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Simple Summary: Otitis externa (OE) is a common disease in dogs and can be induced by various
causes. After the primary causes that induced the ear canal issue, microbial infections occur secondly.
As the main treatment strategies are primary cause correction and antibiotic administration, prolonged
treatment is likely to induce the emergence of antibiotic resistance bacteria. Here, we describe the
Enterococcus bacteria, one of the main infection agents of OE. The bacterial genus showed several
species distributions and antibiotic resistance. This fact clarifies the importance of appropriate
antibiotic selection and prudent antibiotic administration. As companion animals share lots of space
with humans, pathogen transmissions between humans and companion animals are likely to occur.
This study contributes not only to treatment strategies for Enterococcus infections but can also be used
as a comparable index of antibiotic resistance of Enterococcus in the future.

Abstract: Otitis externa, a common disease in dogs, has different etiologies. Enterococcus is a Gram-
positive bacterium that frequently causes opportunistic ear infections. Here, we determined the
distribution of Enterococcus in canine otitis externa via time-of-flight mass spectrometry and bio-
chemical tests and evaluated their resistance patterns to 10 commonly used antibiotics. Among the
197 Enterococcus isolates, E. faecalis (48.7%; 96/197) was the most common, followed by E. faecium
(21.3%; 42/197), E. casseliflavus (11.7%; 23/197), E. hirae (10.7%; 21/197), E. avium (3.6%; 7/197), E.
gallinarum (2.5%; 5/197), E. canintestini (1.0%; 2/197), and E. durans (0.5%; 1/197). All isolates were
tested for antibiotic resistance using the Kirby–Bauer disc diffusion method. Enterococcus faecalis
strains were highly resistant to erythromycin (45.8%) and rifampin (34.3%) but were generally sus-
ceptible to penicillin class antibiotics. In contrast, E. faecium isolates were highly resistant to penicillin
class antibiotics (ampicillin, 61.9%; penicillin, 71.4%). Most importantly, E. faecium demonstrated high
resistance to most of the antibiotics used in this study. Multidrug resistance was found in 28.4% of
the isolates (56/197). This study shows prevalence and antibiotics resistance profiles of Enterococcus
species in canine chronic otitis externa. The results can contribute to establish therapeutic strategies
of Enterococcus infections and be used as a comparable index of antibiotic resistance of Enterococcus in
the future.

Keywords: antibiotic resistance; Enterococcus; multidrug resistance; otitis externa

1. Introduction

Otitis externa, inflammation of the external ear canal, has various etiologies and is
a relatively common disease with an incidence of 7.5–16.5% in canines [1]. The causes of
otitis externa can be broadly divided into primary and secondary causes. The primary
causes are those that induce inflammation in the normal ear, such as allergies, autoimmune
diseases, and foreign bodies [2,3]. Secondary infections occur when the primary cause
alters the composition of the aural environment [2,3].
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The external ear canal of dogs with otitis externa is colonized by diverse microor-
ganisms. Among these, Gram-positive enterococci are frequently encountered but are
rarely studied as representatives of the external ear canal flora in association with other
symbiotic microorganisms. Enterococci are principally commensals of the bowel and are
causative agents of opportunistic infections, such as wound infections, mastitis in cattle,
and infections of the urethra and ears in dogs [3].

Enterococci are intrinsically resistant to several antimicrobial agents. In humans,
multidrug-resistant (MDR) enterococci are among the most important pathogens caus-
ing serious nosocomial infections [4]. Enterococcus faecalis is reportedly a reservoir of
antimicrobial-resistance genes for pathogenic or potentially pathogenic bacteria [5]. Van-
comycin is one of the few effective drugs available for the treatment of such infections [6].
However, vancomycin-resistant strains of enterococci have emerged in Europe with the
initiation of feeding avoparcin, another glycopeptide, to food-producing animals [6]. In
the United States, the injudicious use of vancomycin in human hospitals has resulted in
the same effect; that is, an increase in selective pressure resulting in increased colonization
of vancomycin-resistant enterococci (VRE) (especially in hospitals) [7]. The prevention
and treatment of enterococci infections entails huge expenditures in public health [8–10].
Moreover, as farm animals were found to be one of the reservoirs of VRE, enterococci
surveillance was expanded to veterinary fields [11–13].

Single or repeated exposure(s) to antibiotics could increase the level of resistance in
pathogenic bacteria in humans and animals. The level of acquired resistance in bacteria
can be considered an indicator of selection pressure due to antibiotic usage in a population
and resistance-related problems are expected in pathogens [14]. Regular monitoring of the
level of resistance in pathogens and indicator bacteria of the normal flora in both humans
and animals is recommended [15]. This monitoring is important because it allows the
comparison of the prevalence and evolution of resistance patterns [16]. Knowledge of
antibiotic resistance in bacteria in companion animals can help identify potential risks to
owners in close contact with companion animals and select optimistic therapeutic drugs in
clinical practices. In this study, we aimed to determine the phenotypic resistance patterns
of enterococci in the external ear canal of dogs that received antimicrobial treatment.

2. Materials and Methods
2.1. Enterococcus Isolation and Growth Conditions

Enterococcus strains were isolated from external ear canal swab samples collected from
dogs with chronic otitis externa from animal hospitals in Seoul and Gyeongsangnam-do,
South Korea. The swab samples were maintained in Amies transport medium (YUHAN
LAB TECH, Seoul, Korea) until processing. The samples were placed in a 1.5 mL cen-
trifuge tube containing phosphate-buffered saline (PBS) and vortexed vigorously. The
supernatants were spread on Columbia blood agar (5% sheep blood; Oxoid, Hamspire,
UK) and incubated overnight at 37 ◦C. Suspected Enterococcus colonies were subcultured
on fresh tryptic soy agar (TSA; Difco, MI, USA) and incubated overnight at 37 ◦C. The
subculture step on TSA was repeated thrice. After isolating the purified colonies, the
isolates were identified via time-of-flight mass spectrometry using a matrix-assisted laser
desorption/ionization Biotyper (Bruker Daltonics, Bremen, Germany), according to the
manufacturer’s instructions. A total of 197 isolates belonged to the genus Enterococcus;
however, only 89 strains were identified. The bacteria were stored at −70 ◦C in tryptic soy
broth (Difco) containing 15% glycerol until biochemical tests were performed.

2.2. Biochemical Test for Enterococcus Species Confirmation

To confirm and identify the species of all Enterococcus isolates, a biochemical test
was performed using the API rapid ID 32 STREP kit (bioMérieux SA, Craponne, France)
according to the manufacturer’s instructions. The results were visually read by referring
to the reading table provided in the product manual. Results were interpreted using an
online database (V4.0; https://apiweb.biomerieux.com/ accessed on 20 September 2022).

https://apiweb.biomerieux.com/
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2.3. Antibiotic Susceptibility Test

The Kirby–Bauer disk diffusion method, as described by the Clinical and Laboratory
Standards Institute [17], was used to examine the susceptibility of the Enterococcus species
to 10 commonly used antibiotics: ampicillin (10 µg), penicillin (10 units), vancomycin
(30 µg), doxycycline (30 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), linezolid (30 µg),
erythromycin (15 µg), chloramphenicol (30 µg), and rifampin (5 µg). Briefly, overnight
cultured colonies of isolates were suspended in sterile PBS to a 0.5 McFarland standard.
The suspensions were spread on Mueller–Hinton agar, the antibiotic discs were placed, and
incubated at 35 ◦C for 18 h. For quality confirmation of antibiotic discs, the Staphylococcus
aureus strain ATCC® 25923 was used. Enterococcus isolates resistant to more than three
classes of antimicrobials were considered MDR isolates [18].

2.4. Statistical Analysis

Differences in resistance prevalence between E. faecalis and E. faecium were analyzed by
the Fischer’s exact test using Microsoft Excel software. A significance level of α 0.05 was used.

3. Results
3.1. Enterococcus Species Distribution

In this study, 214 bacterial colonies were suspected to be Enterococcus based on colony
morphology. Of these, 197 species were confirmed using time-of-flight mass spectrom-
etry and biochemical tests. Seven species were identified: E. faecium (96/197), E. faecalis
(42/197), E. casseliflavus (23/197), E. hirae (21/197), E. avium (7/197), E. gallinarum (5/197),
E. canintestini (2/197), and E. durans (1/197) (Figure 1). Enterococcus faecalis was the most
frequently isolated species (96 strains; 48.7%), followed by E. faecium (42 strains; 21.3%).
These two species accounted for approximately 70% of all isolates.
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Figure 1. Distribution of Enterococcus strains isolated from dogs with chronic otitis externa.

3.2. Antibiotic Resistance Profile

Antibiotic susceptibility tests of the Enterococcus isolates demonstrated significant
resistance of the isolates to different classes of antibiotics. The E. faecalis isolates showed the
highest rate of resistance against erythromycin (45.8%; 44/96), followed by rifampin (34.4%;
33/96), ciprofloxacin (27.1%; 26/96), levofloxacin (25.0%; 24/96), doxycycline (19.8%;
19/96), linezolid (13.5%; 13/96), chloramphenicol (10.4%; 10/96), and other antibiotics.
The large portion of E. faecium isolates were resistant to penicillin (71.4%; 30/42), followed
by ciprofloxacin (69.0%; 29/42), levofloxacin (66.7%; 28/42), ampicillin (61.9%; 26/42),
rifampin (54.8%; 23/42), erythromycin (50.0%; 21/42), doxycycline (38.1%; 16/42), linezolid
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(23.8%; 10/42), and other antibiotics (Table 1). Five vancomycin-resistant E. faecalis (5.2%;
5/96) and E. faecium (11.9%; 5/42) strains were identified.

Table 1. The prevalence of antimicrobial resistance in Enterococcus strains isolated from chronic otitis
externa in dogs.

Antibiotics
E. faecalis E. faecium E.

casseliflavus E. hirae E. avium E. gallinarum E. canintestini E. durans

n = 96 n = 42 n = 23 n = 21 n = 7 n = 5 n = 2 n = 1

AMP 2 (2.1%) 26 (61.9%) 2 (8.7%) 1 (4.8%) 2 (28.5%) 1 (20%) 1 (50%) -
PEN 4 (4.2%) 30 (71.4%) 3 (13%) - 2 (28.5%) 1 (20%) - -
DOX 19 (19.8%) 16 (38.1%) 1 (4.3%) 4 (19%) 1 (14.3%) - - -
VAN 5 (5.2%) 5 (11.9%) 1 (4.3%) 1 (4.8%) 2 (28.5%) 2 (40%) - -
CIP 26 (27.1%) 29 (69%) 3 (13%) 4 (19%) 1 (14.3%) 1 (20%) 1 (50%) -
LVX 24 (25%) 28 (66.7%) 1 (4.3%) 2 (9.5%) 1 (14.3%) 1 (20%) 1 (50%) -
LZD 13 (13.5%) 10 (23.8%) 3 (13%) 5 (23.8%) 2 (28.5%) - - -
ERY 44 (45.8%) 21 (50%) 4 (17.4%) 1 (4.8%) 3 (42.8%) 1 (20%) - -
CHL 10 (10.4%) 2 (4.7%) 1 (4.3%) 1 (4.8%) 1 (14.3%) - 1 (50%) -
RIF 33 (34.4%) 23 (54.7%) 3 (13%) 6 (28.6%) 2 (28.5%) 2 (40%) 1 (50%) -

AMP, ampicillin; PEN, penicillin; DOX, doxycycline; VAN, vancomycin; CIP, ciprofloxacin; LVX, levofloxacin;
LZD, linezolid; ERY, erythromycin; CHL, chloramphenicol; RIF, rifampin.

Other Enterococcus species showed a relatively low ratio of antibiotic resistance. E.
hirae isolates were resistant to rifampin in 28.5%; 6/21, followed by linezolid (23.8%; 5/21),
doxycycline (19%; 4/21), and ciprofloxacin (19%; 4/21). E. casseliflavus strains were mostly
resistant to penicillin, ciprofloxacin, linezolid, and rifampin in a 13% ratio (3/23). The other
Enterococcus species strains also showed resistant strains to several antibiotics.

The antibiotic susceptibility test results of four Enterococcus species that accounted
for over 10% of the total number of isolates were categorized as resistant, intermediate,
and susceptible (Figure 2). Enterococcus faecalis showed a high percentage of intermediate
resistance to erythromycin (31.2%; 30/96), followed by ciprofloxacin (28.1%; 27/96), doxy-
cycline (23.9%; 23/96), and vancomycin (18.7%; 18/96). Enterococcus faecium showed a high
intermediate resistance rate to erythromycin (38.1%; 16/42). Other Enterococcus species
showed a relatively low percentage of antibiotic resistance.
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Figure 2. Antibiotic resistance profiles of Enterococcus strains isolated from dogs with otitis externa.
(A) E. faecalis. (B) E. faecium. (C) E. hirae. (D) E. casseliflavus. AMP, ampicillin; PEN, penicillin;
DOX, doxycycline; VAN, vancomycin; CIP, ciprofloxacin; LVX, levofloxacin; LZD, linezolid; ERY,
erythromycin; CHL, chloramphenicol; and RIF, rifampin. Striped, susceptible; gray, intermediate;
and black, resistant.
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A total of 16 vancomycin-resistant Enterococcus isolates (5 E. faecalis, 5 E. faecium, 2
E. avium, 2 E. gallinarum, 1 E. casseliflavus, and 1 E. hirae) were identified, and 27 bacterial
strains demonstrated intermediate vancomycin resistance.

Multidrug-resistance features of the Enterococcus isolates are presented for each species
(Figure 3), showing the cumulative percentage of strains that were resistant to one or
more antibiotic classes. A total of 28.4% (56/197) of the isolates were found to be MDR.
Multidrug resistance was observed more in E. faecium than in E. faecalis. Among E. faecalis
isolates, 23/96 (23.9%) were designated as MDR strains. However, 28/42 (66.7%) of E.
faecium isolates were MDR. E. faecium significantly showed a high resistance rate in four
antibiotics classes, including penicillin, tetracycline, quinolone, and rifampin (p < 0.05).
MDR isolates were also presented in the other Enterococcus species, E. avium (1/7; 14.3%), E.
casseliflavus (2/23; 8.7%), and E. canintestini (1/2; 50%).
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faecalis (23/96; 23.9%), E. faecium (28/42; 66.7%), E. avium (1/7; 14.3%), E. casseliflavus (2/23; 8.7%), E.
canintestini (1/2; 50%), and E. hirae (0/21; 0%).

4. Discussion

Enterococcus, along with Staphylococcus, is an opportunistic pathogenic genus fre-
quently detected in the external ear canal of dogs [19]. Several studies have reported
antibiotic resistance in enterococci; most have focused on the composition and resistance
patterns of Enterococcus collected from fecal, food, and environmental samples [20–23]. In
some studies on Enterococcus from the canine ear canal, E. faecalis was the most dominant
species [19,24,25]. Similarly, in this study, E. faecalis was the predominant species. This
study is one of the few to include results on the proportion of other species such as E. hirae,
E. casseliflavus, E. avium, E. gallinarum, E. canintestini, and E. durans, in addition to the major
Enterococcus strains collected from dog ears.

E. hirae infections have been reported as exceedingly rare cases in human medicine,
but the bacterial species has been regarded as a probable causative agent in veterinary
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medicine [26–32]. The infections were reported to induce septicemia, enteritis, and endo-
carditis in animals, such as chickens, rats, dogs, and pigs [24,25,31,32]. Although E. hirae is
not a main infectious microbe, infection cases in the immunocompetent have been reported,
and these cases were severe and life-threatening.

E. gallinarum and E. casseliflavus are intrinsically vancomycin-resistant enterococci
(VRE) [33–37]. These species possess the glycopeptide resistance gene C (vanC) in a highly
conserved genome region [33,34]. These species are resistant to low levels of vancomycin
due to the vanC gene [33,34]. In the case of otitis externa, this resistance feature can be
crucial. Considering the low-level antibiotic resistance, the target site must be reached at a
sufficient antibiotic concentration for effective treatment. However, because high antibiotic
concentrations are difficult to maintain in ear canals, from the perspective of treatment
strategy, these antibiotic-resistant bacteria can likely contribute to resistance arousal and
bacterial reinfection.

The resistance patterns of the strains to 10 commonly used antibiotics belonging to
eight classes (penicillins, glycopeptides, macrolides, tetracyclines, fluoroquinolones, pheni-
cols, oxazolidinones, and anamycins) were examined. The prevalence of E. faecalis was
higher than that of E. faecium. However, E. faecium had the highest antibiotic resistance
among the species. The resistance percentage of E. faecium to four antibiotic classes was
significantly higher than that of E. faecalis (penicillin, tetracycline, quinolone, and rifamycin
classes; p < 0.05), which is in accordance with Huycke et al. (1998) [38]. Huycke et al.
(1998) mentioned an alarming increase in the antibiotic resistance level of E. faecium. Re-
cent research has also represented the distributions of Enterococcus species and antibiotic
resistance profiles [19,39,40]. Each study showed different results in E. faecalis (21.3–87.7%)
and E. faecium (12.1–59.6%) prevalence and resistance patterns of isolates, but consistency
in the significant resistance rate of E. faecium (over 40%) against the penicillin class.

Previous research has found that E. faecium has a high rate of antibiotic resistance [41].
In particular, the studies focused on its resistance to cell wall inhibitory agents. According
to reports, approximately 30% of clinical isolates of E. faecium were resistant to penicillin
and even combinations with aminoglycoside antibiotics [41,42]. Compared to this study,
the resistance ratio towards penicillin class antibiotics is twice as high as reported. That
is because not only of the characteristics of E. faecium species, but also of repetitive and
prolonged antibiotic treatment.

Vancomycin resistant enterococci (VRE) are important microorganisms in clinical
practice [6,43,44]. Therapeutic alternatives against VRE are limited to recently introduced
antibiotics, such as daptomycin, linezolid, and quinupristin/dalfopristin [43]. Considering
the intermediate antibiotic resistance, the target site must be reached at the maximum
antibiotic concentration for effective treatment [45,46]. However, high drug concentrations
are difficult to maintain in ear canals because ear canal skin has been damaged, and
exudates and waxy materials in the ear canal hinder achieving enough concentrations.
From the perspective of treatment strategy, intermediate antibiotic-resistant bacteria can
likely contribute to bacterial reinfection [45,46].

Enterococcus faecalis and E. faecium showed apparent differences in penicillin class
antibiotic (ampicillin and penicillin) resistance (p < 0.05). Enterococcus faecalis showed a
resistance percentage of 2.1% to ampicillin and 4.1% to penicillin, whereas E. faecium showed
a resistance percentage of 61.9% to ampicillin and 71.4% to penicillin. In a previous study
in humans, infections by ampicillin-resistant Enterococcus have increased [47], and this is
alarming as E. faecium causes bacteremia with a higher mortality rate than E. faecalis [47,
48]. Ampicillin-resistant enterococci were found to be carried not only by humans but
also by companion animals [12,49–51]. Several studies described a high prevalence of
ampicillin-resistant enterococci in companion animals, and even lineages between human
infections [49,50].

Of the 197 isolates, 56 (28.4%) were found to be MDR strains. Previous studies
mainly discussed MDR Staphylococcus and Pseudomonas species as the main pathogens of
otitis externa [25,52,53]. However, some studies, including the present study, demonstrated
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Enterococcus bacteria and their multidrug resistance patterns [19,53]. These findings provide
a warning and highlight the emergence of antibiotic resistance in another bacterial genus.
The MDR Entericoccus can cause infections, sometimes outbreaks, and prolong therapeutic
lapses depending on infection control agents. These serial steps cause high mortality and
high costs in medical care. Nelson et al. (2022) showed MDR infections cost nearly USD
1.9 billion and resulted in over 10,000 deaths in the United States in 2017 [54]. Therefore, it
is important to monitor the resistance of Enterococcus species as an indicator of antibiotic
abuse or misuse.

Companion animals have a social function in modern times. They share living envi-
ronments with human beings, and participate in several activities. However, as human
and companion animal relations are getting closer, it is more likely to transmit zoonotic
diseases [55,56]. In terms of One Health, the zoonotic aspect is becoming a big issue. The
main topic in this section was vector-borne infectious diseases, but recently pathogenic
bacterial transmission has received attention [57]. Antimicrobial resistance bacterial infec-
tions in companion animals are examples of this [58]. Therefore, it is important to assess
microbiological risks. The risks can be transmission of infectious agents and resistance gene
transfer [59].

In this study, we evaluated the antimicrobial resistance patterns of Enterococcus species
isolated from dogs with chronic otitis externa. With the emergence of antibiotic resistance
being one of the greatest risks to public health, it is important to clarify the antibiotic
resistance of microbes and establish appropriate therapeutic strategies. The results of this
study can not only contribute to treatment strategies for Enterococcus infections but also be
used as a comparable index of antibiotic resistance for Enterococcus in the future.
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A. Antimicrobial resistance of Enterococcus spp. isolated from livestock in Lithuania. Vet. Arhiv. 2009, 79, 439–449.

13. Hamilton, E.; Kaneene, J.B.; May, K.J.; Kruger, J.M.; Schall, W.; Beal, M.W.; Hauptman, J.G.; DeCamp, C.E. Prevalence and
antimicrobial resistance of Enterococcus spp and Staphylococcus spp isolated from surfaces in a veterinary teaching hospital. J. Am.
Vet. Med. Assoc. 2012, 240, 1463–1473. [CrossRef]

14. Murray, B.E. Problems and dilemmas of antimicrobial resistance. Pharmacotherapy 1992, 12, 86S–93S.
15. Martel, J.L.; Tardy, F.; Sanders, P.; Boisseau, J. New trends in regulatory rules and surveillance of antimicrobial resistance in

bacteria of animal origin. Vet. Res. 2001, 32, 381–392. [CrossRef] [PubMed]
16. Herrero, I.A.; Fernández-Garayzábal, J.F.; Moreno, M.A.; Domínguez, L. Dogs should be included in surveillance programs for

vancomycin-resistant enterococci. J. Clin. Microbiol. 2004, 42, 1384–1385. [CrossRef] [PubMed]
17. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standard Institute: Wayne, PA,

USA, 2022.
18. Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.;

Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert
proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [CrossRef] [PubMed]

19. Jo, H.J.; Chae, H.S.; Kim, H.J.; Kim, M.J.; Park, G.N.; Kim, S.H.; Chang, K.S. High prevalence of Enterococcus spp. From dogs with
otitis externa. Korean J. Vet. Serv. 2012, 35, 99–104. [CrossRef]

20. Klare, I.; Konstabel, C.; Badstübner, D.; Werner, G.; Witte, W. Occurrence and spread of antibiotic resistances in Enterococcus
faecium. Int. J. Food Microbiol. 2003, 88, 269–290. [CrossRef]

21. Golob, M.; Pate, M.; Kušar, D.; Dermota, U.; Avberšek, J.; Papić, B.; Zdovc, I. Antimicrobial resistance and virulence genes in
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