Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries
Abstract
:1. Introduction
2. The Current Worldwide Dairy Sector
2.1. Dairy Sector Dynamics and Milk Consumption
2.2. EU Milk Quotas, Their Abolition, and the Economy of Scale
3. Milk Production: From Rearing to Milking
3.1. Dairy Cattle Breeds
3.2. Genetic Improvement of Dairy Cattle
3.3. Rearing Calves and Heifers
3.4. Pasture-Based Systems versus Indoor Systems
3.5. Nutritional and Feeding Management
3.6. The Milking Process
4. The Control of Production Programs
5. Veterinary Herd Health Management and Future Perspectives
- (1)
- Milk quality programs: Mastitis is one of the most serious diseases in dairy cows worldwide [155]. This pathology is defined as an inflammation of the mammary gland, and can be caused by several bacterial and fungi agents, which lead to contagious mastitis or environmental mastitis [172]. We observe both clinical mastitis (with alteration in the consistency of the milk, in the udder, or in the animal) and subclinical mastitis (there is only an increase in SCC) [173]. Cows with this pathology represent significant economic losses (approximately EUR 120 per year), mainly due to decreased milk production, discarded milk, and medication costs [174]. Relevant advances in the diagnosis, treatment, and prevention of this disease have been achieved, such as improved management and increased hygiene in milking; correct management of dry and postpartum periods, and the development of vaccines against the main disease-causing agents [172]. Despite all these advances, mastitis remains one of the main causes of culling in dairy farms worldwide [175,176].
- (2)
- Peripartum health: The transition period, between the end of drying and the beginning of milk production, is a very sensitive moment in the dairy cow’s productive life. A greater energy supply is needed to meet the metabolic demands (for pregnancy and, later, for lactation), thus increasing the risk of metabolic diseases (e.g., hypocalcaemia and ketosis), and of infectious origin (e.g., metritis and mastitis) [177,178]. The low energy feeding in pre-partum period (poor dry cow management), and stress (social and nutritional), caused by the calving events, can lead to metabolic diseases as well [179]. According to Leblanc et al., 75% of dairy cows that fall sick, fall sick in the first month postpartum, an interval where a series of hormonal and metabolic changes occur, making them highly susceptible to sickness [166].
- (3)
- Biosecurity: It is crucial to prevent the introduction or spread of many multifactorial diseases within cows and within farms [180]. This control involves regular testing of the herd (serology, milk tank analyses, among others), quarantine and testing of purchased animals, hygiene and disinfection of spaces, and controlled visits to the farm, with the farm’s own clothing [181]. The implementation of biosecurity measures improves the health and welfare of the herds, with an increase in their productivity [182]. In addition, it is known that there is a reduced use of antibiotics on farms where these measures are applied [183]. This aspect is in line with the wishes of the Society and concretely with the European Commission, which aims to reduce the use of antibiotics and resistance to them [184]. The use of vaccines in the prevention of various pathologies can also be included in the batch of biosecurity measures. Vaccination plans were introduced in dairy farms in 1970, to reduce the incidence and prevalence of various pathologies. Dairy farms with effective and strict vaccination programs have higher productivity, and better fertility indicators [180,185,186,187]. It is in northern European countries that we see a greater adoption of vaccination and control protocols, with several national eradication programs successfully running. In fact, pathologies such as tuberculosis, infectious bovine rhinotracheitis, and bovine viral diarrhoea, amongst others, have already been eradicated in many regions [28].
- (4)
- Systematic reproduction control programs: These programs are associated with reproductive monitoring [188]. Reproduction is one of the essential pillars of dairy cows’ yield [177], since each calving is followed by lactation. Farms with poor reproductive performance indicators, incur large economic losses and high rates of culling [189]. The continuous reproductive monitoring conducted by veterinarians is mainly composed of routine pregnancy diagnoses, gynaecological evaluation (uterus and ovaries), mainly in the postpartum period, and monitoring of herd index, such as oestrus detection rate and pregnancy rate [190]. According to Inchaisri et al., inappropriate reproductive management, represents an estimated loss of EUR 231 per cow per year, which is due to the long calving interval, and the consequent decrease in milk yield [191].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Dairy Market Review 2021. Available online: http://www.fao.org/3/cb4230en/cb4230en.pdf (accessed on 24 July 2021).
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The Environmental Impact of Dairy Production: 1944 Compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Maltz, E. Individual Dairy Cow Management: Achievements, Obstacles and Prospects. J. Dairy Res. 2020, 87, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Oxley, L.; Rae, A.; Fan, C.; Huang, J.; Rozelle, S. The Evolution of Productivity Performance on China’s Dairy Farms in the New Millennium. J. Dairy Sci. 2012, 95, 7074–7085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuffey, R.K.; Shirley, J.E. Introduction|History of Dairy Farming. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 2–11. ISBN 978-0-12-374407-4. [Google Scholar]
- O’Connor, A.H.; Bokkers, E.A.M.; de Boer, I.J.M.; Hogeveen, H.; Sayers, R.; Byrne, N.; Ruelle, E.; Engel, B.; Shalloo, L. Cow and Herd-Level Risk Factors Associated with Mobility Scores in Pasture-Based Dairy Cows. Prev. Vet. Med. 2020, 181, 105077. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, S.; Laven, R.; Müller, K.; Kells, N. Animal Welfare Assessment: Can We Develop a Practical, Time-Limited Assessment Protocol for Pasture-Based Dairy Cows in New Zealand? Animals 2020, 10, 1918. [Google Scholar] [CrossRef]
- de Almeida, A.M.; Alvarenga, P.; Fangueiro, D. The Dairy Sector in the Azores Islands: Possibilities and Main Constraints towards Increased Added Value. Trop. Anim. Health Prod. 2020, 53, 40. [Google Scholar] [CrossRef]
- Moscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited Review: A 2020 Perspective on Pasture-Based Dairy Systems and Products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef]
- John, A.J.; Clark, C.E.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Review: Milking Robot Utilization, a Successful Precision Livestock Farming Evolution. Anim. Int. J. Anim. Biosci. 2016, 10, 1484–1492. [Google Scholar] [CrossRef]
- Wildridge, A.M.; Thomson, P.C.; Garcia, S.C.; Jongman, E.C.; Kerrisk, K.L. Transitioning from Conventional to Automatic Milking: Effects on the Human-Animal Relationship. J. Dairy Sci. 2020, 103, 1608–1619. [Google Scholar] [CrossRef]
- Dairy Farming History. Available online: https://www.americandairy.com/dairy-farms/history/ (accessed on 23 June 2021).
- Marinoudi, V.; Sørensen, C.; Pearson, S.; Bochtis, D. Robotics and Labour in Agriculture. A Context Consideration. Biosyst. Eng. 2019, 184, 111–121. [Google Scholar] [CrossRef]
- Rajkhowa, P.; Kubik, Z. Revisiting the Relationship between Farm Mechanization and Labour Requirement in India. Indian Econ. Rev. 2021, 56, 487–513. [Google Scholar] [CrossRef]
- Augère-Granier, L.-L. The EU Dairy Sector: Main Features, Challenges and Prospects; European Parliamentary Research Service: London, UK, 2018; Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2018)630345 (accessed on 21 January 2022).
- UN Food and Agricultural Organization (FAO). Published Online at OurWorldInData.org. Available online: https://ourworldindata.org/grapher/milk-production-tonnes (accessed on 4 March 2022).
- Currier, R.W.; Widness, J.A. A Brief History of Milk Hygiene and Its Impact on Infant Mortality from 1875 to 1925 and Implications for Today: A Review. J. Food Prot. 2018, 81, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Hernández Adell, I.; Muñoz Pradas, F.; Pujol-Andreu, J. A New Statistical Methodology for Evaluating the Diffusion of Milk in the Spanish Population: Consumer Groups and Milk Consumption, 1865–1981. Investig. Hist. Económica 2019, 15, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Kebede, B.; Chen, G.; McComb, K.; Frew, R. Effects of the Vat Pasteurization Process and Refrigerated Storage on the Bovine Milk Metabolome. J. Dairy Sci. 2020, 103, 2077–2088. [Google Scholar] [CrossRef]
- Timon, C.M.; O’Connor, A.; Bhargava, N.; Gibney, E.R.; Feeney, E.L. Dairy Consumption and Metabolic Health. Nutrients 2020, 12, 3040. [Google Scholar] [CrossRef]
- Pereira, P.C. Milk Nutritional Composition and Its Role in Human Health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Lee, M.-S.; Wahlqvist, M.L.; Peng, C.-J. Dairy Foods and Health in Asians: Taiwanese Considerations. Asia Pac. J. Clin. Nutr. 2015, 24 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef]
- Lukito, W.; Malik, S.G.; Surono, I.S.; Wahlqvist, M.L. From “lactose Intolerance” to “Lactose Nutrition”. Asia Pac. J. Clin. Nutr. 2015, 24 (Suppl. 1), S1–S8. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 24 February 2022).
- Dekker, P.; Koenders, D.; Bruins, M. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT Archive:Milk and Milk Products—30 Years of Quotas. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Milk_and_milk_products_-_30_years_of_quotas (accessed on 24 July 2021).
- Schulte, H.D.; Musshoff, O.; Meuwissen, M.P.M. Considering Milk Price Volatility for Investment Decisions on the Farm Level after European Milk Quota Abolition. J. Dairy Sci. 2018, 101, 7531–7539. [Google Scholar] [CrossRef] [Green Version]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited Review: Changes in the Dairy Industry Affecting Dairy Cattle Health and Welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks, M.; van Werven, T.; Hogeveen, H.; Kremer, W.D.J. Veterinary Herd Health Management Programs on Dairy Farms in the Netherlands: Use, Execution, and Relations to Farmer Characteristics. J. Dairy Sci. 2013, 96, 1623–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devitt, C.; McKenzie, K.; More, S.J.; Heanue, K.; McCoy, F. Opportunities and Constraints to Improving Milk Quality in Ireland: Enabling Change through Collective Action. J. Dairy Sci. 2013, 96, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Dairy and Dairy Products|OECD-FAO Agricultural Outlook 2020–2029|OECD ILibrary. Available online: https://www.oecd-ilibrary.org/sites/aa3fa6a0-en/index.html?itemId=/content/component/aa3fa6a0-en (accessed on 24 June 2021).
- Zachut, M.; Šperanda, M.; de Almeida, A.M.; Gabai, G.; Mobasheri, A.; Hernández-Castellano, L.E. Biomarkers of Fitness and Welfare in Dairy Cattle: Healthy Productivity. J. Dairy Res. 2020, 87, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannas da Silva, J.; Noordhuizen, J.P.T.M.; Vagneur, M.; Bexiga, R.; Gelfert, C.C.; Baumgartner, W. Veterinary Dairy Herd Health Management in Europe: Constraints and Perspectives. Vet. Q. 2006, 28, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendiville, R.; Pierce, K.M.; Buckley, F. An evaluation of production efficiencies among lactating Holstein-Friesian, Jersey, and Jersey × Holstein-Friesian cows at pasture. J. Dairy Sci. 2009, 92, 6176–6185. [Google Scholar] [CrossRef] [PubMed]
- McClearn, B.; Delaby, L.; Gilliland, T.J.; Guy, C.; Dineen, M.; Coughlan, F.; Buckley, F.; McCarthy, B. An Assessment of the Production, Reproduction, and Functional Traits of Holstein-Friesian, Jersey × Holstein-Friesian, and Norwegian Red × (Jersey × Holstein-Friesian) Cows in Pasture-Based Systems. J. Dairy Sci. 2020, 103, 5200–5214. [Google Scholar] [CrossRef]
- Windsor, P.; Agerholm, J. Inherited Diseases of Australian Holstein-Friesian Cattle. Aust. Vet. J. 2009, 87, 193–199. [Google Scholar] [CrossRef]
- Andrade, S.C.N. Desempenho Produtivo e Reprodutivo de vacas Holstein-Frísia em Comparação com os Respectivos Cruzamentos com Vermelha Sueca e Montbéliarde. Master’s Thesis, ISA, Lisbon, Portugal, 2013. Available online: https://www.repository.utl.pt/handle/10400.5/6490 (accessed on 22 January 2022).
- Cornell University Library Digital Collections Bookreader. Available online: http://reader.library.cornell.edu/docviewer/digital?id=chla2927933#mode/1up (accessed on 2 October 2021).
- Radwan, H.; El Qaliouby, H.; Elfadl, E.A. Classification and Prediction of Milk Yield Level for Holstein Friesian Cattle Using Parametric and Non-Parametric Statistical Classification Models. J. Adv. Vet. Anim. Res. 2020, 7, 429–435. [Google Scholar] [CrossRef]
- Ma, L.; Cole, J.B.; Da, Y.; VanRaden, P.M. Symposium Review: Genetics, Genome-Wide Association Study, and Genetic Improvement of Dairy Fertility Traits. J. Dairy Sci. 2019, 102, 3735–3743. [Google Scholar] [CrossRef] [Green Version]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and Genetic Selection of Economically Important Traits in Dairy Cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Villalobos, N.; Wiles, P.G.; Garrick, D.J. Sire Selection and Genetic Improvement of Dairy Cattle Assuming Pure Market Competition. J. Dairy Sci. 2020, 103, 4532–4544. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A. Economic Trade-Offs between Genetic Improvement and Longevity in Dairy Cattle. J. Dairy Sci. 2017, 100, 4184–4192. [Google Scholar] [CrossRef] [PubMed]
- Salimiyekta, Y.; Vaez-Torshizi, R.; Abbasi, M.A.; Emmamjome-Kashan, N.; Amin-Afshar, M.; Guo, X.; Jensen, J. Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population. Animals 2021, 11, 3492. [Google Scholar] [CrossRef] [PubMed]
- Whitt, C.E.; Tauer, L.W.; Huson, H. Bull Efficiency Using Dairy Genetic Traits. PLoS ONE 2019, 14, e0223436. [Google Scholar] [CrossRef]
- VanRaden, P.M. Symposium Review: How to Implement Genomic Selection. J. Dairy Sci. 2020, 103, 5291–5301. [Google Scholar] [CrossRef]
- Gutierrez-Reinoso, M.A.; Aponte, P.M.; Garcia-Herreros, M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals 2021, 11, 599. [Google Scholar] [CrossRef]
- Buckley, F.; Lopez-Villalobos, N.; Heins, B.J. Crossbreeding: Implications for Dairy Cow Fertility and Survival. Anim. Int. J. Anim. Biosci. 2014, 8 (Suppl. 1), 122–133. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.K.; Norberg, E.; Pedersen, J.; Christensen, L.G. Invited Review: Crossbreeding in Dairy Cattle: A Danish Perspective. J. Dairy Sci. 2008, 91, 4116–4128. [Google Scholar] [CrossRef] [Green Version]
- Bunning, H.; Wall, E.; Chagunda, M.G.G.; Banos, G.; Simm, G. Heterosis in Cattle Crossbreeding Schemes in Tropical Regions: Meta-Analysis of Effects of Breed Combination, Trait Type, and Climate on Level of Heterosis. J. Anim. Sci. 2019, 97, 29–34. [Google Scholar] [CrossRef]
- Kargo, M.; Clasen, J.B.; Nielsen, H.M.; Byskov, K.; Norberg, E. Short Communication: Heterosis and Breed Effects for Milk Production and Udder Health Traits in Crosses between Danish Holstein, Danish Red, and Danish Jersey. J. Dairy Sci. 2021, 104, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Dezetter, C.; Leclerc, H.; Mattalia, S.; Barbat, A.; Boichard, D.; Ducrocq, V. Inbreeding and Crossbreeding Parameters for Production and Fertility Traits in Holstein, Montbéliarde, and Normande Cows. J. Dairy Sci. 2015, 98, 4904–4913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping Dairy Cows for Longer: A Critical Literature Review on Dairy Cow Longevity in High Milk-Producing Countries. Animals 2021, 11, 808. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Is a High Level of Milk Production Compatible with Good Reproductive Performance in Dairy Cows? Anim. Front. 2013, 3, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Crowe, M.A.; Hostens, M.; Opsomer, G. Reproductive Management in Dairy Cows—The Future. Ir. Vet. J. 2018, 71, 1. [Google Scholar] [CrossRef]
- Elgersma, G.G.; de Jong, G.; van der Linde, R.; Mulder, H.A. Fluctuations in Milk Yield Are Heritable and Can Be Used as a Resilience Indicator to Breed Healthy Cows. J. Dairy Sci. 2018, 101, 1240–1250. [Google Scholar] [CrossRef]
- Ouweltjes, W.; Spoelstra, M.; Ducro, B.; de Haas, Y.; Kamphuis, C. A Data-Driven Prediction of Lifetime Resilience of Dairy Cows Using Commercial Sensor Data Collected during First Lactation. J. Dairy Sci. 2021, 104, 11759–11769. [Google Scholar] [CrossRef]
- Brito, L.F.; Bedere, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Review: Genetic Selection of High-Yielding Dairy Cattle toward Sustainable Farming Systems in a Rapidly Changing World. Anim. Int. J. Anim. Biosci. 2021, 15 (Suppl. 1), 100292. [Google Scholar] [CrossRef]
- Winder, C.B.; Bauman, C.A.; Duffield, T.F.; Barkema, H.W.; Keefe, G.P.; Dubuc, J.; Uehlinger, F.; Kelton, D.F. Canadian National Dairy Study: Heifer Calf Management. J. Dairy Sci. 2018, 101, 10565–10579. [Google Scholar] [CrossRef] [Green Version]
- Relić, R.; Starič, J.; Ježek, J. Management Practices That Influence the Welfare of Calves on Small Family Farms. J. Dairy Res. 2020, 87, 93–98. [Google Scholar] [CrossRef]
- Creutzinger, K.; Pempek, J.; Habing, G.; Proudfoot, K.; Locke, S.; Wilson, D.; Renaud, D. Perspectives on the Management of Surplus Dairy Calves in the United States and Canada. Front. Vet. Sci. 2021, 8, 661453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Chang, Y.; Luo, H.; Brito, L.F.; Dong, Y.; Shi, R.; Wang, Y.; Dong, G.; Liu, L. Mortality-Culling Rates of Dairy Calves and Replacement Heifers and Its Risk Factors in Holstein Cattle. Animals 2019, 9, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, A.; Burdine, K.H.; Amaral-Phillips, D.M.; Costa, J.H.C. Effects of Housing System on Dairy Heifer Replacement Cost From Birth to Calving: Evaluating Costs of Confinement, Dry-Lot, and Pasture-Based Systems and Their Impact on Total Rearing Investment. Front. Vet. Sci. 2020, 7, 625. [Google Scholar] [CrossRef] [PubMed]
- Mohd Nor, N.; Steeneveld, W.; Derkman, T.H.J.; Verbruggen, M.D.; Evers, A.G.; de Haan, M.H.A.; Hogeveen, H. The Total Cost of Rearing a Heifer on Dutch Dairy Farms: Calculated versus Perceived Cost. Ir. Vet. J. 2015, 68, 29. [Google Scholar] [CrossRef] [Green Version]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. An Empirical Analysis of the Cost of Rearing Dairy Heifers from Birth to First Calving and the Time Taken to Repay These Costs. Animal 2017, 11, 1372–1380. [Google Scholar] [CrossRef] [Green Version]
- Pempek, J.A.; Schuenemann, G.M.; Holder, E.; Habing, G.G. Dairy Calf Management-A Comparison of Practices and Producer Attitudes among Conventional and Organic Herds. J. Dairy Sci. 2017, 100, 8310–8321. [Google Scholar] [CrossRef]
- Roland, L.; Drillich, M.; Klein-Jöbstl, D.; Iwersen, M. Invited Review: Influence of Climatic Conditions on the Development, Performance, and Health of Calves. J. Dairy Sci. 2016, 99, 2438–2452. [Google Scholar] [CrossRef] [Green Version]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. Management Factors Associated with Bovine Respiratory Disease in Preweaned Calves on California Dairies: The BRD 100 Study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef]
- Klein-Jöbstl, D.; Iwersen, M.; Drillich, M. Farm Characteristics and Calf Management Practices on Dairy Farms with and without Diarrhea: A Case-Control Study to Investigate Risk Factors for Calf Diarrhea. J. Dairy Sci. 2014, 97, 5110–5119. [Google Scholar] [CrossRef]
- Cho, Y.-I.; Yoon, K.-J. An Overview of Calf Diarrhea—Infectious Etiology, Diagnosis, and Intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Aly, S.S.; Karle, B.M.; Rossitto, P.V.; Overton, M.W.; Lehenbauer, T.W.; Fadel, J.G. Preweaning Cost of Bovine Respiratory Disease (BRD) and Cost-Benefit of Implementation of Preventative Measures in Calves on California Dairies: The BRD 10K Study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Haley, D.B.; Kelton, D.F. Management Practices for Male Calves on Canadian Dairy Farms. J. Dairy Sci. 2017, 100, 6862–6871. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Pithua, P.; Garcia, A.; Champagne, J.; Haines, D.M.; Aly, S.S. Effect of Three Colostrum Diets on Passive Transfer of Immunity and Preweaning Health in Calves on a California Dairy Following Colostrum Management Training. Vet. Med. Int. 2014, 2014, 698741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengol, R.; Fraile, L. Feeding Calves with Pasteurized Colostrum and Milk Has a Positive Long-Term Effect on Their Productive Performance. Animals 2020, 10, 1494. [Google Scholar] [CrossRef]
- Conneely, M.; Berry, D.P.; Murphy, J.P.; Lorenz, I.; Doherty, M.L.; Kennedy, E. Effect of Feeding Colostrum at Different Volumes and Subsequent Number of Transition Milk Feeds on the Serum Immunoglobulin G Concentration and Health Status of Dairy Calves. J. Dairy Sci. 2014, 97, 6991–7000. [Google Scholar] [CrossRef] [Green Version]
- Kertz, A.F.; Hill, T.M.; Quigley, J.D.; Heinrichs, A.J.; Linn, J.G.; Drackley, J.K. A 100-Year Review: Calf Nutrition and Management. J. Dairy Sci. 2017, 100, 10151–10172. [Google Scholar] [CrossRef]
- Wickramasinghe, H.K.J.P.; Kramer, A.J.; Appuhamy, J.A.D.R.N. Drinking Water Intake of Newborn Dairy Calves and Its Effects on Feed Intake, Growth Performance, Health Status, and Nutrient Digestibility. J. Dairy Sci. 2019, 102, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Quigley, J.D.; Hill, T.M.; Hulbert, L.E.; Dennis, T.S.; Suarez-Mena, X.F.; Bortoluzzi, E.M. Effects of Fatty Acids and Calf Starter Form on Intake, Growth, Digestion, and Selected Blood Metabolites in Male Calves from 0 to 4 Months of Age. J. Dairy Sci. 2019, 102, 8074–8091. [Google Scholar] [CrossRef]
- Wu, J.; Guo, J.; Liu, T.; Chen, H.; Bai, Y.; Casper, D.P. Feeding a Calf Starter Containing Monensin Alone or in Combination with an Oregano, and Cobalt Blend to Holstein Calves. J. Anim. Sci. 2020, 98, skaa214. [Google Scholar] [CrossRef]
- Pettersson, K.; Svensson, C.; Liberg, P. Housing, Feeding and Management of Calves and Replacement Heifers in Swedish Dairy Herds. Acta Vet. Scand. 2001, 42, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Bučková, K.; Šárová, R.; Moravcsíková, Á.; Špinka, M. The Effect of Pair Housing on Dairy Calf Health, Performance, and Behavior. J. Dairy Sci. 2021, 104, 10282–10290. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, E.A.; Bok, M.; Vega, C.; Martinez, G.M.; Cimino, R.; Parreño, V. Influence of Individual or Group Housing of Newborn Calves on Rotavirus and Coronavirus Infection during the First 2 Months of Life. Trop. Anim. Health Prod. 2021, 53, 62. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.C.; von Keyserlingk, M.A.G.; Weary, D.M. Invited Review: Effects of Group Housing of Dairy Calves on Behavior, Cognition, Performance, and Health. J. Dairy Sci. 2016, 99, 2453–2467. [Google Scholar] [CrossRef]
- Bučková, K.; Špinka, M.; Hintze, S. Pair Housing Makes Calves More Optimistic. Sci. Rep. 2019, 9, 20246. [Google Scholar] [CrossRef] [Green Version]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Short Communication: Pair Housing Dairy Calves in Modified Calf Hutches. J. Dairy Sci. 2018, 101, 5428–5433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahendran, S.A.; Wathes, D.C.; Booth, R.E.; Blackie, N. The Health and Behavioural Effects of Individual versus Pair Housing of Calves at Different Ages on a UK Commercial Dairy Farm. Animals 2021, 11, 612. [Google Scholar] [CrossRef]
- Beaver, A.; Proudfoot, K.L.; von Keyserlingk, M.A.G. Symposium Review: Considerations for the Future of Dairy Cattle Housing: An Animal Welfare Perspective. J. Dairy Sci. 2020, 103, 5746–5758. [Google Scholar] [CrossRef]
- Medrano-Galarza, C.; LeBlanc, S.J.; DeVries, T.J.; Jones-Bitton, A.; Rushen, J.; de Passillé, A.M.; Haley, D.B. A Survey of Dairy Calf Management Practices among Farms Using Manual and Automated Milk Feeding Systems in Canada. J. Dairy Sci. 2017, 100, 6872–6884. [Google Scholar] [CrossRef]
- Svensson, C.; Alvåsen, K.; Eldh, A.C.; Frössling, J.; Lomander, H. Veterinary Herd Health Management-Experience among Farmers and Farm Managers in Swedish Dairy Production. Prev. Vet. Med. 2018, 155, 45–52. [Google Scholar] [CrossRef]
- Vissio, C.; Bouman, M.; Larriestra, A.J. Milking Machine and Udder Health Management Factors Associated with Bulk Milk Somatic Cell Count in Uruguayan Herds. Prev. Vet. Med. 2018, 150, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Brinkmann, J.; March, S.; Hinterstoißer, P.; Warnecke, S.; Schüler, M.; Paulsen, H.M. Impact of Daily Grazing Time on Dairy Cow Welfare-Results of the Welfare Quality® Protocol. Animals 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Kabboush, H.; Weller, J.; Arnott, G. Optimism and Pasture Access in Dairy Cows. Sci. Rep. 2021, 11, 4882. [Google Scholar] [CrossRef] [PubMed]
- Crossley, R.E.; Bokkers, E.A.M.; Browne, N.; Sugrue, K.; Kennedy, E.; de Boer, I.J.M.; Conneely, M. Assessing Dairy Cow Welfare during the Grazing and Housing Periods on Spring-Calving, Pasture-Based Dairy Farms. J. Anim. Sci. 2021, 99, skab093. [Google Scholar] [CrossRef]
- Burow, E.; Rousing, T.; Thomsen, P.T.; Otten, N.D.; Sørensen, J.T. Effect of Grazing on the Cow Welfare of Dairy Herds Evaluated by a Multidimensional Welfare Index. Anim. Int. J. Anim. Biosci. 2013, 7, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of Dairy Cows in Continuously Housed and Pasture-Based Production Systems. Anim. Int. J. Anim. Biosci. 2017, 11, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. Effects of Providing Total Mixed Rations Indoors and on Pasture on the Behavior of Lactating Dairy Cattle and Their Preference to Be Indoors or on Pasture. J. Dairy Sci. 2011, 94, 3875–3884. [Google Scholar] [CrossRef]
- Macdonald, K.A.; Penno, J.W.; Lancaster, J.A.S.; Bryant, A.M.; Kidd, J.M.; Roche, J.R. Production and Economic Responses to Intensification of Pasture-Based Dairy Production Systems. J. Dairy Sci. 2017, 100, 6602–6619. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. The Motivation of Dairy Cows for Access to Pasture. J. Dairy Sci. 2013, 96, 4387–4396. [Google Scholar] [CrossRef] [Green Version]
- Méndez, M.N.; Chilibroste, P.; Aguerre, M. Pasture Dry Matter Intake per Cow in Intensive Dairy Production Systems: Effects of Grazing and Feeding Management. Anim. Int. J. Anim. Biosci. 2020, 14, 846–853. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some Challenges and Opportunities for Grazing Dairy Cows on Temperate Pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- John, A.J.; Freeman, M.J.; Kerrisk, K.F.; Garcia, S.C.; Clark, C.E.F. Robot Utilisation of Pasture-Based Dairy Cows with Varying Levels of Milking Frequency. Anim. Int. J. Anim. Biosci. 2019, 13, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Orellana Rivas, R.M.; Marins, T.N.; Chen, Y.-C.; Gao, J.; Bernard, J.K. Impact of Heat Stress on Lactational Performance of Dairy Cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Legrand, A.L.; von Keyserlingk, M.A.G.; Weary, D.M. Preference and Usage of Pasture versus Free-Stall Housing by Lactating Dairy Cattle. J. Dairy Sci. 2009, 92, 3651–3658. [Google Scholar] [CrossRef] [Green Version]
- Angrecka, S.; Herbut, P. Conditions for Cold Stress Development in Dairy Cattle Kept in Free Stall Barn during Severe Frosts. Czech J. Anim. Sci. 2016, 60, 81–87. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat Stress on Calves and Heifers: A Review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 2017, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Galama, P.J.; Ouweltjes, W.; Endres, M.I.; Sprecher, J.R.; Leso, L.; Kuipers, A.; Klopčič, M. Symposium Review: Future of Housing for Dairy Cattle. J. Dairy Sci. 2020, 103, 5759–5772. [Google Scholar] [CrossRef]
- Opsal, T.; Toftaker, I.; Nødtvedt, A.; Robertson, L.J.; Tysnes, K.R.; Woolsey, I.; Hektoen, L. Gastrointestinal Nematodes and Fasciola Hepatica in Norwegian Cattle Herds: A Questionnaire to Investigate Farmers’ Perceptions and Control Strategies. Acta Vet. Scand. 2021, 63, 52. [Google Scholar] [CrossRef]
- Sorge, U.S.; Moon, R.D.; Stromberg, B.E.; Schroth, S.L.; Michels, L.; Wolff, L.J.; Kelton, D.F.; Heins, B.J. Parasites and Parasite Management Practices of Organic and Conventional Dairy Herds in Minnesota. J. Dairy Sci. 2015, 98, 3143–3151. [Google Scholar] [CrossRef] [Green Version]
- Charlton, G.L.; Haley, D.B.; Rushen, J.; de Passillé, A.M. Stocking Density, Milking Duration, and Lying Times of Lactating Cows on Canadian Freestall Dairy Farms. J. Dairy Sci. 2014, 97, 2694–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, A.; Dechassa, H.; Hogeveen, H. Economic Evaluation of Stall Stocking Density of Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 3848–3857. [Google Scholar] [CrossRef] [Green Version]
- Talebi, A.; von Keyserlingk, M.A.G.; Telezhenko, E.; Weary, D.M. Reduced Stocking Density Mitigates the Negative Effects of Regrouping in Dairy Cattle. J. Dairy Sci. 2014, 97, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Shao, D.F.; Li, S.L.; Wang, Y.J.; Azarfar, A.; Cao, Z.J. Effects of Stocking Density on Behavior, Productivity, and Comfort Indices of Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 3709–3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Alugongo, G.M.; Xiao, J.; Li, C.; Ma, Y.; Li, T.; Cao, Z.; Liu, D. Periparturient Stocking Density Affects Lying and Ruminating Behavior and One-Week-Calf Performance of Holstein Cows. Anim. Biosci. 2021, 34, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Quintana, Á.R.; Seseña, S.; Garzón, A.; Arias, R. Factors Affecting Levels of Airborne Bacteria in Dairy Farms: A Review. Animals 2020, 10, 526. [Google Scholar] [CrossRef] [Green Version]
- Moreira, T.F.; Nicolino, R.R.; Meneses, R.M.; Fonseca, G.V.; Rodrigues, L.M.; Facury Filho, E.J.; Carvalho, A.U. Risk Factors Associated with Lameness and Hoof Lesions in Pasture-Based Dairy Cattle Systems in Southeast Brazil. J. Dairy Sci. 2019, 102, 10369–10378. [Google Scholar] [CrossRef]
- Charfeddine, N.; Pérez-Cabal, M.A. Effect of Claw Disorders on Milk Production, Fertility, and Longevity, and Their Economic Impact in Spanish Holstein Cows. J. Dairy Sci. 2017, 100, 653–665. [Google Scholar] [CrossRef]
- Green, L.E.; Huxley, J.N.; Banks, C.; Green, M.J. Temporal Associations between Low Body Condition, Lameness and Milk Yield in a UK Dairy Herd. Prev. Vet. Med. 2014, 113, 63–71. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Ramanoon, S.Z.; Shaik Mossadeq, W.M.M.; Mansor, R.; Syed-Hussain, S.S. Preventive Hoof Trimming and Animal-Based Welfare Measures Influence the Time to First Lameness Event and Hoof Lesion Prevalence in Dairy Cows. Front. Vet. Sci. 2021, 8, 631844. [Google Scholar] [CrossRef]
- Omontese, B.O.; Bellet-Elias, R.; Molinero, A.; Catandi, G.D.; Casagrande, R.; Rodriguez, Z.; Bisinotto, R.S.; Cramer, G. Association between Hoof Lesions and Fertility in Lactating Jersey Cows. J. Dairy Sci. 2020, 103, 3401–3413. [Google Scholar] [CrossRef] [PubMed]
- Steeneveld, W.; Amuta, P.; van Soest, F.J.S.; Jorritsma, R.; Hogeveen, H. Estimating the Combined Costs of Clinical and Subclinical Ketosis in Dairy Cows. PLoS ONE 2020, 15, e0230448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacasse, P.; Vanacker, N.; Ollier, S.; Ster, C. Innovative Dairy Cow Management to Improve Resistance to Metabolic and Infectious Diseases during the Transition Period. Res. Vet. Sci. 2018, 116, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; Bruckmaier, R.M. Invited Review: Metabolic Challenges and Adaptation during Different Functional Stages of the Mammary Gland in Dairy Cows: Perspectives for Sustainable Milk Production. J. Dairy Sci. 2019, 102, 2828–2843. [Google Scholar] [CrossRef] [Green Version]
- Armbrecht, L.; Lambertz, C.; Albers, D.; Gauly, M. Assessment of Welfare Indicators in Dairy Farms Offering Pasture at Differing Levels. Anim. Int. J. Anim. Biosci. 2019, 13, 2336–2347. [Google Scholar] [CrossRef]
- González, L.A.; Kyriazakis, I.; Tedeschi, L.O. Review: Precision Nutrition of Ruminants: Approaches, Challenges and Potential Gains. Anim. Int. J. Anim. Biosci. 2018, 12, s246–s261. [Google Scholar] [CrossRef] [Green Version]
- Connor, E.E. Invited Review: Improving Feed Efficiency in Dairy Production: Challenges and Possibilities. Anim. Int. J. Anim. Biosci. 2015, 9, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy Farmers with Larger Herd Sizes Adopt More Precision Dairy Technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Borreani, G.; Coppa, M.; Revello-Chion, A.; Comino, L.; Giaccone, D.; Ferlay, A.; Tabacco, E. Effect of Different Feeding Strategies in Intensive Dairy Farming Systems on Milk Fatty Acid Profiles, and Implications on Feeding Costs in Italy. J. Dairy Sci. 2013, 96, 6840–6855. [Google Scholar] [CrossRef] [Green Version]
- March, M.D.; Haskell, M.J.; Chagunda, M.G.G.; Langford, F.M.; Roberts, D.J. Current Trends in British Dairy Management Regimens. J. Dairy Sci. 2014, 97, 7985–7994. [Google Scholar] [CrossRef] [Green Version]
- Kismul, H.; Spörndly, E.; Höglind, M.; Eriksson, T. Nighttime Pasture Access: Comparing the Effect of Production Pasture and Exercise Paddock on Milk Production and Cow Behavior in an Automatic Milking System. J. Dairy Sci. 2019, 102, 10423–10438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sova, A.D.; LeBlanc, S.J.; McBride, B.W.; DeVries, T.J. Associations between Herd-Level Feeding Management Practices, Feed Sorting, and Milk Production in Freestall Dairy Farms. J. Dairy Sci. 2013, 96, 4759–4770. [Google Scholar] [CrossRef] [PubMed]
- Holohan, C.; Russell, T.; Mulligan, F.J.; Pierce, K.M.; Lynch, M.B. A Survey Analysis of Farmer Practices and Perceptions of Zero-Grazing on Irish Dairy Farms. J. Dairy Sci. 2021, 104, 5665–5674. [Google Scholar] [CrossRef] [PubMed]
- Prospero-Bernal, F.; Martínez-García, C.G.; Olea-Pérez, R.; López-González, F.; Arriaga-Jordán, C.M. Intensive Grazing and Maize Silage to Enhance the Sustainability of Small-Scale Dairy Systems in the Highlands of Mexico. Trop. Anim. Health Prod. 2017, 49, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Gadzama, I.U. Feeds and Feeding Strategies for Dairy Cattle. In Dairy, Production and Processing, Bull Fattening and Forage Production Training Manual; Amodu, J.T., Lamini, O.S., Achi, N.P., Eds.; National Animal Production Research Institute, Ahmadu Bello University: Zaria, Nigeria, 2017; pp. 41–48. [Google Scholar]
- Seymour, D.J.; Cánovas, A.; Baes, C.F.; Chud, T.C.S.; Osborne, V.R.; Cant, J.P.; Brito, L.F.; Gredler-Grandl, B.; Finocchiaro, R.; Veerkamp, R.F.; et al. Invited Review: Determination of Large-Scale Individual Dry Matter Intake Phenotypes in Dairy Cattle. J. Dairy Sci. 2019, 102, 7655–7663. [Google Scholar] [CrossRef] [PubMed]
- DeVries, T.J.; von Keyserlingk, M.A.G.; Beauchemin, K.A. Frequency of Feed Delivery Affects the Behavior of Lactating Dairy Cows. J. Dairy Sci. 2005, 88, 3553–3562. [Google Scholar] [CrossRef] [Green Version]
- Mattachini, G.; Pompe, J.; Finzi, A.; Tullo, E.; Riva, E.; Provolo, G. Effects of Feeding Frequency on the Lying Behavior of Dairy Cows in a Loose Housing with Automatic Feeding and Milking System. Animals 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Borso, F.D.; Chiumenti, A.; Sigura, M.; Pezzuolo, A. Influence of Automatic Feeding Systems on Design and Management of Dairy Farms. J. Agric. Eng. 2017, 48, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.J.C.; Rind, M.I. The Effects of Frequency of Feeding a Total Mixed Ration on the Production and Behavior of Dairy Cows. J. Dairy Sci. 2001, 84, 1979–1987. [Google Scholar] [CrossRef]
- Mäntysaari, P.; Khalili, H.; Sariola, J. Effect of Feeding Frequency of a Total Mixed Ration on the Performance of High-Yielding Dairy Cows. J. Dairy Sci. 2006, 89, 4312–4320. [Google Scholar] [CrossRef] [Green Version]
- Schuenemann, G.M.; Eastridge, M.L.; Weiss, W.P.; Workman, J.D.; Bas, S.; Rajala-Schultz, P. Dairy Nutrition Management: Assessing a Comprehensive Continuing Education Program for Veterinary Practitioners. J. Dairy Sci. 2011, 94, 2648–2656. [Google Scholar] [CrossRef] [PubMed]
- Bach, L. Effects of Nutrition and Genetics on Fertility in Dairy Cows. Reprod. Fertil. Dev. 2018, 31, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Odorčić, M.; Rasmussen, M.D.; Paulrud, C.O.; Bruckmaier, R.M. Review: Milking Machine Settings, Teat Condition and Milking Efficiency in Dairy Cows. Anim. Int. J. Anim. Biosci. 2019, 13, s94–s99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulart, M.M. A History, Description, and Comparison of Different Brands of Dairy Parlor Equipment and Which Designs Are the Best Fit for Different Sized Dairy Operations. 32. Available online: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1120&context=dscisp (accessed on 26 June 2021).
- Holloway, L.; Bear, C. Bovine and Human Becomings in Histories of Dairy Technologies: Robotic Milking Systems and Remaking Animal and Human Subjectivity. BJHS Themes 2017, 2, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.D. Milking Machines—The Past Twenty-Five Years. J. Dairy Sci. 1981, 64, 1344–1357. [Google Scholar] [CrossRef]
- Wagner-Storch, A.M.; Palmer, R.W. Feeding Behavior, Milking Behavior, and Milk Yields of Cows Milked in a Parlor versus an Automatic Milking System. J. Dairy Sci. 2003, 86, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Pajor, E.A. Impact of Automatic Milking Systems on Dairy Cattle Producers’ Reports of Milking Labour Management, Milk Production and Milk Quality. Anim. Int. J. Anim. Biosci. 2018, 12, 2649–2656. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Lyons, N.A.; Kempton, K.; Armstrong, D.A.; Garcia, S.C. Physical and Economic Comparison of Pasture-Based Automatic and Conventional Milking Systems. J. Dairy Sci. 2020, 103, 8231–8240. [Google Scholar] [CrossRef]
- Jerram, L.J.; Van Winden, S.; Fowkes, R.C. Minimally Invasive Markers of Stress and Production Parameters in Dairy Cows before and after the Installation of a Voluntary Milking System. Animals 2020, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Cogato, A.; Brščić, M.; Guo, H.; Marinello, F.; Pezzuolo, A. Challenges and Tendencies of Automatic Milking Systems (AMS): A 20-Years Systematic Review of Literature and Patents. Animals 2021, 11, 356. [Google Scholar] [CrossRef]
- Kelly, P.; O’Sullivan, K.; Berry, D.; More, S.; Meaney, W.; O’Callaghan, E.; O’Brien, B. Farm Management Factors Associated with Bulk Tank Somatic Cell Count in Irish Dairy Herds. Ir. Vet. J. 2009, 62, S45. [Google Scholar] [CrossRef] [PubMed]
- Belage, E.; Dufour, S.; Bauman, C.; Jones-Bitton, A.; Kelton, D.F. The Canadian National Dairy Study 2015-Adoption of Milking Practices in Canadian Dairy Herds. J. Dairy Sci. 2017, 100, 3839–3849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Belage, E.; Croyle, S.L.; Jones-Bitton, A.; Dufour, S.; Kelton, D.F. A Qualitative Study of Ontario Dairy Farmer Attitudes and Perceptions toward Implementing Recommended Milking Practices. J. Dairy Sci. 2019, 102, 9548–9557. [Google Scholar] [CrossRef] [PubMed]
- Svensson, C.; Lind, N.; Reyher, K.K.; Bard, A.M.; Emanuelson, U. Trust, Feasibility, and Priorities Influence Swedish Dairy Farmers’ Adherence and Nonadherence to Veterinary Advice. J. Dairy Sci. 2019, 102, 10360–10368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordhuizen, J.P.T.M.; Brand, A.; Dobbelaar, P. Veterinary Herd Health and Production Control on Dairy Farms I. Introduction to a Coupled Basic System and Flexible System. Prev. Vet. Med. 1983, 1, 189–199. [Google Scholar] [CrossRef]
- Noordhuizen, J.P.T.M.; Buurman, J. VAMPP: A Veterinary Automated Management and Production Control Programme for Dairy Farms (The Application of MUMPS for Data Processing). Vet. Q. 1984, 6, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium Review: Real-Time Continuous Decision Making Using Big Data on Dairy Farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming-Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Review: Precision Livestock Farming: Building “digital Representations” to Bring the Animals Closer to the Farmer. Anim. Int. J. Anim. Biosci. 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordhuizen, J.P.; Wentink, G.H. Developments in Veterinary Herd Health Programmes on Dairy Farms: A Review. Vet. Q. 2001, 23, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Ries, J.; Jensen, K.C.; Müller, K.-E.; Thöne-Reineke, C.; Merle, R. Benefits of Veterinary Herd Health Management on German Dairy Farms: Status Quo and Farmers’ Perspective. Front. Vet. Sci. 2022, 8, 773779. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Lissemore, K.D.; Kelton, D.F.; Duffield, T.F.; Leslie, K.E. Major Advances in Disease Prevention in Dairy Cattle. J. Dairy Sci. 2006, 89, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Skjølstrup, N.K.; Nielsen, L.R.; Jensen, C.S.; Lastein, D.B. Veterinary Herd Health Consultancy and Antimicrobial Use in Dairy Herds. Front. Vet. Sci. 2020, 7, 547975. [Google Scholar] [CrossRef] [PubMed]
- Ifende, V.I.; Derks, M.; Hooijer, G.A.; Hogeveen, H. Financial Aspects of Veterinary Herd Health Management Programmes. Vet. Rec. 2014, 175, 224. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.; Noordhuizen, J. Dairy Herd Health Management: Rationale and Tools—Veterinary Skills. 20 July 2013. Available online: https://www.researchgate.net/publication/336880805_Dairy_herd_health_management_rationale_and_tools_-Veterinary_Skills (accessed on 20 January 2022).
- Gertzell, E.; Magnusson, U.; Ikwap, K.; Dione, M.; Lindström, L.; Eliasson-Selling, L.; Jacobson, M. Animal Health beyond the Single Disease Approach—A Role for Veterinary Herd Health Management in Low-Income Countries? Res. Vet. Sci. 2021, 136, 453–463. [Google Scholar] [CrossRef]
- Derks, M.; Hogeveen, H.; Kooistra, S.R.; van Werven, T.; Tauer, L.W. Efficiency of Dairy Farms Participating and Not Participating in Veterinary Herd Health Management Programs. Prev. Vet. Med. 2014, 117, 478–486. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal Yatoo, M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in Therapeutic and Managemental Approaches of Bovine Mastitis: A Comprehensive Review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Huijps, K.; Hogeveen, H.; Lam, T.J.G.M.; Oude Lansink, A.G.J.M. Costs and Efficacy of Management Measures to Improve Udder Health on Dutch Dairy Farms. J. Dairy Sci. 2010, 93, 115–124. [Google Scholar] [CrossRef]
- Firth, C.L.; Laubichler, C.; Schleicher, C.; Fuchs, K.; Käsbohrer, A.; Egger-Danner, C.; Köfer, J.; Obritzhauser, W. Relationship between the Probability of Veterinary-Diagnosed Bovine Mastitis Occurring and Farm Management Risk Factors on Small Dairy Farms in Austria. J. Dairy Sci. 2019, 102, 4452–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA Health and Management Practices on U.S. Dairy Operations. 2014. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartIII.pdf (accessed on 22 April 2021).
- Rilanto, T.; Reimus, K.; Orro, T.; Emanuelson, U.; Viltrop, A.; Mõtus, K. Culling Reasons and Risk Factors in Estonian Dairy Cows. BMC Vet. Res. 2020, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, S.J. Postpartum Uterine Disease and Dairy Herd Reproductive Performance: A Review. Vet. J. 2008, 176, 102–114. [Google Scholar] [CrossRef]
- Sahar, M.W.; Beaver, A.; von Keyserlingk, M.A.G.; Weary, D.M. Predicting Disease in Transition Dairy Cattle Based on Behaviors Measured Before Calving. Animals 2020, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Ceciliani, F.; Lecchi, C.; Urh, C.; Sauerwein, H. Proteomics and Metabolomics Characterizing the Pathophysiology of Adaptive Reactions to the Metabolic Challenges during the Transition from Late Pregnancy to Early Lactation in Dairy Cows. J. Proteom. 2018, 178, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Denis-Robichaud, J.; Kelton, D.F.; Bauman, C.A.; Barkema, H.W.; Keefe, G.P.; Dubuc, J. Biosecurity and Herd Health Management Practices on Canadian Dairy Farms. J. Dairy Sci. 2019, 102, 9536–9547. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Cay, A.B.; Laureyns, J.; Dewulf, J. A Survey on Biosecurity and Management Practices in Selected Belgian Cattle Farms. Prev. Vet. Med. 2014, 117, 129–139. [Google Scholar] [CrossRef]
- Moya, S.; Tirado, F.; Espluga, J.; Ciaravino, G.; Armengol, R.; Diéguez, J.; Yus, E.; Benavides, B.; Casal, J.; Allepuz, A. Dairy Farmers’ Decision-Making to Implement Biosecurity Measures: A Study of Psychosocial Factors. Transbound. Emerg. Dis. 2020, 67, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Postma, M.; Backhans, A.; Collineau, L.; Loesken, S.; Sjölund, M.; Belloc, C.; Emanuelson, U.; Grosse Beilage, E.; Stärk, K.D.C.; Dewulf, J. The Biosecurity Status and Its Associations with Production and Management Characteristics in Farrow-to-Finish Pig Herds. Animal 2016, 10, 478–489. [Google Scholar] [CrossRef] [Green Version]
- Opinion of the Economic and Social Committee on the “Proposal for a Regulation of the European Parliament and the Council on Additives for Use in Animal Nutrition” (COM(2002) 153 Final—2002/0073 (COD)). 2002. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.C_.2003.061.01.0043.01.ENG&toc=OJ%3AC%3A2003%3A061%3ATOC (accessed on 20 January 2022).
- Sayers, R.G.; Sayers, G.P.; Mee, J.F.; Good, M.; Bermingham, M.L.; Grant, J.; Dillon, P.G. Implementing Biosecurity Measures on Dairy Farms in Ireland. Vet. J. 2013, 197, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Noordhuizen, J.P. Role of Vaccination in Dairy Herd Health and Productivity. Vet. Rec. 2015, 177, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Renault, V.; Humblet, M.F.; Moons, V.; Bosquet, G.; Gauthier, B.; Cebrián, L.M.; Casal, J.; Saegerman, C. Rural Veterinarian’s Perception and Practices in Terms of Biosecurity across Three European Countries. Transbound. Emerg. Dis. 2018, 65, e183–e193. [Google Scholar] [CrossRef] [PubMed]
- Ritter, C.; Dorrestein, L.; Kelton, D.F.; Barkema, H.W. Herd Health and Production Management Visits on Canadian Dairy Cattle Farms: Structure, Goals, and Topics Discussed. J. Dairy Sci. 2021, 104, 7996–8008. [Google Scholar] [CrossRef] [PubMed]
- Purba, F.Y.; Suzuki, N.; Isobe, N. Association of Endometritis and Ovarian Follicular Cyst with Mastitis in Dairy Cows. J. Vet. Med. Sci. 2021, 83, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.; House, J.K.; Ingenhoff, L. The Effect of Participation in a Regular Reproductive Herd Health Program on 80-Day Submission Rate and 100-Day in-Calf Rate in Year-Round Calving Dairy Farms. Aust. Vet. J. 2021, 99, 79–85. [Google Scholar] [CrossRef]
- Inchaisri, C.; Jorritsma, R.; Vos, P.L.A.M.; van der Weijden, G.C.; Hogeveen, H. Economic Consequences of Reproductive Performance in Dairy Cattle. Theriogenology 2010, 74, 835–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snels, K.C.J.M.; Horgeveen, I.H.; Doherty, M.; O’Grady, L. Veterinary Herd Health Management on Irish Dairy Farms. 2013. Available online: https://edepot.wur.nl/253715 (accessed on 15 July 2021).
- Ritter, C.; Adams, C.L.; Kelton, D.F.; Barkema, H.W. Clinical Communication Patterns of Veterinary Practitioners during Dairy Herd Health and Production Management Farm Visits. J. Dairy Sci. 2018, 101, 10337–10350. [Google Scholar] [CrossRef] [Green Version]
- Svensson, C.; Wickström, H.; Emanuelson, U.; Bard, A.M.; Reyher, K.K.; Forsberg, L. Training in Motivational Interviewing Improves Cattle Veterinarians’ Communication Skills for Herd Health Management. Vet. Rec. 2020, 187, 191. [Google Scholar] [CrossRef] [Green Version]
- Woodward, H.; Cobb, K.; Remnant, J. The Future of Cattle Veterinary Practice: Insights from a Qualitative Study. Vet. Rec. 2019, 185, 205. [Google Scholar] [CrossRef] [Green Version]
- Bórawski, P.; Pawlewicz, A.; Parzonko, A.; Harper, J.K.; Holden, L. Factors Shaping Cow’s Milk Production in the EU. Sustainability 2020, 12, 420. [Google Scholar] [CrossRef] [Green Version]
- Kassem, M.; Salem, E.; Ahwal, A.M.; Saddik, M.; Gomaa, N.F. Application of Hazard Analysis and Critical Control Point System in the Dairy Industry. East. Mediterr. Health J. 2002, 8, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Weinroth, M.D.; Belk, A.D.; Belk, K.E. History, Development, and Current Status of Food Safety Systems Worldwide. Anim. Front. 2018, 8, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Noordhuizen, J.; Cannas da Silva, J.P.T.M. HACCP-Based Quality Risk Management Approach to Udder Health Problems on Dairy Farms. Ir. Vet. J. 2009, 62 (Suppl. 4), S21–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordhuizen, J.P.T.M.; da Silva, J.C.; Boersema, J.S.C.; Vieira, A. Applying HACCP-Based Quality Risk Management on Dairy Farms; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; ISBN 978-90-8686-052-4. [Google Scholar]
- Bell, N.J.; Bell, M.J.; Knowles, T.G.; Whay, H.R.; Main, D.J.; Webster, A.J.F. The Development, Implementation and Testing of a Lameness Control Programme Based on HACCP Principles and Designed for Heifers on Dairy Farms. Vet. J. 2009, 180, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Beekhuis-Gibbon, L.; Devitt, C.; Whyte, P.; O’Grady, L.; More, S.J.; Redmond, B.; Quin, S.; Doherty, M.L. A HACCP-Based Approach to Mastitis Control in Dairy Herds. Part 2: Implementation and Evaluation. Ir. Vet. J. 2011, 64, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAloon, C.G.; Whyte, P.; More, S.J.; Green, M.J.; O’Grady, L.; Garcia, A.; Doherty, M.L. The Effect of Paratuberculosis on Milk Yield-A Systematic Review and Meta-Analysis. J. Dairy Sci. 2016, 99, 1449–1460. [Google Scholar] [CrossRef] [Green Version]
- Rousing, T.; Holm, J.R.; Krogh, M.A.; Østergaard, S. Expert-Based Development of a Generic HACCP-Based Risk Management System to Prevent Critical Negative Energy Balance in Dairy Herds. Prev. Vet. Med. 2020, 175, 104849. [Google Scholar] [CrossRef]
- Gray, G.C.; Mazet, J.A.K. To Succeed, One Health Must Win Animal Agriculture’s Stronger Collaboration. Clin. Infect. Dis. 2020, 70, 535–537. [Google Scholar] [CrossRef]
Pasture-based farms: |
Advantages:
|
Indoor farms: |
Advantages:
|
Year | Issue |
---|---|
One Heath paradigm. | |
2010s– | Usage and availability of “big data” in the cloud. |
100,000 kg of milk per life production of dairy cow. | |
Tentative implementation of hazard analysis and critical control point (HACCP) principle on dairy farms. | |
Precision livestock production and medicine (e.g., sensors for estrous detection, in-line measurement systems for endocrine profiling). | |
Antimicrobial use and resistance concerns. | |
Mass dissemination of informatic tools for veterinarians and producers | |
2000s | New concepts in cow’s welfare and EU/national regulations |
Animal science and veterinary Medicine complementation in farm approach. | |
Focus on the transition period. | |
Epidemiological tools applied to dairy industry. | |
Genetic improvement for relevant traits, including fertility (longevity and calving intervals) and health, other than milk yield. | |
In vitro fertilization, multiple ovulation and embryo transfer. | |
optimizing health and minimizing stress by nutrition improvements | |
Continuing careful monitoring, appropriate biosecurity plans, appropriate and massive vaccination protocols. | |
1990s | Ovulation synchronization programs followed by fixed-time artificial insemination in herds (e.g., OVSYNCH protocols and it derivatives). |
Calf management and heifers’ replacement. | |
Automatic milking systems (first commercial system in 1992, NL). | |
Enlarged farms and progressive milk yield per standardized lactation. | |
Reproductive tools using ultrasound scanning and hormone evaluation (milk progesterone tests, pregnancy-associated glycoproteins). | |
1980s | Use of somatic cell counts (SCC) and microbiology at udder and bulk tank milk levels, as indicators of intramammary infection. |
Herd health management implementations and dissemination (NL and US). | |
1970s | Conventional genetics programs to increase milk yield and animal conformation. |
1950s | Computers as a management tool in dairy farming. |
1906 | First US milk recording association was founded. |
1895 | First report about records and collection of milk production data from a union of dairy farmers (DK). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, I.; Fernandez-Novo, A.; Astiz, S.; Simões, J. Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries. Vet. Sci. 2022, 9, 125. https://doi.org/10.3390/vetsci9030125
Medeiros I, Fernandez-Novo A, Astiz S, Simões J. Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries. Veterinary Sciences. 2022; 9(3):125. https://doi.org/10.3390/vetsci9030125
Chicago/Turabian StyleMedeiros, Ivo, Aitor Fernandez-Novo, Susana Astiz, and João Simões. 2022. "Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries" Veterinary Sciences 9, no. 3: 125. https://doi.org/10.3390/vetsci9030125
APA StyleMedeiros, I., Fernandez-Novo, A., Astiz, S., & Simões, J. (2022). Historical Evolution of Cattle Management and Herd Health of Dairy Farms in OECD Countries. Veterinary Sciences, 9(3), 125. https://doi.org/10.3390/vetsci9030125