Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals
Abstract
:1. Background
1.1. Disease at the Interface
1.2. Objectives
2. Importance of Mathematical Models of Disease Transmission at the Interface
2.1. Hosts and Pathogens: Their Distributions and Movement Patterns
2.2. Transmission Routes, Rates, and Contact Networks
2.3. Modeling the Effects of Disease and Mitigation Strategies
2.4. Effective Communication
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Godfroid, J.; DeBolle, X.; Roop, R.M.; O’Callaghan, D.; Tsolis, R.M.; Baldwin, C.; Santos, R.L.; McGiven, J.; Olsen, S.; Nymo, I.H.; et al. The quest for a true One Health perspective of brucellosis. Rev. Sci. Tech. 2014, 33, 521–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostal, M.K.; Olival, K.J.; Loh, E.H.; Karesh, W.B. Wildlife: The need to better understand the linkages. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 101–125. [Google Scholar]
- Cohen, N.E.; van Asseldonk, M.A.P.M.; Stassen, E.N. Social-ethical issues concerning the control strategy of animal diseases in the European Union: A survey. Agric. Hum. Values 2007, 24, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, K.; Pavade, G.; Claes, F.; Dauphin, G.; Daniels, P. Animal influenza research needs: Protecting humans, animals, food, and economies. Influenza Other Respir. Viruses 2013, 7, 34–36. [Google Scholar] [CrossRef] [PubMed]
- White, L.A.; Torremorell, M.; Craft, M.E. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir. Prev. Vet. Med. 2017, 138, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Davies, G. The foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp. Immunol. Microbiol. Infect. Dis. 2002, 25, 331–343. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.D.; Rushton, J. The economic impacts of foot and mouth disease—What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, M.P.M.; Horst, S.H.; Huirne, R.B.M.; Dijkhuizen, A.A. A model to estimate the financial consequences of classical swine fever outbreaks: Principles and outcomes. Prev. Vet. Med. 1999, 42, 249–270. [Google Scholar] [CrossRef]
- Callaway, E. Pig fever sweeps across Russia. Nature 2012, 488, 565–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capua, I.; Marangon, S. Control and prevention of avian influenza in an evolving scenario. Vaccine 2007, 25, 5645–5652. [Google Scholar] [CrossRef] [PubMed]
- Sonaiya, E.B. Family poultry, food security and the impact of HPAI. World’s Poult. Sci. J. 2007, 63, 132–138. [Google Scholar] [CrossRef]
- Jenkins, P.T. Invasive animals and wildlife pathogens in the United States: The economic case for more risk assessments and regulation. Biol. Invasions 2012, 15, 243–248. [Google Scholar] [CrossRef]
- Smith, K.F.; Acevedo-Whitehouse, K.; Pedersen, A.B. The role of infectious diseases in biological conservation. Anim. Conserv. 2009, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M.B.; Mihaljevic, J.R.; Arellano, A.L.; Kueneman, J.G.; Preston, D.L.; Cross, P.C.; Johnson, P.T.J. Taming wildlife disease: Bridging the gap between science and management. J. Appl. Ecol. 2013, 50, 702–712. [Google Scholar] [CrossRef]
- Cunningham, A.A.; Daszak, P.; Wood, J.L.N. One Health, emerging infectious diseases and wildlife: Two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef] [PubMed]
- Roelke-Parker, M.E.; Munson, L.; Packer, C.; Kock, R.; Cleaveland, S.; Carpenter, M.; O’Brien, S.J.; Pospischil, A.; Hofmann-Lehmann, R.; Lutz, H.; et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 1996, 379, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, S.; Appel, M.G.J.; Chalmers, W.S.K.; Chillingworth, C.; Kaare, M.; Dye, C. Serological and demographic evidence for domestic dogs as a source of canine distemper virus infection for Serengeti wildlife. Vet. Microbiol. 2000, 72, 217–227. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Gerber, L.R. Good medicine for conservation biology: The intersection of epidemiology and conservation theory. Conserv. Biol. 2002, 16, 593–604. [Google Scholar] [CrossRef]
- De Castro, F.; Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 2004, 8, 117–126. [Google Scholar] [CrossRef]
- Thogmartin, W.E.; Sanders-Reed, C.A.; Szymanski, J.A.; McKann, P.C.; Pruitt, L.; King, R.A.; Runge, M.C.; Russell, R.E. White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range. Biol. Conserv. 2013, 160, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Antolin, M.F.; Biggins, D.E.; Gober, P. Symposium on the ecology of plague and its effects on wildlife: A model for translational research. Vector-Borne Zoonotic Dis. 2010, 10, 3–5. [Google Scholar] [CrossRef] [PubMed]
- McCallum, H. Models for managing wildlife disease. Parasitology 2015, 143, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.E.; Katz, R.A.; Richgels, K.L.D.; Walsh, D.P.; Grant, E.H.C. A framework for modeling emerging diseases to inform management. Emerg. Infect. Dis. 2017, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cowled, B.; Garner, G. A review of geospatial and ecological factors affecting disease spread in wild pigs: Considerations for models of foot-and-mouth disease spread. Prev. Vet. Med. 2008, 87, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Cross, P.C.; Creech, T.G.; Ebinger, M.R.; Heisey, D.M.; Irvine, K.M.; Creel, S. Wildlife contact analysis: Emerging methods, questions, and challenges. Behav. Ecol. Sociobiol. 2012, 66, 1437–1447. [Google Scholar] [CrossRef]
- Craft, M.E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140107. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.T.; Fooks, A.R.; Hayman, D.T.S.; Horton, D.L.; Müller, T.; Plowright, R.; Peel, A.J.; Bowen, R.; Wood, J.L.N.; Mills, J.; et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 2013, 10, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Manlove, K.R.; Walker, J.G.; Craft, M.E.; Huyvaert, K.P.; Joseph, M.B.; Miller, R.S.; Nol, P.; Patyk, K.A.; O’Brien, D.; Walsh, D.P.; et al. “One Health” or three? Publication silos among the One Health disciplines. PLoS Biol. 2016, 14, e1002448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, A.B.; VanDalen, K.K.; Huyvaert, K.P. Avian influenza virus in aquatic environments: An ecological perspective. In Pandemic Influenza Viruses: Science, Surveillance and Public Health; The Pennsylvania Academy of Science: Easton, PA, USA, 2011; pp. 59–72. [Google Scholar]
- VanderWaal, K.; Enns, E.A.; Picasso, C.; Alvarez, J.; Perez, A.; Fernandez, F.; Gil, A.; Craft, M.; Wells, S. Optimal surveillance strategies for bovine tuberculosis in a low-prevalence country. Sci. Rep. 2017, 7, 4140. [Google Scholar] [CrossRef] [PubMed]
- Rhyan, J.C.; Spraker, T.R. Emergence of diseases from wildlife reservoirs. Vet. Pathol. 2010, 47, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Aune, K.; Rhyan, J.C.; Russell, R.; Roffe, T.J.; Corso, B. Environmental persistence of Brucella abortus in the Greater Yellowstone Area. J. Wildl. Manag. 2011, 76, 253–261. [Google Scholar] [CrossRef]
- Rhyan, J.C.; Nol, P.; Quance, C.; Gertonson, A.; Belfrage, J.; Harris, L.; Straka, K.; Robbe-Austerman, S. Transmission of brucellosis from elk to cattle and bison, Greater Yellowstone Area, USA, 2002–2012. Emerg. Infect. Dis. 2013, 19, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.L.; Foster, J.T.; Drees, K.P.; Luikart, G.; Quance, C.; Anderson, N.J.; Clarke, P.R.; Cole, E.K.; Drew, M.L.; Edwards, W.H.; et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 2016, 7, 11448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, H.; Young, P.; Yob, J.M.; Mills, J.; Hall, L.; Mackenzie, J. The natural history of Hendra and Nipah viruses. Microbes Infect. 2001, 3, 307–314. [Google Scholar] [CrossRef]
- Daszak, P.; Plowright, R.K.; Epstein, J.H.; Pulliam, J.; Abdul Rahman, S.; Field, H.E.; Jamaluddin, A.; Sharifah, S.H.; Smith, C.S.; Olival, K.J.; et al. The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In Disease Ecology; Oxford University Press: Oxford, UK, 2006; pp. 186–201. [Google Scholar]
- Lloyd-Smith, J.O.; George, D.; Pepin, K.M.; Pitzer, V.E.; Pulliam, J.R.C.; Dobson, A.P.; Hudson, P.J.; Grenfell, B.T. Epidemic dynamics at the human-animal interface. Science 2009, 326, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Keeling, M.J.; Woolhouse, M.E.J.; Shaw, D.J.; Matthews, L.; Chase-Topping, M.; Haydon, D.T.; Cornell, S.J.; Kappey, J.; Wilesmith, J.; Grenfell, B.T. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 2001, 294, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Zepeda, C.; Salman, M.; Ruppanner, R. International trade, animal health and veterinary epidemiology: Challenges and opportunities. Prev. Vet. Med. 2001, 48, 261–271. [Google Scholar] [CrossRef]
- Riley, S. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions. Science 2003, 300, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Cooch, E.G.; Conn, P.B.; Ellner, S.P.; Dobson, A.P.; Pollock, K.H. Disease dynamics in wild populations: Modeling and estimation: A review. J. Ornithol. 2010, 152, 485–509. [Google Scholar] [CrossRef]
- Proffitt, K.M.; Gude, J.A.; Hamlin, K.L.; Garrott, R.A.; Cunningham, J.A.; Grigg, J.L. Elk distribution and spatial overlap with livestock during the brucellosis transmission risk period. J. Appl. Ecol. 2010, 48, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Buhnerkempe, M.G.; Roberts, M.G.; Dobson, A.P.; Heesterbeek, H.; Hudson, P.J.; Lloyd-Smith, J.O. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 2015, 10, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Richgels, K.L.D.; Russell, R.E.; Bron, G.M.; Rocke, T.E. Evaluation of Yersinia pestis transmission pathways for sylvatic plague in prairie dog populations in the western U.S. EcoHealth 2016, 13, 415–427. [Google Scholar] [CrossRef] [PubMed]
- VanderWaal, K.; Perez, A.; Torremorrell, M.; Morrison, R.M.; Craft, M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics 2018. [Google Scholar] [CrossRef] [PubMed]
- Swinton, J.; Tuyttens, F.; Macdonald, D.; Nokes, D.J.; Cheeseman, C.L.; Clifton-Hadley, R. A comparison of fertility control and lethal control of bovine tuberculosis in badgers: The impact of perturbation induced transmission. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Lachish, S.; McCallum, H.; Mann, D.; Pukk, C.E.; Jones, M.E. Evaluation of selective culling of infected individuals to control Tasmanian devil facial tumor disease. Conserv. Biol. 2010, 24, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Richgels, K.L.D.; Russell, R.E.; Adams, M.J.; White, C.L.; Grant, E.H.C. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA. R. Soc. Open Sci. 2016, 3, 150616. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.J.; Merrill, E.H.; Pybus, M.J.; Coltman, D.W. Modelling landscape effects on density-contact rate relationships of deer in eastern Alberta: Implications for chronic wasting diseases. Ecol. Model. 2011, 222, 2722–2732. [Google Scholar] [CrossRef]
- Blackburn, J.K.; McNyset, K.M.; Curtis, A.; Hugh-Jones, M.E. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease for the contiguous United State using predictive ecological niche modeling. Am. J. Trop. Med. Hyg. 2007, 77, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.P.; Ellis, C.; Gage, K.L.; Enscore, R.E.; Peterson, A.T. Range-wide determinants of plague distribution in North America. Am. J. Trop. Med. Hyg. 2010, 83, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Escobar, L.E.; Craft, M.E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 2016, 7, 1174. [Google Scholar] [CrossRef] [PubMed]
- Abad-Franch, F.; Ferraz, G.; Campos, C.; Palomeque, F.S.; Grijalva, M.J.; Aguilar, H.M.; Miles, M.A. Modeling disease vector occurrence when detection is imperfect: Infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl. Trop. Dis. 2010, 4, e620. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.J.; Chelgren, N.D.; Reinitz, D.; Cole, R.A.; Rachowicz, L.J.; Galvan, S.; McCreary, B.; Pearl, C.A.; Bailey, L.L.; Bettaso, J.; et al. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecol. Appl. 2010, 20, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.T.; Smith, G.C. Modelling wildlife rabies: Transmission, economics, and conservation. Biol. Conserv. 2006, 131, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Craft, M.E.; Volz, E.; Packer, C.; Meyers, L.A. Distinguishing epidemic waves from disease spillover in a wildlife population. Proc. R. Soc. B Biol. Sci. 2009, 276, 1777–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, L.A.; Forester, J.D.; Craft, M.E. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol. Rev. 2015, 92, 389–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.J.H.; Hirsch, B.T.; Gehrt, S.D.; Craft, M.E. Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination. J. Anim. Ecol. 2015, 84, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnell, T.R.; Sengupta, R.R.; Chapman, C.A.; Goldberg, T.L. An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission. Ecol. Model. 2010, 221, 2491–2500. [Google Scholar] [CrossRef]
- Tracey, J.A.; Bevins, S.N.; VandeWoude, S.; Crooks, K.R. An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere 2014, 5, 1–24. [Google Scholar] [CrossRef]
- Pech, R.P.; McIlory, J.C. A model of the velocity of advance of foot-and-mouth disease in feral pigs. J. Appl. Ecol. 1990, 27, 635–650. [Google Scholar] [CrossRef]
- Moore, D.A. Spatial diffusion of raccoon rabies in Pennsylvania, USA. Prev. Vet. Med. 1999, 40, 19–32. [Google Scholar] [CrossRef]
- Hefley, T.J.; Hooten, M.B.; Russell, R.E.; Walsh, D.P.; Powell, J.A. When mechanism matters: Bayesian forecasting using models of ecological diffusion. Ecol. Lett. 2017, 20, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Asano, E.; Lenhart, S.; Gross, L.J.; Real, L.A. Optimal control of vaccine distribution in a rabies metapopulation model. Math. Biosci. Eng. 2008, 5, 219–238. [Google Scholar] [PubMed]
- Broadfoot, J.D.; Rosatte, R.C.; O’Leary, D.T. Raccoon and skunk population models for urban disease control planning in Ontario, Canada. Ecol. Appl. 2001, 11, 295–303. [Google Scholar] [CrossRef]
- Iverson, S.A.; Gilchrist, H.G.; Soos, C.; Buttler, I.I.; Harms, N.J.; Forbes, M.R. Injecting epidemiology into population viability analysis: Avian cholera transmission dynamics at an arctic seabird colony. J. Anim. Ecol. 2016, 85, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Bicknell, K.B.; Wilen, J.E.; Howitt, R.E. Public policy and private incentives for livestock disease control. Aust. J. Agric. Resour. Econ. 1999, 43, 501–521. [Google Scholar] [CrossRef]
- Morgan, E.R.; Lundervold, M.; Medley, G.F.; Shaikenov, B.S.; Torgerson, P.R.; Milner-Gulland, E.J. Assessing risks of disease transmission between wildlife and livestock: The saiga antelope as a case study. Biol. Conserv. 2006, 131, 244–254. [Google Scholar] [CrossRef]
- Shwiff, S.A.; Sweeney, S.J.; Elser, J.L.; Miller, R.S.; Farnsworth, M.L.; Nol, P.; Shwiff, S.S.; Anderson, A.M. A benefit-cost analysis decision framework for mitigation of disease transmission at the wildlife-livestock interface. Hum.-Wildl. Interact. 2016, 10, 91–102. [Google Scholar]
- Kilpatrick, A.M.; Gillin, C.M.; Daszak, P. Wildlife-livestock conflict: The risk of pathogen transmission from bison to cattle outside Yellowstone National Park. J. Appl. Ecol. 2009, 46, 476–485. [Google Scholar] [CrossRef]
- Snäll, T.; Benestad, R.E.; Stenseth, N.C. Expected future plague levels in a wildlife host under different scenarios of climate change. Glob. Chang. Biol. 2009, 15, 500–507. [Google Scholar] [CrossRef]
- Viana, M.; Mancy, R.; Biek, R.; Cleaveland, S.; Cross, P.C.; Lloyd-Smith, J.O.; Haydon, D.T. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 2014, 29, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Tildesley, M.J.; Ryan, S.J. Disease prevention versus data privacy: Using landcover maps to inform spatial epidemic models. PLoS Comput. Biol. 2012, 8, e1002723. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E. Impediments to wildlife disease surveillance, research, and diagnostics. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 445–461. [Google Scholar]
- Beringer, J.; Hansen, L.P.; Millspaugh, J.J.; Meyer, T.A. Statewide surveillance effort for detecting chronic wasting disease in wild white-tailed deer in Missouri. Wildl. Soc. Bull. 2003, 31, 873–881. [Google Scholar]
- Bevins, S.N.; Dusek, R.J.; White, C.L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K.G.; DeBruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; et al. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific flyway of the United States. Sci. Rep. 2016, 6, 28980. [Google Scholar] [CrossRef] [PubMed]
- Carricondo-Sanchez, D.; Odden, M.; Linnell, J.D.C.; Odden, J. The range of the mange: Spatiotemporal patterns of sarcoptic mange in red foxes (Vulpes vulpes) as revealed by camera trapping. PLoS ONE 2017, 12, e0176200. [Google Scholar] [CrossRef] [PubMed]
- Stahl, R.S.; Ellis, C.K.; Nol, P.; Waters, W.R.; Palmer, M.; VerCauteren, K.C. Fecal volatile organic compound profiles from white-tailed deer (Odocoileus virginianus) as indicators of Mycobacterium bovis exposure or Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccination. PLoS ONE 2015, 10, e0129740. [Google Scholar] [CrossRef] [PubMed]
- Smiley, T.; Spelman, L.; Lukasik-Braum, M.; Mukherjee, J.; Kaufman, G.; Akiyoshi, D.E.; Cranfield, M. Noninvasive saliva collection techniques for free-ranging mountain gorillas and captive eastern gorillas. J. Zoo Wildl. Med. 2010, 41, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bayn, A.; Nol, P.; Tisch, U.; Rhyan, J.; Ellis, C.K.; Haick, H. Detection of volatile organic compounds in Brucella abortus-seropositive bison. Anal. Chem. 2013, 85, 11146–11152. [Google Scholar] [CrossRef] [PubMed]
- Hopp, P.; Vatn, S.; Jarp, J. Norwegian farmers’ vigilance in reporting sheep showing scrapie-associated signs. BMC Vet. Res. 2007, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.W.; Gorgievski-Duijvesteijn, M.J.; van der Velden, P.G.; Loeffen, W.L.A.; Zarafshani, K. A socio-psychological investigation into limitations and incentives concerning reporting a clinically suspect situation aimed at improving early detection of classical swine fever outbreaks. Vet. Microbiol. 2010, 142, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.; Fozdar, F.; Sully, M. The effect of trust on West Australian farmers’ responses to infectious livestock diseases. Sociol. Rural. 2009, 49, 360–374. [Google Scholar] [CrossRef]
- Ballmann, A.E.; Torkelson, M.R.; Bohuski, E.A.; Russell, R.E.; Blehert, D.S. Dispersal hazards of Pseudogymnoascus destructans by bats and human activity at hibernacula in summer. J. Wildl. Dis. 2017, 53, 725–735. [Google Scholar] [CrossRef] [PubMed]
- McClintock, B.T.; Nichols, J.D.; Bailey, L.L.; MacKenzie, D.I.; Kendall, W.L.; Franklin, A.B. Seeking a second opinion: Uncertainty in disease ecology. Ecol. Lett. 2010, 13, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Swihart, R.K. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol. Conserv. 2004, 116, 195–203. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 2010, 33, 103–114. [Google Scholar] [CrossRef]
- Mackenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Miller, D.A.W.; Talley, B.L.; Lips, K.R.; Campbell Grant, E.H. Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods Ecol. Evol. 2012, 3, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Manly, B.F.J.; McDonald, L.L.; Thomas, D.L.; McDonald, T.L.; Erickson, W.P. Resource Selection by Animals; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Ostfeld, R.; Glass, G.; Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 2005, 20, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pruvot, M.; Kutz, S.; van der Meer, F.; Musiani, M.; Barkema, H.W.; Orsel, K. Pathogens at the livestock-wildlife interface in western Alberta: Does transmission route matter? Vet. Res. 2014, 45, 18. [Google Scholar] [CrossRef] [PubMed]
- Doran, R.J.; Laffan, S.W. Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model. Prev. Vet. Med. 2005, 70, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Hutchings, M.R.; White, P.C.L. Contact networks in a wildlife-livestock host community: Identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS ONE 2009, 4, e5016. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.L.; Schumaker, B.A.; Stephenson, T.R.; Bleich, V.C.; Cahn, M.L.; Gonzales, B.J.; Boyce, W.M.; Mazet, J.A.K. Assessing disease risk at the wildlife–livestock interface: A study of Sierra Nevada bighorn sheep. Biol. Conserv. 2009, 142, 2559–2568. [Google Scholar] [CrossRef]
- Ward, M.P.; Garner, M.G.; Cowled, B.D. Modelling foot-and-mouth disease transmission in a wild pig-domestic cattle ecosystem. Aust. Vet. J. 2015, 93, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Craft, M.E.; Vial, F.; Miguel, E.; Cleaveland, S.; Ferdinands, A.; Packer, C. Interactions between domestic and wild carnivores around the Greater Serengeti Ecosystem. Anim. Conserv. 2016, 20, 193–204. [Google Scholar] [CrossRef]
- White, L.A.; Forester, J.D.; Craft, M.E. Covariation between the physiological and behavioral components of pathogen transmission: Host heterogeneity determines epidemic outcomes. Oikos 2017, 127, 538–552. [Google Scholar] [CrossRef]
- Richomme, C.; Gauthier, D.; Fromont, E. Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiol. Infect. 2005, 134, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barasona, J.A.; Latham, M.C.; Acevedo, P.; Armenteros, J.A.; Latham, A.D.M.; Gortazar, C.; Carro, F.; Soriguer, R.C.; Vicente, J. Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Vet. Res. 2014, 45, 122. [Google Scholar] [CrossRef] [PubMed]
- Dohna, H.Z.; Peck, D.E.; Johnson, B.K.; Reeves, A.; Schumaker, B.A. Wildlife–livestock interactions in a western rangeland setting: Quantifying disease-relevant contacts. Prev. Vet. Med. 2014, 113, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Rohani, P.; Breban, R.; Stallknecht, D.E.; Drake, J.M. Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc. Natl. Acad. Sci. USA 2009, 106, 10365–10369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenkel, J.K.; Ruiz, A.; Chinchilla, M. Soil survival of Toxoplasma oocysts in Kansas and Costa Rica. Am. J. Trop. Med. Hyg. 1975, 24, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.R.; Harris, S. Effects of farm management practices on cattle grazing behaviour and the potential for transmission of bovine tuberculosis from badgers to cattle. Vet. J. 1997, 153, 149–162. [Google Scholar] [CrossRef]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. A Math. Phys. Eng. Sci. 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Disease of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Packer, C.; Holt, R.D.; Hudson, P.J.; Lafferty, K.D.; Dobson, A.P. Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecol. Lett. 2003, 6, 797–802. [Google Scholar] [CrossRef]
- Wearing, H.J.; Rohani, P.; Keeling, M.J. Appropriate models for the management of infectious diseases. PLoS Med. 2005, 2, e174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, M.E.; Caillaud, D. Network models: An underutilized tool in wildlife epidemiology? Interdiscip. Perspect. Infect. Dis. 2011, 2011, 676949. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Hobbs, N.T.; Tavener, S.J. Dynamics of prion disease transmission in mule deer. Ecol. Appl. 2006, 16, 2208–2214. [Google Scholar] [CrossRef]
- Wey, T.; Blumstein, D.T.; Shen, W.; Jordán, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 2008, 75, 333–344. [Google Scholar] [CrossRef]
- Krause, J.; Croft, D.P.; James, R. Social network theory in the behavioural sciences: Potential applications. Behav. Ecol. Sociobiol. 2007, 62, 15–27. [Google Scholar] [CrossRef]
- Martínez-López, B.; Perez, A.M.; Sánchez-Vizcaíno, J.M. Social network analysis. Review of general concepts and use in preventive veterinary medicine. Transbound. Emerg. Dis. 2009, 56, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.J.; Barbieri, M.M.; Murphy, S.; Baker, J.D.; Harting, A.L.; Craft, M.E.; Littnan, C.L. Model recommendations meet management reality: Implementation and evaluation of a network-informed vaccination effort for endangered Hawaiian monk seals. Proc. R. Soc. B Biol. Sci. 2018, 285, 20171899. [Google Scholar] [CrossRef] [PubMed]
- McLane, A.J.; Semeniuk, C.; McDermid, G.J.; Marceau, D.J. The role of agent-based models in wildlife ecology and management. Ecol. Model. 2011, 222, 1544–1556. [Google Scholar] [CrossRef]
- White, L.A.; Forester, J.D.; Craft, M.E. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. J. Anim. Ecol. 2017, 87, 559–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salkeld, D.J.; Salathe, M.; Stapp, P.; Jones, J.H. Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance. Proc. Natl. Acad. Sci. USA 2010, 107, 14247–14250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archie, E.A.; Luikart, G.; Ezenwa, V.O. Infecting epidemiology with genetics: A new frontier in disease ecology. Trends Ecol. Evol. 2009, 24, 21–30. [Google Scholar] [CrossRef] [PubMed]
- VanderWaal, K.L.; Atwill, E.R.; Isbell, L.A.; McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 2013, 83, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, R.; Ponder, M.; Alexander, K.A. Tracking pathogen transmission at the human–wildlife interface: Banded mongoose and Escherichia coli. Ecohealth 2013, 10, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Cowled, B.D.; Ward, M.P.; Laffan, S.W.; Galea, F.; Garner, M.G.; MacDonald, A.J.; Marsh, I.; Muellner, P.; Negus, K.; Quasim, S.; et al. Integrating survey and molecular approaches to better understand wildlife disease ecology. PLoS ONE 2012, 7, e46310. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.K.; Van Ert, M.; Mullins, J.C.; Hadfield, T.L.; Hugh-Jones, M.E. The necrophagous fly anthrax transmission pathway: Empirical and genetic evidence from wildlife epizootics. Vector-Borne Zoonotic Dis. 2014, 14, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Ypma, R.J.F.; Bataille, A.M.A.; Stegeman, A.; Koch, G.; Wallinga, J.; van Ballegooijen, W.M. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc. R. Soc. B Biol. Sci. 2011, 279, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelli, M.J.; Thébaud, G.; Chadœuf, J.; King, D.P.; Haydon, D.T.; Soubeyrand, S. A bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 2012, 8, e1002768. [Google Scholar] [CrossRef] [PubMed]
- LoGiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telfer, S.; Lambin, X.; Birtles, R.; Beldomenico, P.; Burthe, S.; Paterson, S.; Begon, M. Species interactions in a parasite community drive infection risk in a wildlife population. Science 2010, 330, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Risco, D.; Fernández-Llario, P.; García-Jiménez, W.L.; Gonçalves, P.; Cuesta, J.M.; Martínez, R.; Sanz, C.; Sequeda, M.; Gómez, L.; Carranza, J.; et al. Influence of porcine circovirus type 2 infections on bovine tuberculosis in wild boar populations. Transbound. Emerg. Dis. 2013, 60, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Coinfection by Ixodes tick-borne pathogens: Ecological, epidemiological, and clinical consequences. Trends Parasitol. 2016, 32, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Conner, M.M.; McCarty, C.W.; Miller, M.W. Detection of bias in harvest-based estimates of chronic wasting disease prevalence in mule deer. J. Wildl. Dis. 2000, 36, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Rees, E.E.; Bélanger, D.; Lelièvre, F.; Coté, N.; Lambert, L. Targeted surveillance of raccoon rabies in Québec, Canada. J. Wildl. Manag. 2011, 75, 1406–1416. [Google Scholar] [CrossRef]
- Berger, L.; Marantelli, G.; Skerratt, L.F.; Speare, R. Virulence of the amphibian chytrid fungus Batrachochytrium dendrobatidis varies with the strain. Dis. Aquat. Org. 2005, 68, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.J.; Samuel, M.D.; O’Rourke, K.I.; Johnson, C.J. The role of genetics in chronic wasting disease of North American cervids. Prion 2012, 6, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.R.; Minozzi, G.; Glass, E.J.; Skuce, R.A.; McDowell, S.W.J.; Woolliams, J.A.; Bishop, S.C. Bovine tuberculosis: The genetic basis of host susceptibility. Proc. R. Soc. B Biol. Sci. 2010, 277, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Mehle, A.; Dugan, V.G.; Taubenberger, J.K.; Doudna, J.A. Reassortment and mutation of the avian influenza virus polymerase pa subunit overcome species barriers. J. Virol. 2011, 86, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, D.M.; Dunn, A.M.; Smith, M.J.; Telfer, S. Wildlife diseases: From individuals to ecosystems. J. Anim. Ecol. 2010, 80, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Wobeser, G.A. Essentials of Disease in Wild Animals; Blackwell Publishing: Ames, IA, USA, 2006. [Google Scholar]
- Frick, W.F.; Pollock, J.F.; Hicks, A.C.; Langwig, K.E.; Reynolds, D.S.; Turner, G.G.; Butchkoski, C.M.; Kunz, T.H. An emerging disease causes regional population collapse of a common North American bat species. Science 2010, 329, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Keeling, M.J.; Woolhouse, M.E.J.; May, R.M.; Davies, G.; Grenfell, B.T. Modelling vaccination strategies against foot-and-mouth disease. Nature 2002, 421, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Wasserberg, G.; Osnas, E.E.; Rolley, R.E.; Samuel, M.D. Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: A modelling study. J. Appl. Ecol. 2009, 46, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Rees, E.E.; Pond, B.A.; Tinline, R.R.; Bélanger, D. Modelling the effect of landscape heterogeneity on the efficacy of vaccination for wildlife infectious disease control. J. Appl. Ecol. 2013, 50, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Spackman, E.; Pantin-Jackwood, M.J. Practical aspects of vaccination of poultry against avian influenza virus. Vet. J. 2014, 202, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Orsel, K.; Bouma, A.; Dekker, A.; Stegeman, J.A.; de Jong, M.C.M. Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows. Prev. Vet. Med. 2009, 88, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Grear, J.S.; Koethe, R.; Hoskins, B.; Hillger, R.; Dapsis, L.; Pongsiri, M. The effectiveness of permethrin-treated deer stations for control of the Lyme disease vector Ixodes scapularis on Cape Cod and the islands: A five-year experiment. Parasites Vectors 2014, 7, 292. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.B.; Fenton, A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. 2015, 31, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Runge, M.C.; Nichols, J.D.; Lubow, B.C.; Kendall, W.L. Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol. Appl. 2009, 19, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Regan, H.M.; Ben-Haim, Y.; Langford, B.; Wilson, W.G.; Lundberg, P.; Andelman, S.J.; Burgman, M.A. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 2005, 15, 1471–1477. [Google Scholar] [CrossRef]
- Runge, M.C.; Converse, S.J.; Lyons, J.E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 2011, 144, 1214–1223. [Google Scholar] [CrossRef]
- Smith, M.T.; Bennett, A.M.; Grubman, M.J.; Bundy, B.C. Foot-and-mouth disease: Technical and political challenges to eradication. Vaccine 2014, 32, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Weaver, G.V.; Domenech, J.; Thiermann, A.R.; Karesh, W.B. Foot and mouth disease: A look from the wild side. J. Wildl. Dis. 2013, 49, 759–785. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.K.; Nichols, J.D.; Conroy, M.J. Analysis and Management of Animal Populations; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Walport, M.; Brest, P. Sharing research data to improve public health. Lancet 2011, 377, 537–539. [Google Scholar] [CrossRef]
- Walsh, D.P.; Cassirer, E.F.; Bonds, M.D.; Brown, D.R.; Edwards, W.H.; Weiser, G.C.; Drew, M.L.; Briggs, R.E.; Fox, K.A.; Miller, M.W.; et al. Concordance in diagnostic testing for respiratory pathogens of bighorn sheep. Wildl. Soc. Bull. 2016, 40, 634–642. [Google Scholar] [CrossRef]
- White, C.L.; Forzan, M.; Pessier, A.; Allender, M.C.; Ballard, J.R.; Catenazzi, A.; Fenton, H.; Martel, A.; Pasmans, F.; Miller, D.L.; et al. Amphibian: A case definition and diagnostic criteria for Batrachochytrium salamandrivorans chytridiomycosis. Herpetol. Rev. 2016, 47, 207. [Google Scholar]
- Patyk, K.A.; Duncan, C.; Nol, P.; Sonne, C.; Laidre, K.; Obbard, M.; Wiig, Ø.; Aars, J.; Regehr, E.; Gustafson, L.L.; et al. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities. Sci. Total Environ. 2015, 514, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.D.; Morzillo, A.T.; Seijo, F.; Reddy, S.M.W.; Rhemtulla, J.M.; Milder, J.C.; Kuemmerle, T.; Martin, S.L. The elusive pursuit of interdisciplinarity at the human-environment interface. BioScience 2013, 63, 745–753. [Google Scholar] [CrossRef]
- Lau, L.; Pasquini, M. ‘Jack of all trades’? The negotiation of interdisciplinarity within geography. Geoforum 2008, 39, 552–560. [Google Scholar] [CrossRef]
- Klein, J.T.; Falk-Krzesinski, H.J. Interdisciplinary and collaborative work: Framing promotion and tenure practices and policies. Res. Policy 2017, 46, 1055–1061. [Google Scholar] [CrossRef]
- Gortázar, C.; Ferroglio, E.; Höfle, U.; Frölich, K.; Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 2007, 53, 241–256. [Google Scholar] [CrossRef]
- le Roex, N.; Cooper, D.; van Helden, P.D.; Hoal, E.G.; Jolles, A.E. Disease control in wildlife: Evaluating a test and cull programme for bovine tuberculosis in African buffalo. Transbound. Emerg. Dis. 2015, 63, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.A.; Lewis, B.L.; Marathe, M.; Eubank, S.; Blackburn, J.K. Modeling of wildlife-associated zoonoses: Applications and caveats. Vector-Borne Zoonotic Dis. 2012, 12, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Restif, O.; Hayman, D.T.S.; Pulliam, J.R.C.; Plowright, R.K.; George, D.B.; Luis, A.D.; Cunningham, A.A.; Bowen, R.A.; Fooks, A.R.; O’Shea, T.J.; et al. Model-guided fieldwork: Practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol. Lett. 2012, 15, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
Sources of Uncertainty | Key Knowledge Gaps | Analytical Approaches | Literature Examples |
---|---|---|---|
Distribution and movements of hosts and pathogens | When and where do livestock and wildlife hosts overlap? | Resource selection functions | Elk and brucellosis [44] |
Deer and chronic wasting disease [51] | |||
Is the geographic range of the pathogen the same as that of the host(s) or is the pathogen constrained by environmental conditions? | Presence-only models | Anthrax distribution [52] | |
Plague distribution [53] | |||
Ecological niche modeling in general [54] | |||
When and where does pathogen exposure result in population extinction? | Occupancy models | Chagas disease vectors [55] | |
Chytrid fungus and frogs [56] | |||
Transmission pathways and rates | How do animals become infected? Direct contact? Indirect contact? | SIR models | Multiple species and rabies [57] |
Pigs and influenza A [6] | |||
What are the most important pathways for transmission between wildlife and livestock? | Contact networks (with SIR models) | Lions and distemper [58] | |
Parasite transmission [59] | |||
Raccoon rabies [60] | |||
Are there features in the landscape that facilitate or prevent the spread of the pathogen? | Agent-based models | Colobus monkeys [61] | |
Prairie dogs and plague, individual model to simulate SIR dynamics [46] | |||
Bobcats and FIV [62] | |||
Diffusion models | Feral swine and FMD [63] | ||
Raccoon rabies [64] | |||
Chronic wasting disease and deer [65] | |||
Metapopulation models | Raccoon metapopulations and rabies [66] | ||
Raccoon and skunk rabies [67] | |||
Effects of disease and mitigation on host populations | What long-term impact does disease have on the host population? | Population viability models | Seabirds and avian cholera [68] |
Where are the high-risk areas to target mitigation efforts? What scenarios lead to greater risks of transmission? | Optimization | Raccoon rabies and bait distribution [66] | |
Bovine tuberculosis [69] | |||
Risk assessment | Many examples including: | ||
Salamanders and chytrid [50] | |||
Raccoon and skunk rabies [67] | |||
Saiga antelope, livestock, foot and mouth disease [70] | |||
What are the trade-offs among alternative mitigation strategies? What are likely to be the most effective mitigation techniques? | Decision theory | Few examples but see: Cost-benefit of wildlife-livestock disease mitigation [71] | |
Multiple scenario risk assessment | Bison and brucellosis, alternative management actions [72] | ||
Plague and prairie dogs, alternative climate scenarios [73] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huyvaert, K.P.; Russell, R.E.; Patyk, K.A.; Craft, M.E.; Cross, P.C.; Garner, M.G.; Martin, M.K.; Nol, P.; Walsh, D.P. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Vet. Sci. 2018, 5, 92. https://doi.org/10.3390/vetsci5040092
Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Veterinary Sciences. 2018; 5(4):92. https://doi.org/10.3390/vetsci5040092
Chicago/Turabian StyleHuyvaert, Kathryn P., Robin E. Russell, Kelly A. Patyk, Meggan E. Craft, Paul C. Cross, M. Graeme Garner, Michael K. Martin, Pauline Nol, and Daniel P. Walsh. 2018. "Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals" Veterinary Sciences 5, no. 4: 92. https://doi.org/10.3390/vetsci5040092
APA StyleHuyvaert, K. P., Russell, R. E., Patyk, K. A., Craft, M. E., Cross, P. C., Garner, M. G., Martin, M. K., Nol, P., & Walsh, D. P. (2018). Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Veterinary Sciences, 5(4), 92. https://doi.org/10.3390/vetsci5040092