Effect of L-Carnitine and/or Calf Thymus Gland Extract Supplementation on Immunity, Antioxidant, Duodenal Histomorphometric, Growth, and Economic Performance of Japanese Quail (Coturnix coturnix japonica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Housing
2.2. Supplemented Additives
2.3. Experimental Design and Feeding Program
- Group 1 (G1) received plain drinking water (without any additive) and considered as the control group.
- Group 2 (G2) received LC at a dose of 50 mg/kg/day [17].
- Group 3 (G3) received TE at a dose of 0.01 mL/bird/day as recommended by the supplier.
- Group 4 (G4) received both LC and TE.
2.4. Growth Performance Parameters
where I = Initial number of the birds at beginning of experiments;
E = Number of birds at experiment end.
2.5. Blood Sampling
2.5.1. Phagocytic Activity % and Phagocytic Index of Heterophils
Phagocytic index = The total number of ingested candida/Number of active heterophils.
2.5.2. Differential Leukocytic Count
2.5.3. Plasma Antioxidant Enzymes
2.6. Duodenum Micro-Morphological Measurements
where VW = Villus width, VL = Villus length, π = 3.143
2.7. Economic Efficiency
2.7.1. Costs of Production Were Classified into
- Total Variable Costs,
- Total Fixed Costs, and
- Total Costs
2.7.2. Return Parameters
2.7.3. Economic Efficiency Measurements
- -
- Percentage of total returns to total costs = (Total return/Total costs × 100);
- -
- Percentage of net profit to total costs = (Net profit/Total costs × 100);
- -
- Capital cycle = Investment costs/Net profit;
- -
- Capita return rate = (Net profit/Investment costs) × 100.
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Mortality Rate %
3.2. Phagocytic Activity % and Phagocytic Index
3.3. Differential Leukocytic Count
3.4. Antioxidant Profile
3.5. Duodenal Histomorphometric Parameters
3.6. Economic Parameter Traits
4. Discussion
4.1. Growth Performance
4.2. Mortality Rate %
4.3. Antioxidant Profile
4.4. Phagocytic Activity % and Phagocytic Index
4.5. Differential Leukocytic Count
4.6. Duodenal Histomorphometric Parameters
4.7. Economic Parameter Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sreeranjini, A.; Iyyangar, M.; Pramodkumar, D. Histological study on the fibrous architecture of kidney and ureter of Japanese quail (Coturnix coturnix japonica). Tamilnadu J. Vet. Anim. Sci. 2010, 6, 107–110. [Google Scholar]
- Azizi-chekosari, Μ.; Bouye, M.; Seidavi, A. Effects of L-carnitine supplementation in diets of broiler chickens. J. Hell. Vet. Med. Soc. 2021, 7, 2611–2628. [Google Scholar] [CrossRef]
- Ardekani, H.M.; Shevazad, M.; Chamani, M.; Aminafshar, M.; Arani, E.D. The effect of L-carnitine and low crude protein supplemented with crystalline essential amino acids diets on broiler chickens. Ann. Biol. Res. 2012, 3, 1085–1093. [Google Scholar]
- Edres, H.A.; Taha, N.M.; Mandour, A.A.; Lebda, M.A. Impact of L-Carnitine on Bisphenol A-Induced Kidney Damage in Rats. Alex. J. Vet. Sci. 2018, 56, 11–17. [Google Scholar] [CrossRef]
- Panahi, H.; Bouyeh, M.; Behzadpour, D.; Seidavi, A.; Simões, J.; Tufarelli, V.; Staffa, V.N.; Tinelli, A.; Ayasan, T.; Laudadio, V. Effect of dietary simvastatin and L-carnitine supplementation on blood biochemical parameters, carcass characteristics and growth of broiler chickens. J. Indones. Trop. Anim. Agric. 2019, 44, 372–381. [Google Scholar] [CrossRef]
- Abedpour, A.; Jalali, S.; Kheiri, F. Effect of vegetable oil source and L-carnitine supplements on growth performance, carcass characteristics and blood biochemical parameters of Japanese quails (Coturnix coturnix japonica). Iran. J. Appl. Anim. Sci. 2017, 7, 147–153. [Google Scholar]
- Arafat, R.Y.; Khan, S.H.; Abbas, G.; Iqbal, J. Effect of dietary humic acid via drinking water on the performance and egg quality of commercial layers. Am. J. Life Sci. 2015, 3, 26–30. [Google Scholar]
- Haroun, H. Aging of thymus gland and immune system. MOJ Anat. Physiol. 2018, 5, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Larbi, A. Markers of T cell senescence in humans. Int. J. Mol. Sci. 2017, 18, 1742. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.A.; El Gendy, H.; El Hanbally, S. Effects of calf thymus extract and L-carnitine on immunity and growth performance of broiler chickens. Int. J. Sci. Rep. 2020, 6, 45–52. [Google Scholar] [CrossRef]
- Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell. Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [Green Version]
- Chander, R.; Choudhary, S.; Singh, A.P.; Kachhawa, J.P.; Saharan, D.K. Comparative evaluation of different therapy for canine demodicosis. J. Entomol. Zool. Stud. 2020, 8, 1534–1539. [Google Scholar]
- Morozov, V.G.; Khavinson, V.K.H. Natural and synthetic thymic peptides as therapeutics for immune dysfunction. Int. J. Immunopharmacol. 1997, 19, 501–505. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Research Council, National Academy Press: Washington, DC, USA, 1994; p. 234. [Google Scholar]
- AL-Mashaikey, M.G.; Taha, A.T. Influence of Amla fruit (Emblica officinalis) powder supplementation on some reproduction indicators of adult Japanese quail (Coturnix coturnix Japonica) reared under hot climate. Tikrit J. Agric. Sci. 2019, 18, 57–63. [Google Scholar]
- Grandjean, D.; Valette, J.; Jouglin, M.; Gabillard, C.; Bacque, H.; Bene, M.; Guillaud, J. Dietary supplementation with L carnitine, vitamin C and vitamin B12 in sport dogs. Experimental study with sledge dogs [cyanocobalamine]. Rec. Med. Vet. 1993, 169, 543–551. [Google Scholar]
- Sornplang, P.; Leelavatcharamas, V.; Soikum, C. Heterophil phagocytic activity stimulated by Lactobacillus salivarius L61 and L55 supplementation in broilers with Salmonella infection. Asian Australas. J. Anim. Sci. 2015, 28, 1657–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audu, Y.; Lekko, Y.M.; Umar, M.B.; Mshellia, E.S.; Mana, H.P. Effect of strongyle on haematological parameters of cattle in Maiduguri, Borno state, Nigeria. J. Agric. Vet. Sci. 2018, 11, 60–63. [Google Scholar]
- Khoubnasabjafari, M.; Ansarin, K.; Jouyban, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts BI 2015, 5, 123–127. [Google Scholar]
- Abdel-Daim, M.; El-Bialy, B.E.; Rahman, H.G.; Radi, A.M.; Hefny, H.A.; Hassan, A.M. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed. Pharmacother. 2016, 77, 79–85. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.F.A.; Araújo, D.N.; Stefani, L.M.; Giometti, I.C.; Cruz-Polycarpo, V.C.; Gustavo Polycarpo, G.; Maria, F.; Burbarelli, M.F. Probiotics on performance, intestinal morphology and carcass characteristics of broiler chickens raised with lower or higher environmental challenge. Austral J. Vet. Sci. 2018, 50, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Baurhoo, B.; Phillip, L.; Ruiz-Feria, C. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 2007, 86, 1070–1078. [Google Scholar] [CrossRef]
- He, T.; Mahfuz, S.; Piao, X.; Wu, D.; Wang, W.; Yan, H.; Ouyang, T.; Liu, Y. Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. J. Appl. Anim. Res. 2021, 49, 15–22. [Google Scholar] [CrossRef]
- Khonyoung, D.; Yamauchi, K.; Buwjoom, T.; Maneewan, B.; Thongwittaya, N. Effect of dietary new sugar cane extract on growth performance and intestinal histology in broiler chickens. Agric. Nat. Resour. 2019, 53, 533–537. [Google Scholar]
- Abd-El Hamed, A.M.; Kamel, E.R.; Abo-Salem, M.E.; Atallah, S.T. Comparative Study on the Effect of Organic Acids, Prebiotics and Enzymes Supplementation on Broiler Chicks’ Economic and Productive Efficiency. Benha J. Appl. Sci. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Kumar, L.P.; Indira, M. Trends in fertilizer consumption and foodgrain production in India: A co-integration analysis. SDMIMD J. Manag. 2017, 8, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omar, M.A. Economic evaluation of probiotic (Lactobacillus acidophilus) using in different broiler breeds within Egypt. Benha Vet. Med. J. 2014, 26, 52–60. [Google Scholar]
- Sutherland, E.K.; Hutchinson, T.F.; Yaussy, D.A. Introduction, study area description, and experimental design. In Characteristics of Mixed Oak Forest Ecosystems in Southern Ohio Prior to the Reintroduction of Fire; Sutherland, E.K., Hutchinson, T.F., Eds.; Gen. Tech. Rep. NE-299; United States Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2003; Volume 299, pp. 1–16. [Google Scholar]
- Awad, A.L.; Fahim, H.N.; Beshara, M.M. Effect of dietary L-carnitine supplementation on productive performance and carcass quality of local duck breeds in summer season. Egypt. Poult. Sci. J. 2016, 36, 11–27. [Google Scholar]
- Mahmoud, R.E.; Elshopakey, G.E.; Awadin, W.F. Effects of feeding diets supplemented with different levels of l-carnitine on growth performance, serum metabolites, histopathological changes in growing Japanese quails. Int. J. Vet. Sci. 2020, 9, 16–23. [Google Scholar]
- Zhai, W.; Neuman, S.L.; Latour, M.A.; Hester, P.Y. The effect of dietary L-carnitine on semen traits of white leghorns. Poult. Sci. 2007, 86, 2228–2235. [Google Scholar] [CrossRef]
- Kita, K.; Nagao, K.; Okumura, J. Nutritional and tissue specificity of IGF-I and IGFBP-2 gene expression in growing chickens-A review. Asian Australas. J. Anim. Sci. 2005, 18, 747–754. [Google Scholar] [CrossRef]
- Snyder, P.J.; Fricker, P. Use of Androgens and Other Hormones by Athletes. UpToDate. Available online: https://www.uptodate.com/contents/use-of-androgens-and-other-hormones-by-athletes (accessed on 20 July 2018).
- Sarica, S.; Corduk, M.; Kilinc, K. The effect of dietary L-carnitine supplementation on growth performance, carcass traits, and composition of edible meat in Japanese quail (Coturnix coturnix japonica). J. Appl. Poult. Res. 2005, 14, 709–715. [Google Scholar] [CrossRef]
- Fathi, E.; Farahzadi, R. Application of L-carnitine as nutritional supplement in veterinary medicine. Rom. J. Biochem. 2014, 51, 31–41. [Google Scholar]
- El-kelawy, M. Effects of L-carnitine on production performance, blood parameters, lipid metabolism and antioxidative properties of broiler chicks. Egypt. Poult. Sci. J. 2017, 37, 873–892. [Google Scholar]
- Xu, Z.R.; Wang, M.Q.; Mao, H.X.; Zhan, X.A.; Hu, C.H. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult. Sci. 2003, 82, 408–413. [Google Scholar] [CrossRef]
- Daskiran, M.; Teeter, R. Effects of dietary L-carnitine (Carniking®) supplementation on overall performance and carcass characteristics of seven-week-old broiler chickens. Anim. Sci. 2001, 98, 1–6. [Google Scholar]
- Yalcin, S.; Özsoy, B.; Cengiz, O.; Bülbül, T. Effects of dietary L-carnitine supplementation on growth performance and some biochemical parameters in Japanese quails (Coturnix coturnix japonica). Rev. Med. Vet. 2008, 159, 502–507. [Google Scholar]
- Ur Rehman, Z.; Chand, N.; Khan, R.U. The effect of vitamin E, L-carnitine, and ginger on production traits, immune response, and antioxidant status in two broiler strains exposed to chronic heat stress. Environ. Sci. Pollut. Res. Int. 2017, 24, 26851–26857. [Google Scholar] [CrossRef]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic acid as a feed additive in poultry diets: A review. Iran. J. Vet. Res. 2019, 20, 167. [Google Scholar] [PubMed]
- Sabzi, E.; Mohammadiazarm, H.; Salati, A.P. Effect of dietary l-carnitine and lipid levels on growth performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus carpio). Aquaculture 2017, 480, 89–93. [Google Scholar] [CrossRef]
- El-Raey, M.; Badr, M.R.; Assi, M.M.; Rawash, Z.M. L-carnitine enhancing roles on Buffalo semen freezability, ultra structure and fertilizing potentials. Assiut Vet. Med J. 2016, 62, 163–173. [Google Scholar]
- Tian, M.; Wang, N.; Su, G.; Shi, B.; Shan, A. Effects of dietary L-Carnitine and fat type on the performance, Milk composition and immunoglobulin in sows, and immunological variables of sows and piglets during late gestation and lactation. Czech J. Anim. Sci. 2017, 62, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Djalali, M.; Daneshpazhooh, M.; Honarvar, N.M.; Chams-Davatchi, C.; Sepandar, F.; Fakhri, Z.; Yaghubi, E.; Zarei, M.; Javanbakht, M.H. Effects of L-carnitine supplementation on biomarkers of oxidative stress, antioxidant capacity and lipid profile, in patients with pemphigus vulgaris: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2018, 72, 99–104. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, D.; Peng, Y.Z.; Guo, Y.M. Effects of dietary L-carnitine supplementation on growth performance, organ weight, biochemical parameters and ascites susceptibility in broilers reared under low-temperature environment. Asian Australas. J. Anim. Sci. 2013, 26, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gendy, H.; Masoud, S.R.; Hadad, S.S.; El-Hanbally, S.; El Latif, A.A.A. Immuno-protective, anti-diabetic and histochmical-anti oxidative activities of l-carnitine, and calf thymus extract in aged male mice. Int. J. Adv. Res. 2019, 7, 1203–1219. [Google Scholar] [CrossRef] [Green Version]
- Naik, B.M.C.; Babu, H.; Mamatha, G.S. The immunomodulatory role of calf thymus extract on humoral and cell mediated immune response in chicken vaccinated against New Castle disease virus. Int. J. Poult. Sci. 2005, 4, 580–583. [Google Scholar]
- Cakir, S.; Yalcin, S. Effects of L-carnitine supplementation in diets with low or normal energy level on growth performance and carcass traits in broilers. Rev. Med. Vet. 2007, 158, 291–296. [Google Scholar]
- Janssens, G.P.J.; Mast, J.; Goddeeris, B.M.; Cox, E.; Hesta, M.; De Wilde, R.O.M. Enhanced specific antibody response to bovine serum albumin in pigeons due to L-carnitine supplementation. Br. Poult. Sci. 2000, 41, 448–453. [Google Scholar] [CrossRef]
- Deng, K.; Wong, C.W.; Nolan, J.V. Long-term effects of early-life dietary L-carnitine on lymphoid organs and immune responses in Leghorn-type chickens. J. Anim. Physiol. Anim. Nutr. 2006, 90, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Broderick, T.L.; Cusimano, F.A.; Carlson, C.; Tamura, L.K. Acute exercise stimulates carnitine biosynthesis and OCTN2 expression in mouse kidney. Kidney Blood Press. Res. 2017, 42, 398–405. [Google Scholar] [CrossRef]
- Rooney, H.B.; Driscoll, K.O.; Silacci, P.; Bee, G.; Doherty, J.V.O.; Lawlor, P.G. Effect of dietary L-carnitine supplementation to sows during gestation and/or lactation on sow productivity, muscle maturation and lifetime growth in progeny from large litters. Br. J. Nutr. 2020, 124, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Calder, P. Omega-3 (n-3) polyunsaturated fatty acids and inflammation: From membrane to nucleus and from bench to bedside. Proc. Nutr. Soc. 2020, 22, 1–13. [Google Scholar]
- Abdel Aziz, R.L.; Abdel-Wahab, A.; Abo El-Ela, F.I.; Hassan, N.E.Y.; El-Nahass, E.; Ibrahim, M.A.; Khalil, A.A.Y. Dose-dependent ameliorative effects of quercetin and l-Carnitine against atrazine-induced reproductive toxicity in adult male Albino rats. Biomed. Pharmacother. 2018, 102, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Jablonowska, E.; Tchorzewski, H.; Lewkowicz, P.; Kuydowicz, J. Reactive oxygen intermediates and serum antioxidative system in patients with chronic C hepatitis treated with IFN-alpha and thymus factor X. Arch. Immunol. Ther. Exp. 2005, 53, 529–533. [Google Scholar]
- Ohara, M.; Ogawa, K.; Suda, G.; Kimura, M.; Maehara, O.; Shimazaki, T.; Susuki, K.; Nakamura, A.; Umemura, M.; Izumi, T.; et al. L-carnitine suppresses loss of skeletal muscle mass in patients with liver cirrhosis. Hepatol. Commun. 2018, 2, 910–922. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, A.; Simsek, N.; Cakir, S. Haematological effects of dietary L-carnitine supplementation in broiler chickens. Revue Méd. Vét. 2008, 159, 437–444. [Google Scholar]
- De Somer, P.; Denys, J.R.; Leyten, R. Activity of a noncellular calf thymus extract in normal and thymectomized mice. Life Sci. 1963, 2, 810–819. [Google Scholar] [CrossRef]
- Assis, A.F.; Li, J.; Donate, P.B.; Dernowsek, J.A.; Manley, N.R.; Passos, G.A. Predicted miRNA-mRNA-mediated posttranscriptional control associated with differences in cervical and thoracic thymus function. Mol. Immunol. 2018, 99, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Zadeh Adamnezhad, H.; Ghiasi Ghalehkandi, J. Growth performance and the intestine morphometry of japanese quail that fed diets supplemented with vitamin E and selenium. Iran. J. Vet. Res. 2018, 12, 323–334. [Google Scholar]
- Rezaei, M.; Karimi Torshizi, M.A.; Wall, H.; Ivarsson, E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br. Poult. Sci. 2018, 59, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Santos-de-Souza, D.; Lima-Calixto, L.F.; Jorge-de-Lemos, M.; Leite-Reis, T.; Oliveira, C.A.; Fassani Édson, J.; do-Coutto-Prado-Valladares, M.C.; de Resende Sousa, F.D. Inclusion of kaolin in the feed of Japanese quails during the production phase. Rev. Colomb. Cienc. Pecuarias 2019, 32, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, D.A.; Sazili, A.Q.; Chwen, T.C.; Samsudin, A.A. Effect of microbiota-selenoprotein on meat selenium content and meat quality of broiler chickens. Animals 2020, 10, 981. [Google Scholar] [CrossRef]
- Sayrafi, R.; Mirzakhani, N.; Mobaseri, R. Effects of turmeric (Curcuma longa) and vitamin E on histopathological lesions induced in bursa of Fabricius of broiler chicks by salinomycin. Vet. Res. Forum 2017, 8, 231–236. [Google Scholar] [PubMed]
- Awad, A.; Fahim, H.N.; Beshara, M.M.; El-Shhat, A.M. Effect of sex and L-carnitine addition on growth performance and carcass quality of Sudani ducklings. Egypt. Poult. Sci. J. 2017, 37, 1013–1032. [Google Scholar] [CrossRef] [Green Version]
- Warmazyar, M.M. Effect of dietary supplementation with different levels of L-carnitine on productive and economic performance of broiler chickens. Sci. Papers Ser. D Anim. Sci. 2018, 61, 87–96. [Google Scholar]
G1 (Control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Initial body weight (g) | 7.12 ± 0.39 a | 7.09 ± 0.61 a | 7.25 ± 0.23 a | 7.13 ± 0.26 a |
Final body weight (g) | 215.06 ± 1.90 c | 238.85 ± 2.52 a | 235.88 ± 2.35 a | 224.52 ± 2.43 b |
Final Weight gain (g) | 207.94 ± 1.49 c | 231.76 ± 1.84 a | 228.63 ± 2.08 a | 217.39 ± 2.11 b |
* FCR | 2.68 ± 0.024 a | 2.41 ± 0.016 c | 2.42 ± 0.018 c | 2.55 ± 0.020 b |
Feed intake (g) | 565 ± 19.34 a | 559 ± 23.79 a | 554 ± 29.73 a | 555 ± 21.48 a |
Mortality rate % | 9.22 ± 1.04 a | 4.44 ± 0.28 b | 5.00 ± 0.32 b | 5.33 ± 0.32 b |
G1 (Control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Phagocytic activity % | 45.69 ± 0.52 c | 68.69 ± 0.46 a | 69.33 ± 0.73 a | 58.77 ± 0.67 b |
Phagocytic index | 2.03 ± 0.050 c | 2.97 ± 0.026 b | 2.83 ± 0.040 a | 2.39 ± 0.031 b |
G1 (Control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Lymphocytes % | 59.26 ± 1.25 b | 65.09 ± 1.38 a | 64.95 ± 1.52 a | 61.84 ± 1.25 ab |
Heterophils % | 32.90 ± 0.95 a | 27.40 ± 0.58 b | 27.53 ± 0.42 b | 30.48 ± 0.81 ab |
Monocytes % | 3.49 ± 0.36 a | 3.28 ± 0.15 a | 3.19 ± 0.22 a | 3.21 ± 0.20 a |
Eosinophils % | 3.20 ± 0.31 a | 3.13 ± 0.16 a | 3.17 ± 0.39 a | 3.14 ± 0.42 a |
Basophils % | 1.24 ± 0.12 a | 1.10 ± 0.14 a | 1.16 ± 0.05 a | 1.33 ± 0.06 a |
H/L ratio | 0.56 ± 0.005 a | 0.42 ± 0.001 c | 0.42 ± 0.009 c | 0.49 ± 0.005 b |
G1 (Control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Malondialdehyde (mmol mL−1) | 10.17 ± 0.09 a | 8.24 ± 0.49 b | 8.32 ± 0.22 b | 8.66 ± 0.33 b |
Reduced glutathione (mg dL−1) | 29.61 ± 0.54 c | 35.42 ± 0.24 a | 34.99 ± 0.16 a | 32.31 ± 0.28 b |
G1 (Control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Villous height (µm) | 814.45 ± 61.81 a | 952.80 ± 67.02 a | 891.12 ± 59.78 a | 898.14 ± 60.46 a |
Villous width (µm) | 110.36 ± 3.81 a | 112.86 ± 3.89 a | 111.53 ± 3.82 a | 111.56 ± 3.81 a |
Surface area (mm2) | 277.71 ± 22.60 a | 347.01 ± 29.86 a | 321.38 ± 26.85 a | 299.29 ± 17.11 a |
Crypt depth (µm) | 86.28 ± 2.15 a | 92.28 ± 2.10 a | 89.28 ± 2.35 a | 90.78 ± 2.12 a |
G1 (control) | G2 (LC) | G3 (TE) | G4 (LC + TE) | |
---|---|---|---|---|
Costs of water additives from day 1st to 35th day | - | 7.62 | 12.71 | 20.33 |
Feed costs | 296.57 | 293.02 | 290.41 | 290.92 |
Vaccines & drugs costs | 12.71 | 12.71 | 12.71 | 12.71 |
Water & electrolyte costs | 6.35 | 6.35 | 6.35 | 6.35 |
Labor costs | 31.77 | 31.77 | 31.77 | 31.77 |
Other costs | 127.07 | 127.07 | 127.07 | 127.07 |
Total variable costs | 474.08 | 478.53 | 481.00 | 489.14 |
Building depreciation costs 1 | 4.77 | 4.77 | 4.77 | 4.77 |
Equipment depreciation costs 2 | 1.59 | 1.59 | 1.59 | 1.59 |
Total fixed costs | 6.35 | 6.35 | 6.35 | 6.35 |
Total costs | 480.43 | 484.88 | 487.36 | 495.49 |
Total weight sale 3 | 576.87 | 607.37 | 603.56 | 601.02 |
Litter sale | 6.35 | 6.35 | 6.35 | 6.35 |
Total returns | 583.23 | 613.72 | 609.91 | 607.37 |
Net profit | 102.80 | 128.84 | 122.55 | 111.88 |
Total return/total costs (%) | 121.40 | 126.57 | 125.15 | 122.58 |
Net profit/total costs (%) | 21.40 | 26.57 | 25.15 | 22.58 |
Capital cycle (years) 4 | 1.85 | 1.48 | 1.56 | 1.72 |
Capita return rate (Cents) 5 | 54.10 | 67.58 | 64.16 | 58.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Alya, I.S.; Alharbi, Y.M.; Abdel-Rahman, H.A.; Zahran, I.S. Effect of L-Carnitine and/or Calf Thymus Gland Extract Supplementation on Immunity, Antioxidant, Duodenal Histomorphometric, Growth, and Economic Performance of Japanese Quail (Coturnix coturnix japonica). Vet. Sci. 2021, 8, 251. https://doi.org/10.3390/vetsci8110251
Abu-Alya IS, Alharbi YM, Abdel-Rahman HA, Zahran IS. Effect of L-Carnitine and/or Calf Thymus Gland Extract Supplementation on Immunity, Antioxidant, Duodenal Histomorphometric, Growth, and Economic Performance of Japanese Quail (Coturnix coturnix japonica). Veterinary Sciences. 2021; 8(11):251. https://doi.org/10.3390/vetsci8110251
Chicago/Turabian StyleAbu-Alya, Ibrahim S., Yousef M. Alharbi, Hassan A. Abdel-Rahman, and Ibrahim S. Zahran. 2021. "Effect of L-Carnitine and/or Calf Thymus Gland Extract Supplementation on Immunity, Antioxidant, Duodenal Histomorphometric, Growth, and Economic Performance of Japanese Quail (Coturnix coturnix japonica)" Veterinary Sciences 8, no. 11: 251. https://doi.org/10.3390/vetsci8110251
APA StyleAbu-Alya, I. S., Alharbi, Y. M., Abdel-Rahman, H. A., & Zahran, I. S. (2021). Effect of L-Carnitine and/or Calf Thymus Gland Extract Supplementation on Immunity, Antioxidant, Duodenal Histomorphometric, Growth, and Economic Performance of Japanese Quail (Coturnix coturnix japonica). Veterinary Sciences, 8(11), 251. https://doi.org/10.3390/vetsci8110251