The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animals
2.2. RNA Extraction and Sequencing
2.3. RNA-Seq Differential Expression Analysis
2.4. Primer Design and qPCR Validation
2.5. Serum Amyloid A Immunoassay
3. Results
3.1. Differentially Expressed Genes
3.2. qPCR Results
3.3. SAA-ELISA
4. Discussion
4.1. Interaction Effects—Pathway Analyses
4.2. Interaction Effect—Individual Genes
4.3. Main Effects of Dietary Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli. J. Anim. Sci. 2009, 87, 2833–2843. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.M.; Liu, Y.L.; Zhou, X.; Zhang, Y.; Wu, X.; Yin, Y.L. Maternal supplementation with uridine influences fatty acid and amino acid constituents of offspring in a sow-piglet model. Br. J. Nutr. 2020, 125, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lillycrop, K.A.; Burdge, G.C. Maternal diet as a modifier of offspring epigenetics. J. Dev. Orig. Health Dis. 2015, 6, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan-Mihan, A.; Rodriguez, J.; Christie, C.; Sadeghi, M.; Zerbe, T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015, 7, 9185–9217. [Google Scholar] [CrossRef] [Green Version]
- Almond, K.; Bikker, P.; Lomax, M.; Symonds, M.E.; Mostyn, A. Postgraduate Symposium The influence of maternal protein nutrition on offspring development and metabolism: The role of glucocorticoids. Proc. Nutr. Soc. 2012, 71, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, A. Programming by early nutrition in man. Ciba Found. Symp. 1991, 156, 38–50; discussion 50–35. [Google Scholar] [PubMed]
- Altmann, S.; Murani, E.; Schwerin, M.; Metges, C.C.; Wimmers, K.; Ponsuksili, S. Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle. Epigenetics 2012, 7, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Heng, J.; Song, H.; Zhang, Y.; Lin, X.; Tian, M.; Chen, F.; Guan, W. Role of Maternal Dietary Protein and Amino Acids on Fetal Programming, Early Neonatal Development, and Lactation in Swine. Animals 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Lesuisse, J.; Li, C.; Schallier, S.; Leblois, J.; Everaert, N.; Buyse, J. Feeding broiler breeders a reduced balanced protein diet during the rearing and laying period impairs reproductive performance but enhances broiler offspring performance. Poult. Sci. J. 2017, 96, 3949–3959. [Google Scholar] [CrossRef]
- Swatland, H.J.; Cassens, R.G. Muscle growth: The problem of muscle fibers with an intrafascicular termination. J. Anim. Sci. 1972, 35, 336–344. [Google Scholar] [CrossRef]
- Altmann, S.; Murani, E.; Metges, C.C.; Schwerin, M.; Wimmers, K.; Ponsuksili, S. Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig. Mol. Biol. Rep. 2012, 39, 7095–7104. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9. [Google Scholar] [CrossRef]
- Wellock, I.J.; Fortomaris, P.D.; Houdijk, J.G.; Kyriazakis, I. Effects of dietary protein supply, weaning age and experimental enterotoxigenic Escherichia coli infection on newly weaned pigs: Health. Animal 2008, 2, 834–842. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Liang, X.; Roberts, M.S. Hepatic Metabolism in Liver Health and Disease. In Liver Pathophysiology; Elsevier: Berlin/Heidelberg, Germany, 2017; pp. 391–400. [Google Scholar]
- Metges, C.C.; Gors, S.; Lang, I.S.; Hammon, H.M.; Brussow, K.P.; Weitzel, J.M.; Nurnberg, G.; Rehfeldt, C.; Otten, W. Low and High Dietary Protein:Carbohydrate Ratios during Pregnancy Affect Materno-Fetal Glucose Metabolism in Pigs. J. Nutr. 2014, 144, 155–163. [Google Scholar] [CrossRef] [PubMed]
- LeMaster, C.T.; Taylor, R.K.; Ricks, R.E.; Long, N.M. The effects of late gestation maternal nutrient restriction with or without protein supplementation on endocrine regulation of newborn and postnatal beef calves. Theriogenology 2017, 87, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- CVB. Feed Table for Pigs. Voedernormen Varkens en Voederwaarden Voedermiddelen voor Varkens; Federatie Nederlandse Diervoederketen and Wageningen Livestock Research: Rijswijk, The Netherlands; Wageningen, The Netherlands, 2016. [Google Scholar]
- Kroeske, K.; Everaert, N.; Heyndrickx, M.; Arevalo Sureda, E.; Schroyen, M.; Millet, S. Interaction of CP levels in maternal and nursery diets, and its effect on performance, protein digestibility, and serum urea levels in piglets. Animal 2021, 15, 100266. [Google Scholar] [CrossRef]
- The Babraham Bioinformatics group. Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 1 November 2019).
- Langmead, B.; Wilks, C.; Antonescu, V.; Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019, 35, 421–432. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- SILVA. rRNA Database. Available online: https://www.arb-silva.de/. (accessed on 6 November 2019).
- Warr, A.; Affara, N.; Aken, B.; Beiki, H.; Bickhart, D.M.; Billis, K.; Chow, W.; Eory, L.; Finlayson, H.A.; Flicek, P. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 2020, 9, giaa051. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.11–11.14.19. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carone, B.R.; Fauquier, L.; Habib, N.; Shea, J.M.; Hart, C.E.; Li, R.; Bock, C.; Li, C.; Gu, H.; Zamore, P.D.; et al. Paternally Induced Transgenerational Environmental Reprogramming of Metabolic Gene Expression in Mammals. Cell 2010, 143, 1084–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunschweig, M.; Jagannathan, V.; Gutzwiller, A.; Bee, G. Investigations on Transgenerational Epigenetic Response Down the Male Line in F2 Pigs. PLoS ONE 2012, 7, e30583. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Seoane, S.; De Palo, P.; Lorenzo, J.M.; Maggiolino, A.; Gonzalez, P.; Perez-Ciria, L.; Latorre, M.A. Effect of increasing dietary amino acid concentration in late gestation on body condition and reproductive performance of hyperprolific sows. Animals 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horodyska, J.; Hamill, R.M.; Reyer, H.; Trakooljul, N.; Lawlor, P.G.; McCormack, U.M.; Wimmers, K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front. Genet. 2019, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Moya, M.; Benet, M.; Guzmán, C.; Tolosa, L.; García-Monzón, C.; Pareja, E.; Castell, J.V.; Jover, R. Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver. PLoS ONE 2012, 7, e30014. [Google Scholar] [CrossRef]
- Armour, S.M.; Remsberg, J.R.; Damle, M.; Sidoli, S.; Ho, W.Y.; Li, Z.; Garcia, B.A.; Lazar, M.A. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nat. Comm. 2017, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Ramayo-Caldas, Y.; Mach, N.; Esteve-Codina, A.; Corominas, J.; Castello, A.; Ballester, M.; Estelle, J.; Ibanez-Escriche, N.; Fernandez, A.I.; Perez-Enciso, M.; et al. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genom. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Leuchsenring, A.B.; Karlsson, C.; Bundgaard, L.; Malmstrom, J.; Heegaard, P.M.H. Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs. J. Proteome Res. 2020, 227, 1–8. [Google Scholar] [CrossRef]
- McAdam, K.P.W.J. Changes in Human Serum Amyloid A and C-Reactive Protein after Etiocholanolone-Induced Inflammation. J. Clin. Investig. 1978, 61, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Olsen, H.G.; Skovgaard, K.; Nielsen, O.L.; Leifsson, P.S.; Jensen, H.E.; Iburg, T.; Heegaard, P.M. Organization and biology of the porcine serum amyloid A (SAA) gene cluster: Isoform specific responses to bacterial infection. PLoS ONE 2013, 8, e76695. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, C.; Piñeiro, M.; Morales, J.; Carpintero, R.; Campbell, F.M.; Eckersall, P.D.; Toussaint, M.J.M.; Alava, M.A.; Lampreave, F. Pig acute-phase protein levels after stress induced by changes in the pattern of food administration. Animal 2007, 1, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheja, L.; Heese, B.; Zitzer, H.; Michael, M.D.; Siesky, A.M.; Pospisil, H.; Beisiegel, U.; Seedorf, K. Acute-Phase Serum Amyloid A as a Marker of Insulin Resistance in Mice. Exp. Diabetes Res. 2008, 2008, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.H.; Wang, P.H.; Liu, B.H.; Hsu, H.H.; Mersmann, H.J.; Ding, S.T. Serum Amyloid A Protein Regulates the Expression of Porcine Genes Related to Lipid Metabolism. J. Nutr. 2008, 138, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Brie, B.; Ramirez, M.C.; De Winne, C.; Lopez Vicchi, F.; Villarruel, L.; Sorianello, E.; Catalano, P.; Ornstein, A.M.; Becu-Villalobos, D. Brain Control of Sexually Dimorphic Liver Function and Disease: The Endocrine Connection. Cell. Mol. Neurobiol. 2019, 39, 169–180. [Google Scholar] [CrossRef]
- Yang, X.; Schadt, E.E.; Wang, S.; Wang, H.; Arnold, A.P.; Ingram-Drake, L.; Drake, T.A.; Lusis, A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006, 16, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Klein, K.; Sugathan, A.; Nassery, N.; Dombkowski, A.; Zanger, U.M.; Waxman, D.J. Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease. PLoS ONE 2011, 6, e23506. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, B.Ø.; Jensen, S.J.; Ludvigsen, T.P.; Nilsson, S.K.; Grossi, A.B.; Heegaard, P.M.H. Age- and Sex-Associated Effects on Acute-Phase Proteins in Göttingen Minipigs. Comp. Med. 2015, 65, 333–341. [Google Scholar]
- González, I.; Aparicio, R.; Busturia, A. Functional Characterization of thedRYBPGene in Drosophila. Genetics 2008, 179, 1373–1388. [Google Scholar] [CrossRef] [Green Version]
- Simoes Da Silva, C.J.; Simón, R.; Busturia, A. Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mech. Ageing Dev. 2018, 174, 111–120. [Google Scholar] [CrossRef]
- Lee, K.; Kerner, J.; Hoppel, C.L. Mitochondrial Carnitine Palmitoyltransferase 1a (CPT1a) Is Part of an Outer Membrane Fatty Acid Transfer Complex. J. Biol. Chem. 2011, 286, 25655–25662. [Google Scholar] [CrossRef] [Green Version]
- Suchi, M.; Sano, H.; Mizuno, H.; Wada, Y. Molecular Cloning and Structural Characterization of the Human Histidase Gene (HAL). Genomics 1995, 29, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Schroyen, M.; Leblois, J.; Uerlings, J.; Li, B.; Sureda, E.A.; Massart, S.; Wavreille, J.; Bindelle, J.M.; Everaert, N. Maternal dietary resistant starch does not improve piglet’s gut and liver metabolism when challenged with a high fat diet. BMC Genom. 2020, 21, 439. [Google Scholar] [CrossRef] [PubMed]
- Rooney, H.B.; O’Driscoll, K.; O’Doherty, J.V.; Lawlor, P.G. Effect of increasing dietary energy density during late gestation and lactation on sow performance, piglet vitality, and lifetime growth of offspring. J. Anim. Sci. 2020, 98, 1–14. [Google Scholar] [CrossRef] [PubMed]
Ensembl Gene ID | Gene Symbol | Average Expression | Description |
---|---|---|---|
ENSSSCG00000015480 | PRRC2C | 801 | Downreg. in mismatch |
ENSSSCG00000008735 | BOD1L1 | 330 | Downreg. in mismatch |
ENSSSCG00000022828 | PNN | 366 | Downreg. in mismatch |
ENSSSCG00000001002 | PRPF4B | 588 | Downreg. in mismatch |
ENSSSCG00000035080 | RPL23A | 4872 | Downreg. in mismatch |
ENSSSCG00000021363 | CHD3 | 178 | Downreg. in mismatch |
ENSSSCG00000016846 | WDR70 | 71 | Downreg. in mismatch |
ENSSSCG00000005373 | NANS | 474 | Downreg. in mismatch |
ENSSSCG00000033591 | CHD9 | 198 | Downreg. in mismatch |
ENSSSCG00000003791 | SRSF11 | 835 | Downreg. in mismatch |
ENSSSCG00000040118 | PPDPF | 1845 | Downreg. in mismatch |
ENSSSCG00000011284 | NKTR | 378 | Downreg. in mismatch |
ENSSSCG00000001930 | PKM | 157 | Downreg. in mismatch |
ENSSSCG00000021138 | CEP250 | 64 | Downreg. in mismatch |
ENSSSCG00000001929 | - | 33 | Downreg. in mismatch |
ENSSSCG00000011278 | TRAK1 | 89 | Downreg. in mismatch |
ENSSSCG00000038682 | TAF1D | 315 | Downreg. in mismatch |
ENSSSCG00000010926 | SYT2 | 143 | Downreg. in mismatch |
ENSSSCG00000015035 | C11orf52 | 96 | Downreg. in mismatch |
ENSSSCG00000025272 | HEMK1 | 80 | Downreg. in mismatch |
ENSSSCG00000016123 | PARD3B | 155 | Downreg. in mismatch |
ENSSSCG00000000695 | IFFO1 | 45 | Downreg. in mismatch |
ENSSSCG00000033636 | AFMID | 267 | Downreg. in mismatch |
ENSSSCG00000013145 | DTX4 | 27 | Downreg. in mismatch |
ENSSSCG00000031259 | snoU2-30 | 387 | Downreg. in mismatch |
Ensembl gene ID | Gene Symbol | Average expression | Description |
ENSSSCG00000036684 | TTPAL | 41 | Upreg. in mismatch |
ENSSSCG00000026606 | PAIP2 | 211 | Upreg. in mismatch |
ENSSSCG00000009772 | TMED2 | 524 | Upreg. in mismatch |
ENSSSCG00000037634 | FOXA1 | 168 | Upreg. in mismatch |
ENSSSCG00000013370 | SAA2 | 116 | Upreg. in mismatch |
ENSSSCG00000004414 | CD164 | 462 | Upreg. in mismatch |
ENSSSCG00000035774 | ERRFI1 | 371 | Upreg. in mismatch |
ENSSSCG00000002867 | CEBPG | 67 | Upreg. in mismatch |
ENSSSCG00000002351 | PTGR2 | 245 | Upreg. in mismatch |
ENSSSCG00000006289 | F5 | 639 | Upreg. in mismatch |
ENSSSCG00000024019 | GTF2H5 | 91 | Upreg. in mismatch |
ENSSSCG00000011367 | ARIH2 | 63 | Upreg. in mismatch |
ENSSSCG00000032580 | MGST1 | 882 | Upreg. in mismatch |
ENSSSCG00000030617 | INTS12 | 9 | Upreg. in mismatch |
ENSSSCG00000005994 | SNTB1 | 128 | Upreg. in mismatch |
ENSSSCG00000025053 | RYBP | 661 | Upreg. in mismatch |
ENSSSCG00000013060 | SCGB1A1 | 14 | Upreg. in mismatch |
ENSSSCG00000027157 | SLC40A1 | 1103 | Upreg. in mismatch |
ENSSSCG00000015584 | PROX1 | 148 | Upreg. in mismatch |
ENSSSCG00000014948 | C11orf54 | 119 | Upreg. in mismatch |
ENSSSCG00000011695 | AGTR1 | 113 | Upreg. in mismatch |
ENSSSCG00000004209 | PTPRK | 142 | Upreg. in mismatch |
(a) | |||||
GO ID | Source | Description | FDR | Genes | Description |
KEGG:03010 | KEGG | Ribosome | 0.000 | 8 | Downreg. in mismatch |
KEGG:05171 | KEGG | Coronavirus disease-COVID-19 | 0.020 | 8 | Downreg. in mismatch |
GO:0006511 | GO:BP | Ubiquitin-dependent protein catabolic process | 0.000 | 14 | Upreg. in mismatch |
GO:0019941 | GO:BP | Modification-dependent protein catabolic process | 0.000 | 14 | Upreg. in mismatch |
GO:0030970 | GO:BP | Retrograde protein transport, ER to cytosol | 0.000 | 5 | Upreg. in mismatch |
GO:0043632 | GO:BP | Modification-dependent macromolecule catabolic process | 0.000 | 14 | Upreg. in mismatch |
GO:1903513 | GO:BP | Endoplasmic reticulum to cytosol transport | 0.000 | 5 | Upreg. in mismatch |
GO:0032527 | GO:BP | Protein exit from the endoplasmic reticulum | 0.010 | 5 | Upreg. in mismatch |
GO:0044281 | GO:BP | Small-molecule metabolic process | 0.010 | 23 | Upreg. in mismatch |
GO:0010498 | GO:BP | Proteasomal protein catabolic process | 0.020 | 11 | Upreg. in mismatch |
GO:0043161 | GO:BP | Proteasome-mediated ubiquitin-dependent protein catabolic process | 0.020 | 10 | Upreg. in mismatch |
GO:0051603 | GO:BP | Proteolysis involved in cellular protein catabolic process | 0.020 | 14 | Upreg. in mismatch |
GO:0030323 | GO:BP | Respiratory tube development | 0.030 | 8 | Upreg. in mismatch |
GO:0044248 | GO:BP | Cellular catabolic process | 0.030 | 24 | Upreg. in mismatch |
GO:1901575 | GO:BP | Organic substance catabolic process | 0.030 | 24 | Upreg. in mismatch |
KEGG:04141 | KEGG | Protein processing in endoplasmic reticulum | 0.030 | 7 | Upreg. in mismatch |
(b) | |||||
GO ID | Source | Description | FDR | Genes | Description |
GO:0008152 | GO:BP | Metabolic process | 0.0000648 | 166 | Downregulated |
GO:0044237 | GO:BP | Cellular metabolic process | 0.0003 | 152 | Downregulated |
GO:0044238 | GO:BP | Primary metabolic process | 0.0003 | 152 | Downregulated |
GO:0071704 | GO:BP | Organic substance metabolic process | 0.0003 | 159 | Downregulated |
GO:1901564 | GO:BP | Organonitrogen compound metabolic process | 0.023 | 100 | Downregulated |
GO:0035904 | GO:BP | Aorta development | 0.043 | 6 | Downregulated |
GO:0006807 | GO:BP | Nitrogen compound metabolic process | 0.047 | 138 | Downregulated |
KEGG:05171 | KEGG | Coronavirus disease-COVID-19 | 0.013 | 12 | Downregulated |
Sow Feed: | Higher Protein (H) 1 | Lower Protein (L) 1 | Psow | ||
---|---|---|---|---|---|
Mean | Se | Mean | Se | ||
SAA ELISA 3.5 weeks (μg/mL) | 37.48 | 32.47 | 5.09 | 2.64 | 0.49 |
Piglet Feed: | Higher Protein 2 (HH) | Lower Protein 2 (HL) | Higher Protein 2 (LH) | Lower Protein 2 (LL) | Psow | Ppiglet | Ps*p1 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Se | Mean | Se | Mean | Se | Mean | Se | ||||
SAA ELISA 4.5 weeks (μg/mL) | 1.71 | 1.32 | 11.17 | 9.03 | 5.76 | 4.93 | 0.68 | 0.20 | 0.11 | 0.62 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroeske, K.; Arévalo Sureda, E.; Uerlings, J.; Deforce, D.; Van Nieuwerburgh, F.; Heyndrickx, M.; Millet, S.; Everaert, N.; Schroyen, M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Vet. Sci. 2021, 8, 233. https://doi.org/10.3390/vetsci8100233
Kroeske K, Arévalo Sureda E, Uerlings J, Deforce D, Van Nieuwerburgh F, Heyndrickx M, Millet S, Everaert N, Schroyen M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Veterinary Sciences. 2021; 8(10):233. https://doi.org/10.3390/vetsci8100233
Chicago/Turabian StyleKroeske, Kikianne, Ester Arévalo Sureda, Julie Uerlings, Dieter Deforce, Filip Van Nieuwerburgh, Marc Heyndrickx, Sam Millet, Nadia Everaert, and Martine Schroyen. 2021. "The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning" Veterinary Sciences 8, no. 10: 233. https://doi.org/10.3390/vetsci8100233
APA StyleKroeske, K., Arévalo Sureda, E., Uerlings, J., Deforce, D., Van Nieuwerburgh, F., Heyndrickx, M., Millet, S., Everaert, N., & Schroyen, M. (2021). The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Veterinary Sciences, 8(10), 233. https://doi.org/10.3390/vetsci8100233