Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Vaccines
2.4. Serological Analysis
2.5. Hematology Analysis
2.6. Somatic Cell Count (SCC)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT (Food and Agriculture Organization of the United Nations). Statistics Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 2 February 2018).
- Chazel, M.; Tardy, F.; Le Grand, D.; Calavas, D.; Poumarat, F. Mycoplasmoses of ruminants in France: Recent data from the national surveillance network. BMC Vet. Res. 2010, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loria, G.R.; Nicholas, R.A. Contagious agalactia: The shepherd’s nightmare. Vet. J. 2013, 198, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Bohach, D.M.; Stegniy, B.T.; Bohach, M.V.; Pavlov, S.L.; Bolotin, V.I. Age and Seasonal Pattern of Contagious Agalactia in Small Ruminants in Ukraine. J. Vet. Res. 2021, 65, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Jaɕ, M.; Tardy, F. Contagious Agalactia In Sheep and Goats: Current Perspectives. Vet. Med. 2019, 10, 229–247. [Google Scholar] [CrossRef]
- Lambert, M. Contagious agalactia of sheep and goats. Rev. Sci. Tech. 1987, 6, 699–711. [Google Scholar] [CrossRef]
- Thiaucourt, F.; Bolske, G. Contagious caprine pleuropneumonia and other pulmonary mycoplasmoses of sheep and goats. Rev. Sci. Tech. 1996, 15, 1397–1414. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, R.; Ayling, R.; McAuliffe, L. Chapter 8 “Contagious Agalactia”. In Mycoplasma Diseases of Ruminants; CABI: Oxford, UK, 2008; pp. 98–113. [Google Scholar]
- OIE. Contagious Agalactia. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual), 8th ed.; Chapter 3.7.3; OIE: Paris, France, 2019; Volume 1, pp. 1430–1440. [Google Scholar]
- Tolone, M.; Sutera, A.M.; Borrello, S.; Tumino, S.; Scatassa, M.L.; Portolano, B.; Puleio, R.; Nicholas, R.A.J.; Loria, G.R. E_ect of Mycoplasma agalactiae mastitis on milk production and composition in Valle dell Belice dairy sheep. Ital. J. Anim. Sci. 2019, 18, 1067–1072. [Google Scholar] [CrossRef]
- Todaro, M.; Puleio, R.; Sabelli, C.; Scatassa, M.L.; Console, A.; Loria, G.R. Determination of milk production losses in Valle del Belice sheep following experimental infection of Mycoplasma agalactiae. Small Rumin. Res. 2015, 123, 167–172. [Google Scholar] [CrossRef]
- Nicholas, R.A.J. Improvements in the diagnosis and control of diseases of small ruminants caused by mycoplasmas. Small Rumin. Res. 2002, 45, 145–149. [Google Scholar] [CrossRef]
- Loria, G.R.; Puleio, R.; Nicholas, R.A.J. Contagious Agalactia: Economic Losses and Good Practice. J. Bacteriol. Mycol. 2018, 5, 1–3. [Google Scholar]
- Corrales, J.C.; Esnal, A.; De la Fe, C.; Sánchez, A.; Assunçao, P.; Poveda, J.B.; Contreras, A. Contagious agalactia in small ruminants. Small Rumin. Res. 2007, 68, 154–166. [Google Scholar] [CrossRef]
- OIE. Contagious Agalactia. In OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees); OIE: Paris, France, 2008; pp. 992–999. [Google Scholar]
- Kumar, A.; Rahal, A.; Chakraborty, S.; Verma, A.K.; Dhama, K. Mycoplasma agalactiae, an Etiological Agent of Contagious Agalactia in Small Ruminants: A Review. Vet Med. Int. 2014, 2014, 286752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cillara, G.; Manca, M.G.; Longheu, C.; Tola, S. Discrimination between Mycoplasma mycoides subsp. capri and Mycoplasma capricolum subsp. capricolum using PCR-RFLP and PCR. Vet. J. 2015, 205, 421–423. [Google Scholar] [PubMed]
- Poumarat, F.; Gautier-Bouchardon, A.V.; Bergonier, D.; Gay, E.; Tardy, F. Diversity and variation in antimicrobial susceptibility patterns over time in Mycoplasma agalactiae isolates collected from sheep and goats in France. J. Appl. Microbiol. 2016, 120, 1208–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliore, S.; Puleio, R.; Nicholas, R.A.J.; Loria, G.R. Mycoplasma agalactiae: The Sole Cause of Classical Contagious Agalactia? Animals 2021, 11, 1782. [Google Scholar] [CrossRef]
- Dudek, K.; Sevimli, U.; Migliore, S.; Jafarizadeh, A.; Loria, G.R.; Nicholas, R.A.J. Vaccines for Mycoplasma Diseases of Small Ruminants: A Neglected Area of Research. Pathogens 2022, 11, 75. [Google Scholar] [CrossRef]
- Loria, G.R.; Sammartino, C.; Nicholas, R.A.J.; Ayling, R.D. In vitro susceptibilities of field isolates of Mycoplasma agalactiae to oxytetracycline, tylosin, enrofloxacin, spiramycin and lincomycin-spectinomycin. Res. Vet. Sci. 2003, 75, 3–7. [Google Scholar] [CrossRef]
- De La Fe, C.; Assunção, P.; Saavedra, P.; Tola, S.; Poveda, C.; Poveda, J.B. Field trial of two dual vaccines against Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides (large colony type) in goats. Vaccine 2007, 25, 2340–2345. [Google Scholar]
- Buonavoglia, D.; Greco, G.; Corrente, M.; Greco, M.F.; D’Abramo, M.; Latronico, F.; Fasanella, A.; Decaro, N. Long-term immunogenicity and protection against Mycoplasma agalactiae induced by an oil adjuvant vaccine in sheep. Res. Vet. Sci. 2010, 88, 16–19. [Google Scholar] [CrossRef]
- Agnone, A.; La Manna, M.; Sireci, G.; Puleio, R.; Usticano, A.; Ozdemir, U.; Nicholas, R.A.J.; Chiaracane, V.; Dieli, F.; Di Marco, V.; et al. A comparison of the efficacy of commercial and experimental vaccines for contagious agalactia in sheep. Small Rumin. Res. 2013, 112, 230–234. [Google Scholar] [CrossRef]
- Orabi, A.; Hussein, A.; Saleh, A.A.; El-Magd, M.A.; Munir, M. Evolutionary insights into the fusion protein of Newcastle disease virus isolated from vaccinated chickens in 2016 in Egypt. Arch. Virol. 2017, 162, 3069–3079. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A. (Eds.) Vaccines, 5th ed.; Saunders: Philadelphia, PA, USA, 2008. [Google Scholar]
- Orenstein, W.A.; Bernier, R.H.; Dondero, T.J.; Hinman, A.R.; Marks, J.S.; Bart, K.J.; Sirotkin, B. Field evaluation of vaccine efficacy. Bull World Health Organ. 1985, 63, 1055–1068. [Google Scholar] [PubMed]
- Marks, J.S.; Hayden, G.F.; Orenstein, W.A. Methodologic issues in the evaluation of vaccine effectiveness: Measles vaccine at 12 vs. 15 months. Am. J. Epidemiol. 1982, 116, 510–523. [Google Scholar] [CrossRef]
- Nickerson, S.C.; Owens, W.E.; Boddie, R.L. Effect of a Staphylococcus aureus bacterin on serum antibody, new infection, and mammary histology in nonlactating dairy cows. J Dairy Sci. 1993, 76, 1290–1297. [Google Scholar] [CrossRef]
- Hayflick, L. Tissue culture and mycoplasmas. Texas Rep. Biol. Med. 1965, 23, 285–303. [Google Scholar]
- Mogoş, G.; Daneş, M.; Daneş, D. Potency evaluation of two commercial vaccines against contagious agalactia of small ruminants. Sci. Works Ser. C Vet. Med. 2021, LXVII, 103–107. [Google Scholar]
- Gonzalo, C.; Baro, J.A.; Carriedo, J.A.; Primitivo, F.S. Use of the Fossomatic method to determine somatic cell counts in sheep milk. J. Dairy Sci. 1993, 76, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Ogle, D.H. Chapter 8 “Condition”. In Introductory Fisheries Analyses with R, 1st ed.; Chapman & Hall/CRC The R Series; Taylor & Francis Group, LLC: New York, NY, USA, 2016; pp. 153–168. [Google Scholar]
- Day, M.J. “Clinical Immunology of the Dog and Cat” in Vaccination, 2nd ed.; Manson Publishing: Bristol, UK, 2012; pp. 413–430. [Google Scholar]
- Saléry, M. Autogenous vaccines in Europe: National approaches to authorisation. Regul. Rapp. 2017, 14, 27–30. [Google Scholar]
- Vanhee, M.; Delputte, P.L.; Delrue, I.; Geldhof, M.F.; Nauwynck, H.J. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies. Vet. Res. 2009, 40, 63. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, V.; Manickam, C.; Binjawadagi, B.; Joyappa, D.; Renukaradhya, G.J. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs. PLoS ONE 2012, 7, e51794. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.; Manickam, C.; Binjawadagi, B.; Renukaradhya, G.J. PLGA nanoparticle entrapped killed porcine reproductive and respiratory syndrome virus vaccine helps in viral clearance in pigs. Vet. Microbiol. 2013, 166, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.; Azevedo, E.O.; Alcântara, M.D.B.; Silva, R.B.S.; Cordeiro, A.A.; Mamede, A.G.; Melo, M.A.; Rosendo Nascimento, E.; Castro, R.S. Efficiency of inactive vaccines against contagious agalactia in Brazil. Arq. Bras. Med. Vet. Zootec. 2013, 65, 1394–1402. [Google Scholar] [CrossRef] [Green Version]
- Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Shi, J. Adjuvants for Animal Vaccines. Viral Immunol. 2017, 31, 11–22. [Google Scholar] [CrossRef]
- Shardlow, E.; Mold, M.; Exley, C. Unraveling the enigma: Elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy Asthma Clin. Immunol. 2018, 14, 80. [Google Scholar] [CrossRef]
- de Miguel, R.; Asín, J.; Rodríguez-Largo, A.; Echeverría, I.; Lacasta, D.; Pinczowski, P.; Gimeno, M.; Molín, J.; Fernández, A.; de Blas, I.; et al. Growth Performance and Clinicopathological Analyses in Lambs Repetitively Inoculated with Aluminum-Hydroxide Containing Vaccines or Aluminum-Hydroxide Only. Animals 2021, 11, 146. [Google Scholar] [CrossRef]
- Morefield, G.L.; Tammariello, R.F.; Purcell, B.K.; Worsham, P.L.; Chapman, J.; Smith, L.A.; Alarcon, J.B.; Mikszta, J.A.; Ulrich, R.G. An alternative approach to combination vaccines: Intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock. J. Immune Based Ther. Vaccines 2008, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Corrente, M.; Buonavoglia, D.; Aliberti, A.; Fasanella, A. Inactivated vaccine induces protection against Mycoplasma agalactiae infection in sheep. New Microbiol. 2002, 25, 17–20. [Google Scholar]
- Tola, S.; Manunta, D.; Rocca, S.; Rocchigiani, A.M.; Idini, G.; Angioi, A.; Leori, G. Experimental vaccination of against Mycoplasma agalactiae using different inactivated vaccine. Vaccine 1999, 17, 2764–2768. [Google Scholar] [CrossRef]
- Galluzzo, P.; Migliore, S.; Puleio, R.; Galuppo, L.; La Russa, F.; Blanda, V.; Tumino, S.; Torina, A.; Ridley, A.; Loria, G.R. Detection of Mycoplasma agalactiae in Ticks (Rhipicephalus bursa) Collected by Sheep and Goats in Sicily (South-Italy), Endemic Area for Contagious Agalactia. Microorganisms 2021, 9, 2312. [Google Scholar] [CrossRef]
- Safini, N.; Elmejdoub, S.; Bamouh, Z.; Jazouli, M.; Hamdi, J.; Boumart, Z.; Rhazi, H.; Tadlaoui, K.O.; El Harrak, M. Development and Evaluation of a Combined Contagious Bovine Pleuropneumonia (CBPP) and Lumpy Skin Disease (LSD) Live Vaccine. Viruses 2022, 14, 372. [Google Scholar] [CrossRef] [PubMed]
- Bourry, O.; Fablet, C.; Simon, G.; Marois-Créhan, C. Efficacy of Combined Vaccination against Mycoplasma Hyopneumoniae and Porcine Reproductive and Respiratory Syndrome Virus in Dually Infected Pigs. Vet. Microbiol. 2015, 180, 230–236. [Google Scholar] [CrossRef]
- Witvliet, M.; Holtslag, H.; Nell, T.; Segers, R.; Fachinger, V. Efficacy and Safety of a Combined Porcine Circovirus and Mycoplasma Hyopneumoniae Vaccine in Finishing Pigs. Trials Vaccinol. 2015, 4, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, N.J.; Donachie, W.; Sutherland, A.D.; Gilmour, J.S.; Jones, G.E.; Quirie, M. Vaccine containing iron-regulated proteins of Pasteurella haemolytica A2 enhances protection against experimental pasteurellosis in lambs. Vaccine 1991, 9, 137–140. [Google Scholar] [CrossRef]
- Makoschey, B.; Bielsa, J.M.; Oliviero, L.; Roy, O.; Pillet, F.; Dufe, D.; Valla, G.; Cavirani, S. Field efficacy of combination vaccines against bovine respiratory pathogens in calves. Acta Vet. Hung. 2008, 56, 485–493. [Google Scholar] [CrossRef]
- El Sayed, M.F.; Soliman, R.A.; Ghanem, H.M.; Khedr, M.M.S.; Mohamed, G.M.; El Safty, M.M.D. (2021) Trials for preparation and evaluation of a combined inactivated reassorted H5N1 and Escherichia coli O157 vaccine in poultry. Vet. World 2021, 14, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.S.; Abdelhady, H.A.; Atia, L. Field application for experimental inactivated multivalent P. multocida and avian influenza (H9N2) vaccine in poultry. Slov. Vet. Res. 2019, 56, 789–795. [Google Scholar]
- Ghanem, H.; ElEnbawy, M.P.; Afifi, M.; Soliman, I.; Khodier, L. Efficacy of montanide ISA-70-VG as adjuvant to fowl cholera vaccine. J. Vet. Adv. 2015, 5, 848. [Google Scholar] [CrossRef] [Green Version]
- Amanova, Z.; Zhugunissov, K.; Barakbayev, K.; Kondybaeva, Z.; Sametova, Z.; Shayakhmetov, Y.; Kaissenov, D.; Dzhekebekov, K.; Zhunushov, A.; Abduraimov, Y.; et al. Duration of Protective Immunity in Sheep Vaccinated with a Combined Vaccine against Peste des Petits Ruminants and Sheep Pox. Vaccines 2021, 9, 912. [Google Scholar] [CrossRef]
- Fakri, F.Z.; Embarki, T.; Baha, W.; Tadlaoui, K.O.; Fihri, O.F.; El Harrak, M. Large mass vaccination of small ruminants against Peste des Petits Ruminants and Sheeppox using a combined live attenuated vaccine. J. Vet. Med. Res. 2020, 7, 1200. [Google Scholar]
- Schmitt, H.J.; Knuf, M.; Ortiz, E.; Sänger, R.; Uwamwezi, M.C.; Kaufbold, A. Primary vaccination of infants with diphtheria-tetanus-acellular pertussishepatitis B virus-inactivated polio virus and Haemophilus influenza type b vaccines given as either separate or mixed injections. J. Pediatr. 2000, 137, 304–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsey, N.A. Combination vaccines: Defining and addressing current safety concerns. Clin. Infect. Dis. 2001, 33, s312–s318. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.L.; Allison, R.W. Evaluation of the ruminant complete blood cell count. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 377–402. [Google Scholar] [CrossRef] [PubMed]
- Deniset, J.F.; Kubes, P. Neutrophil heterogeneity: Bona fide subsets or polarization states? J. Leukoc. Biol. 2018, 103, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, A.; Puga, I.; Magri, G. The B cell helper side of neutrophils. J. Leukoc. Biol. 2013, 94, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Simell, B.; Vuorela, A.; Ekstrom, N.; Palmu, A.; Reunanen, A.; Meri, S.; Käyhty, H.; Väkeväinen, M. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 2011, 29, 1929–1934. [Google Scholar] [CrossRef]
- Tchalla, E.Y.I.; Bhalla, M.; Wohlfert, E.A.; Bou Ghanem, E.N. Neutrophils are required during immunization with the pneumococcal conjugate vaccine for protective antibody responses and host defense against infection. J. Infect. Dis. 2020, 222, 1363–1370. [Google Scholar] [CrossRef]
- Vallance, T.M.; Zeuner, M.-T.; Williams, H.F.; Widera, D.; Vaiyapuri, S. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediat. Inflamm. 2017, 2017, 9605894. [Google Scholar] [CrossRef]
- Sharron, M.; Hoptay, C.E.; Wiles, A.A.; Garvin, L.M.; Geha, M.; Benton, A.S.; Nagaraju, K.; Freishtat, R.J. Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIIb/IIIa blockade. PLoS ONE 2012, 7, e41549. [Google Scholar] [CrossRef]
- Rossaint, J.; Margraf, A.; Zarbock, A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front. Immunol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, D.; Murphy, C.A.; Drew, R.; El-Khuffash, A.; Maguire, P.B.; Ainle, F.N.; Mc Callion, N. Platelets in pediatric and neonatal sepsis: Novel mediators of the inflammatory cascade. Pediatr. Res. 2022, 91, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Palm, F.; Sjöholm, K.; Malmström, J.; Shannon, O. Complement activation occurs at the surface of platelets activated by Streptococcal M1 protein and this results in phagocytosis of platelets. J. Immunol. 2019, 202, 503–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, M.E.; Becker, R.E.N.; Sailer, A.; Turner, J.R.; Bubeck, W.J. Synergistic action of Staphylococcus aureus α-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 2015, 17, 775–787. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, L.; Kerrigan, S.W.; Kaw, G.; Hogan, M.; Penadés, J.; Litt, D.; Fitzgerald, D.J.; Foster, T.J.; Cox, D. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: Roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol. Microbiol. 2002, 44, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Schultz, C.M.; Goel, A.; Dunn, A.; Knauss, H.; Huss, C.; Launder, D.; Wuescher, L.M.; Conti, H.R.; Worth, R.G. Stepping Up to the Plate(let) against Candida albicans. Infect. Immun. 2020, 88, e00784-19. [Google Scholar] [CrossRef]
- Rødland, E.K.; Ueland, T.; Pedersen, T.M.; Halvorsen, B.; Muller, F.; Aukrust, P.; Frøland, S.S. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of Aspergillosis. Infect. Immun. 2010, 78, 1269–1275. [Google Scholar] [CrossRef] [Green Version]
- Sharif, A.; Muhammad, G. Somatic cell count as an indicator of udder health status under modern dairy production: A review. Pak. Vet. J. 2008, 28, 194–200. [Google Scholar]
- Tolone, M.; Riggio, V.; Portolano, B. Estimation of genetic and phenotypic parameters for bacteriological status of the udder, somatic cell score, and milk yield in dairy sheep using a threshold animal model. Livest. Sci. 2013, 151, 134–139. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562–577. [Google Scholar] [CrossRef] [Green Version]
- Paape, M.J.; Poutrel, B.; Contreras, A.; Marco, J.C.; Capuco, A.V. Milk somatic cells and lactation in small ruminants. J. Dairy Sci. 2001, 84, 237–244. [Google Scholar] [CrossRef]
- Hussein, H.A.; Fouad, M.T.; Abd El-Razik, K.A.; Abo El-Maaty, A.M.; D’Ambrosio, C.; Scaloni, A.; Gomaa, A.M. Study on prevalence and bacterial etiology of mastitis, and effects of subclinical mastitis and stage of lactation on SCC in dairy goats in Egypt. Trop. Anim. Health Prod. 2020, 52, 3091–3097. [Google Scholar] [CrossRef]
- Kautz, F.M.; Nickerson, S.C.; Ely, L.O. Use of a staphylococcal vaccine to reduce prevalence of mastitis and lower somatic cell counts in a registered Saanen dairy goat herd. Res. Vet. Sci. 2014, 97, 18–19. [Google Scholar] [CrossRef] [PubMed]
- Hermesch, D.R.; Thomson, D.U.; Loneragan, G.H.; Renter, D.R.; White, B.J. Effects of a commercially available vaccine against Salmonella enterica serotype Newport on milk production, somatic cell count, and shedding of Salmonella organisms in female dairy cattle with no clinical signs of salmonellosis. Am. J. Vet. Res. 2008, 69, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, A.; Athar, M.; Muhammad, G.; Rahman, S.U.; Butt, A.A.; Hussain, I.; Ahmad, R. Effect of different Staphylococcus Aureus mastitis vaccines on milk yield, fat, protein and somatic cell count in buffaloes. Pak. Vet. J. 2006, 26, 67–72. [Google Scholar]
- Guccione, J.; Pesce, A.; Pascale, M.; Salzano, C.; Tedeschi, G.; D’Andrea, L.; De Rosa, A.; Ciaramella, P. Efficacy of a polyvalent mastitis vaccine against Staphylococcus aureus on a dairy Mediterranean buffalo farm: Results of two clinical field trials. BMC Vet. Res. 2017, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraudo, J.A.; Calzolari, A.; Rampone, H.; Rampone, A.; Giraudo, A.T.; Bogni, C.; Larriesta, A.; Nagel, A. Field trials of a vaccine against bovine mastitis. 1. Evaluation in heifers. J. Dairy Sci. 1997, 80, 845–853. [Google Scholar] [CrossRef]
- Hoedemaker, M.; Korff, B.; Edler, B.; Emmert, M.; Bleckmann, E. Dynamics of Staphylococcus aureus infections during vaccination with an autogenous bacterin in dairy cattle. J. Vet. Med. B 2001, 48, 373–383. [Google Scholar] [CrossRef]
- Tenhagen, B.A.; Edinger, D.; Baumgärtner, B.; Kalbe, P.; Klunder, G.; Heuwieser, W. Efficacy of a herd-spesific vaccine against Staphylococcus aureus to prevent post-partum mastitis in dairy heifers. J. Vet. Med. A 2001, 48, 601–607. [Google Scholar] [CrossRef]
Variable | Control Group Mean ± SD | Mono-Valent Group Mean ± SD | Bi-Valent Group Mean ± SD | Kruskal-Wallis H (p-Value) |
---|---|---|---|---|
Rz value (Ab titer) | 0.67 ± 0.37 | 3.8 ± 2.60 | 5.54 ± 3.21 | 2.2 × 10−16 |
WBCs (×106/mL) | 7.2 ± 1.54 | 8.35± 2.10 | 3.87 ± 1.76 | 3.1 × 10−4 |
NEU (×106/mL) | 2.62 ± 0.91 | 2.77 ± 1.23 | 3.87 ± 1.76 | 3.9 × 10−5 |
LYM (×106/mL) | 3.24 ± 1.22 | 4.05 ± 1.59 | 3.66 ± 2.18 | 0.053 |
MONO (×106/mL) | 0.97 ± 0.60 | 1.07 ± 0.76 | 0.99 ± 0.67 | 0.834 |
EOS (×106/mL) | 0.33 ± 0.30 | 0.34 ± 0.26 | 0.28 ± 0.26 | 0.250 |
RBCs (×109/mL) | 7.96 ± 1.52 | 7.64 ± 0.80 | 7.37 ± 1.16 | 8.2 × 10−3 |
HB (g/dL) | 9.05 ± 1.14 | 8.73 ± 0.65 | 8.75 ± 1.03 | 0.038 |
HCT (%) | 22.2 ± 3.18 | 21.8 ± 2.21 | 21.06 ± 2.88 | 0.12 |
PLAT (×106/mL) | 517.12 ± 156.46 | 495.02 ± 198.62 | 739.39 ± 219.00 | 6.39 × 10−8 |
SCC | 1795 ± 4279 | 1085 ± 2349 | 1920 ± 5308 | 0.697 |
Variable | Group | Z-Test-Statistics | p-Adjusted |
---|---|---|---|
Rz value | Control-Mono | −7.21 | 1.64 × 10−12 |
Control-Bivalent | −9.70 | 8.74 × 10−22 | |
Mono-Bivalent | −2.41 | 0.047 | |
WBCS | Control-Mono | −2.91 | 0.01 |
Control-Bivalent | −3.8 | 0.00 | |
Mono-Bivalent | −0.83 | 1.00 | |
NEU | Control-Mono | −0.59 | 1.00 |
Control-Bivalent | −4.24 | 6.68 × 10−5 | |
Mono-Bivalent | −3.49 | 1.42× 10−3 | |
RBCs | Control-Mono | 2.2 | 0.08 |
Control-Bivalent | 2.95 | 0.01 | |
Mono-Bivalent | 0.7 | 1.00 | |
HB | Control-Mono | 2.43 | 0.046 |
Control-Bivalent | 1.82 | 0.21 | |
Mono-Bivalent | −0.6 | 1.00 | |
PLAT | Control-Mono | 0.37 | 1.00 |
Control-Bivalent | −4.95 | 2.27 × 10−6 | |
Mono-Bivalent | −5.08 | 1.14 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.A.; Tolone, M.; Condorelli, L.; Galluzzo, P.; Puleio, R.; Vazzana, I.; Scatassa, M.L.; Marogna, G.; Barreca, S.; Loria, G.R.; et al. Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Vet. Sci. 2022, 9, 651. https://doi.org/10.3390/vetsci9120651
Hussein HA, Tolone M, Condorelli L, Galluzzo P, Puleio R, Vazzana I, Scatassa ML, Marogna G, Barreca S, Loria GR, et al. Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Veterinary Sciences. 2022; 9(12):651. https://doi.org/10.3390/vetsci9120651
Chicago/Turabian StyleHussein, Hany A., Marco Tolone, Lucia Condorelli, Paola Galluzzo, Roberto Puleio, Irene Vazzana, Maria Luisa Scatassa, Gavino Marogna, Santino Barreca, Guido Ruggero Loria, and et al. 2022. "Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep" Veterinary Sciences 9, no. 12: 651. https://doi.org/10.3390/vetsci9120651
APA StyleHussein, H. A., Tolone, M., Condorelli, L., Galluzzo, P., Puleio, R., Vazzana, I., Scatassa, M. L., Marogna, G., Barreca, S., Loria, G. R., Galuppo, L., & Migliore, S. (2022). Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Veterinary Sciences, 9(12), 651. https://doi.org/10.3390/vetsci9120651