevalence [3].
This region also has a large camel population and these ticks are probably only spill overs
from camels. Furthermore, A. variegatum was consistently present across all districts in both
regions, validating earlier findings documenting its widespread occurrence throughout the
country [35,36].

The most noteworthy finding from this study is the emergence and expansion
of R. microplus in AEZ I, where it has become the dominant tick vector among other
Rhipicephalus species, successfully outcompeting the established native Rhipicephalus
species [37,38]. R. microplus was previously primarily found in AEZ III and had not
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been reported in AEZ I [3]. Recent reports indicate that R. microplus is present at low preva-
lence within AEZ I [34]. The abrupt expansion of R. microplus, along with the apparent
dislocation of native tick species, can likely be attributed to the greater egg production
capacity and shorter life cycle of R. microplus [39]. This evolution has also recently been
documented in South Africa, Ivory Coast, and Tanzania, both probably arising from sep-
arate introductions [40–42]. Additionally, its resistance to many existing acaricides may
have contributed to its growth at the cost of susceptible species, who are eliminated from
the acaricide treatments [43].

Rhipicephalus microplus is a known vector for several pathogens, including B. bovis,
A. marginale, B. bigemina, and Theileria equi. Furthermore, the presence of A. variegatum
and H. truncatum, which can transmit Rickettsia species, Ehrlichia ruminantium, and Coxiella
burnetii (the causative agent of Q fever), as well as Theileria annulata, underscores the
significant risk of tick-borne diseases (TBDs) in these regions. Longitudinal studies are
needed to assess the permanence of these species and the factors driving R. microplus
spread. Future research should utilize whole mitochondrial genome sequencing to improve
species differentiation within the Rhipicephalus and Hyalomma genus. This method could
enhance genetic data resolution, aiding in the identification of species and the development
of targeted tick control strategies [44,45]. Given these findings, it is essential to implement
control strategies targeting these local tick species and the pathogens they carry to reduce
the disease burden in high-risk areas.

5. Conclusions
This study provides crucial data on the prevalence and diversity of tick species in

Cameroon’s AEZ I and AEZ III. The increase in the occurrence of R. microplus, coupled
with the risks posed by A. variegatum and H. truncatum, emphasizes the need for new
localized tick control strategies. The invasive and acaricide-resistant R. microplus has rapidly
established itself as the dominant species within its genus in AEZ I, continuing to expand
into areas where it poses significant risks as a vector for zoonotic and animal diseases.
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