Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Macerate from Dried Sea Cucumber Extract
2.2. Preparation and Initial Analysis of Sperm
2.3. Supplementation with an Extract of Sea Cucumber
2.4. Assessment of Sperm Viability
2.5. Assessment of Sperm Motility
2.6. Assessment of Acrosome Integrity
2.7. Assessment of the Mitochondrial Membrane Potential
2.8. Evaluation of Sperm DNA Fragmentation
2.9. Assessment of Sperm Fertility (In Vivo)
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alves, R.R.N.; Rosa, I.L. Animals in Traditional Folk Medicine: Implications for Conservation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods-A review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef] [Green Version]
- Kariya, Y.; Mulloy, B.; Imai, K.; Tominaga, A.; Kaneko, T.; Asari, A.; Suzuki, K.; Masuda, H.; Kyogashima, M.; Ishii, T. Isolation and par-tial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteo-clastogenesis. Carbohydr. Res. 2004, 339, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, B.Y.; Dong, Q.; Wang, B.L.; Sun, X.B. The effects of Stichopus japonicus acid mucopolysaccharide on the apoptosis of the human hepatocellular carcinoma cell line HepG2. Am. J. Med. Sci. 2010, 339, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Jiang, T.; Lv, L.; Zhang, B.; Lv, Z. Depolymerized glycosaminoglycan and its anticoagulant activities from sea cu-cumber Apostichopus japonicus. Int. J. Biol. Macromol. 2015, 72, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, C.; Jiang, A. Antioxidant peptides isolated from sea cucumber Stichopus japonicus. Eur. Food Res. Technol. 2012, 234, 441–447. [Google Scholar] [CrossRef]
- Zohdi, R.M.; Zakaria, Z.A.B.; Yusof, N.; Mustapha, N.M.; Abdullah, M.N.H. Sea cucumber (Stichopus hermanii) based hydrogel to treat burn wounds in rats. J. Biomed. Mater. Res. B 2011, 98, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.B.; Egashira, J.; Katafuchi, N.; Endo, K.; Ogata, K.; Yamanaka, K.; Yamanouchi, T.; Matsuda, H.; Hashiyada, Y.; Yamashita, K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J. Anim. Sci. Biotechnol. 2019, 10, 91. [Google Scholar] [CrossRef]
- Khashavi, Z.; Homaei, A.; Koohnavard, F.; Kamrani, E.; Spinaci, M.; Luwor, R.B.; Archang, M.; Agarwal, A.; Henkel, R. Novel additive for sperm cryopreservation media: Holotheria parva coelomic cavity extract protects human spermatozoa against oxidative stress—A pilot study. Andrologia 2020, 52, e13604. [Google Scholar] [CrossRef]
- Mostek, A.; Dietrich, M.A.; Słowińska, M.; Ciereszko, A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology 2017, 92, 95–102. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Czerniawska-Piątkowska, E. Antioxidant effect of Elamipretide on bull’s sperm cells during freezing/thawing process. Andrology 2021, 9, 1275–1281. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Czerniawska-Piątkowska, E.; Kuczaj, M. Buserelin acetate reduces mortality and DNA defragmentation of bo-vine sperm cells exposed to oxidative stress. Pak. J. Zool. 2020, 52, 1795–1799. [Google Scholar] [CrossRef]
- Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kalo, D.; Zeron, Y.; Roth, Z. Progressive motility–a potential predictive parameter for semen fertilization capacity in bovines. Zygote 2016, 24, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Mizera, A.; Kuczaj, M.; Szul, A.; Jędraszczyk, J. Influence of addition of cobalamin to the extender on post-thaw motility, viability and DNA integrity in bovine ejaculate. Med. Weter 2019, 75, 164–168. [Google Scholar] [CrossRef]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; García-Álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef]
- Gürler, H.; Malama, E.; Heppelmann, M.; Calisici, O.; Leiding, C.; Kastelic, J.P.; Bollwein, H. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology 2016, 86, 562–571. [Google Scholar] [CrossRef]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.B.; Hassan, M.A.E.; Mohey-Elsaeed, O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Vet. Sci. Med. 2018, 6, S49–S56. [Google Scholar] [CrossRef] [Green Version]
- Rasul, Z.; Ahmad, N.; Anzar, M. Changes in Motion Characteristics, Plasma Membrane Integrity, and Acrosome Morphology During Cryopreservation of Buffalo Spermatozoa. J. Androl. 2001, 6, 278–283. [Google Scholar]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. BioMedicine Online 2018, 37, 327–339. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Gałęska, E.; Bubel, A. The Concentration of ProAKAP4 and Other Indicators of Cryopotential of Spermatozoa Cryopreserved in Extender with Holothuroidea Extract Addition. Animals 2022, 12, 521. [Google Scholar] [CrossRef]
- Purdy, P.H.; Graham, J.K.; Azevedo, H.C. Evaluation of boar and bull sperm capacitation and the acrosome reaction using flow cytometry. Anim. Reprod. Sci. 2021, 106846. [Google Scholar] [CrossRef] [PubMed]
- Mizera, A.; Kuczaj, M.; Szul, A. Impact of the Spirulina Maxima Extract addition to semen extender on bovine sperm quality. Ital. J. Anim. Sci. 2019, 18, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Gałęska, E.; Czerniawska-Piątkowska, E.; Szul, A.; Hebda, L. The impact of regular sperm donation on bulls’ sem-inal plasma hormonal profile and response to phantom. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wargasetia, T.L.; Widodo. Mechanism of cancer cell killing by sea cucumber-derived compounds. Investig. New Drugs 2017, 35, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Janakiram, N.B.; Mohammed, A.; Rao, C.V. Sea Cucumber Metabolites as Potent Anti-Cancer Agents. Mar. Drugs 2015, 13, 2909–2923. [Google Scholar] [CrossRef] [Green Version]
- Stonik, V.A.; Kalinin, V.I.; Avilov, S.A. Toxins from sea cucumbers (holothuroids): Chemical structures, properties, taxonomic dis-tribution, biosynthesis and evolution. J. Nat. Toxins 1999, 8, 235–248. [Google Scholar]
- Yan, B.; Zhang, X.; Wang, J.; Jia, S.; Zhou, Y.; Tian, J.; Wang, H.; Tang, Y. Inhibitory effect of Lycium barbarum polysaccharide on sperm damage during cryopreservation. Exp. Med. 2020, 20, 3051–3063. [Google Scholar] [CrossRef]
- Qi, Z.; Yang, C.; Zhang, M.; Lu, X.; Cao, W.; Xie, C.; Li, X.; Wu, J.; Zhong, C.; Geng, S. Protective effects of ginseng stem-leaf saponins on D-galactose-induced reproductive injury in male mice. Aging 2021, 13, 8916–8928. [Google Scholar]
- Lone, S.A.; Mohanty, T.K.; Bhakat, M.; Yadav, H.P.; Paray, A.R.; Dewry, R.K.; Baithalu, R.K.; Sinha, R.; Kumar, P. Cholesterol-loaded cy-clodextrin attenuates dilution effect and improves quality of bovine low sperm insemination doses during cryopreservation. Drologia 2021, 53, e14202. [Google Scholar]
- Oh, G.-W.; Ko, S.-C.; Lee, D.H.; Heo, S.-J.; Jung, W.-K. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review. Fish Aquat. Sci. 2017, 20, 28. [Google Scholar] [CrossRef]
- Timar, M.; Banaei, S.; Mehraban, Z.; Salimnejad, R.; Golmohammadi, M.G. Protective effect of saponin on sperm DNA fragmentation of mice treated with cyclophosphamide. Andrologia 2022, 54, e14336. [Google Scholar] [CrossRef] [PubMed]
- Allouche-Fitoussi, D.; Breitbart, H. The Role of Zinc in Male Fertility. Int. J. Mol. Sci. 2020, 21, 7796. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Santos, J.; Varum, S.; Amaral, S.; Mota, P.C.; Sousa, A.P.; Amaral, A. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 2009, 15, 553–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.P.; Amaral, A.; Baptista, M.; Tavares, R.; Caballero Campo, P.; Caballero Peregrín, P.; Freitas, A.; Paiva, A.; Almeida-Santos, T.; Ramalho-Santos, J. Not all sperm are equal: Functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS ONE 2011, 6, e18112. [Google Scholar] [CrossRef] [Green Version]
- Malić Vončin, S.; Golob, B.; Ihan, A.; Kopitar, A.N.; Kolbezen, M.; Zorn, B. Sperm DNA fragmentation and mitochondrial membrane potential combined are better for predicting natural conception than standard sperm parameters. Fertil. Steril. 2016, 105, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhang, R.; Wen, Z. Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J. Funct. Foods 2018, 49, 73–84. [Google Scholar] [CrossRef]
- Liu, Y.; Dave, D.; Trenholm, S.; Ramakrishnan, V.V.; Murphy, W. Effect of Drying on Nutritional Composition of Atlantic Sea Cucumber (Cucumaria frondosa) Viscera Derived from Newfoundland Fisheries. Processes 2021, 9, 703. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [Green Version]
- Saad, D.Y.; Soliman, M.M.; Mohamed, A.A.; Youssef, G.B. Protective effects of sea cucumber (Holothuria atra) extract on testicular dysfunction induced by immune suppressant drugs in Wistar rats. Andrologia 2018, 50, e13017. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. Wytyczne ARRIVE 2.0: Zaktualizowane wytyczne dotyczące raportowania badań na zwierzętach. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
Group | Before Freezing | After Freezing | ||
---|---|---|---|---|
Live Cells [%] | Total Motility [%] | Live Cells [%] | Total Motility [%] | |
Control | 72.90a ± 3.01 | 73.33a ± 4.16 | 44.93a ± 3.07 | 55.31a ± 3.16 |
WG 2 | 74.96ab ± 2.93 | 74.07a ± 4.22 | 52.05b ± 2.17 | 57.13a ± 3.49 |
WG 4 | 75.95ab ± 3.22 | 73.00a ± 3.88 | 50.94b ± 2.69 | 54.17ab ± 3.02 |
WG 6 | 75.00ab ± 2.77 | 71.94a± 2.21 | 51.99b ± 2.41 | 49.99ab ± 2.94 |
WG 8 | 74.91ab ± 2.64 | 72.22a ± 3.04 | 54.02b ± 3.07 | 49.98ab ± 2.91 |
WG 10 | 75.08ab ± 2.00 | 72.38a ± 3.65 | 51.15b ± 2.94 | 51.95ab ± 2.70 |
GE 2 | 75.93b ± 1.90 | 76.76a ± 3.71 | 50.00b ± 3.00 | 56.27a ± 3.11 |
GE 4 | 76.11b ± 1.92 | 75.15a ± 2.92 | 43.37a ± 2.29 | 52.04ab ± 3.90 |
GE 6 | 78.28b ± 1.95 | 74.91a ± 2.71 | 43.08a ± 1.91 | 52.91a ± 3.44 |
GE 8 | 76.44b ± 2.00 | 74.43a ± 3.19 | 45.39ab ± 2.14 | 49.90ab ± 3.56 |
GE 10 | 77.01b ± 2.20 | 74.41a ± 4.04 | 41.93c ± 2.91 | 48.37b ± 2.95 |
WE 2 | 77.66b ± 1.98 | 73.00a ± 4.27 | 43.96ab ± 2.88 | 52.19ab ± 2.71 |
WE 4 | 76.93b ± 2.33 | 72.81a ± 3.80 | 49.02b ± 2.91 | 53.36ab ± 3.09 |
WE 6 | 78.71b ± 1.66 | 72.90a ± 3.04 | 43.44a ± 2.68 | 48.61b ± 3.12 |
WE 8 | 78.04b ± 1.72 | 73.09a ± 2.12 | 44.81ab ± 2.55 | 47.47b ± 4.07 |
WE 10 | 78.81b ± 2.13 | 72.99a ± 3.06 | 43.01a ± 3.03 | 46.89b ± 3.24 |
DG 2 | 71.01c ± 1.24 | 72.02a ± 3.13 | 43.24ab ± 2.63 | 46.78b ± 3.41 |
DG 4 | 71.55c ± 1.27 | 72.16a ± 2.97 | 52.11b ± 2.22 | 45.20b ± 3.97 |
DG 6 | 71.06c ± 2.10 | 72.21a ± 3.61 | 38.88c ± 3.12 | 11.67b ± 3.10 |
DG 8 | 65.94c ± 1.44 | 71.96a ± 3.54 | 42.32ac ± 3.10 | 42.91b ± 3.44 |
DG 10 | 61.99c ± 2.42 | 71.90a ± 3.25 | 42.70ac ± 2.97 | 42.01b ± 2.54 |
Group | Progressive Motility [%] | |
---|---|---|
Before Freezing | After Freezing | |
Control | 53.83a ± 2.22 | 34.92b ± 3.71 |
WG 2 | 54.69a ± 2.61 | 38.88ab ± 3.66 |
WG 4 | 54.00a ± 2.54 | 39.02ab ± 3.50 |
WG 6 | 49.99ab ± 2.77 | 34.89b ± 4.07 |
WG 8 | 50.00ab ± 2.91 | 34.61b ± 3.92 |
WG 10 | 50.04ab ± 2.00 | 35.06ab ± 2.91 |
GE 2 | 53.00a ± 1.61 | 43.92a ± 3.10 |
GE 4 | 53.06a ± 2.04 | 35.91ab ± 3.27 |
GE 6 | 52.39a ± 2.31 | 35.02ab ± 3.16 |
GE 8 | 50.52a ± 2.66 | 34.94b ± 3.54 |
GE 10 | 49.04ab ± 2.80 | 32.00bc ± 4.04 |
WE 2 | 49.11ab ± 1.95 | 35.15ab ± 4.11 |
WE 4 | 46.10b ± 2.77 | 37.67ab ± 3.88 |
WE 6 | 53.31a ± 3.09 | 32.24bc ± 3.67 |
WE 8 | 49.96ab ± 2.10 | 30.30bc ± 3.51 |
WE 10 | 47.71b ± 2.96 | 29.97c ± 4.12 |
DG 2 | 47.12b ± 3.12 | 30.01c ± 4.21 |
DG 4 | 45.04b ± 3.24 | 28.56c ± 3.74 |
DG 6 | 46.22b ± 3.65 | 26.31c ± 3.51 |
DG 8 | 46.00b ± 4.01 | 18.28cd ± 5.06 |
DG 10 | 46.50b ± 2.67 | 16.99d ± 5.19 |
Group. | Acrosome Integrity [%] | |
---|---|---|
Live Intact Acrosome | Dead Intact Acrosome | |
Control | 42.93b ± 1.90 | 54.47b ± 2.16 |
WG 2 | 47.03a ± 1.81 | 49.96c ± 2.53 |
WG 4 | 46.90a ± 1.77 | 49.91c ± 2.76 |
WG 6 | 42.27b ± 1.51 | 54.37bc ± 2.19 |
WG 8 | 42.21b ± 1.94 | 53.91b ± 2.07 |
WG 10 | 41.90b ± 2.02 | 55.15b ± 2.54 |
GE 2 | 46.19a ± 1.66 | 50.60c ± 1.99 |
GE 4 | 46.71a ± 1.61 | 50.00c ± 2.70 |
GE 6 | 46.03a ± 1.14 | 51.27c ± 2.44 |
GE 8 | 41.91bc ± 2.21 | 55.61b ± 2.74 |
GE 10 | 39.87bc ± 2.33 | 57.09b ±2.81 |
WE 2 | 39.00b ± 1.92 | 55.55b ± 2.82 |
WE 4 | 40.05ab ± 1.74 | 55.26bc ± 1.92 |
WE 6 | 38.21bc ± 2.50 | 57.71b ± 2.17 |
WE 8 | 38.07bc ± 2.32 | 57.00b ± 2.36 |
WE 10 | 37.99bc ± 2.39 | 57.03b ± 2.51 |
DG 2 | 36.31c ± 2.89 | 58.81b ± 1.55 |
DG 4 | 35.33d ± 2.68 | 60.09ab ± 2.00 |
DG 6 | 36.18cd ± 2.51 | 60.00ab ± 1.96 |
DG 8 | 34.75d ± 2.80 | 61.72ab ± 2.04 |
DG 10 | 33.65d ± 2.79 | 62.96a ± 1.90 |
Group | Mitochondrial Membrane Potential | DNA Integrity [%] | ||
---|---|---|---|---|
High [%] | Medium [%] | Low [%] | ||
Control | 12.00b ± 0.66 | 36.96b ± 3.16 | 77.77b ± 3.55 | 10.20bc ± 0.42 |
WG 2 | 14.36a ± 0.81 | 40.05ab ± 3.00 | 76.99bc ± 4.14 | 7.41d ± 0.31 |
WG 4 | 14.41ab ± 0.74 | 48.80b ± 3.47 | 77.41bc ± 3.91 | 7.46d ± 0.29 |
WG 6 | 14.20ab ± 1.10 | 48.51b ± 3.50 | 74.49c ± 3.62 | 7.55d ± 0.44 |
WG 8 | 14.21ab ± 0.94 | 47.79b ± 3.12 | 77.03bc ± 3.54 | 7.61cd ± 0.56 |
WG 10 | 14.20ab ± 0.77 | 47.57b ± 3.71 | 78.00b ± 4.16 | 7.65cd ± 0.79 |
GE 2 | 15.38a ± 0.61 | 42.06a ± 2.99 | 73.99c ± 3.90 | 7.01d ± 0.51 |
GE 4 | 14.31ab ± 0.92 | 39.90ab ± 3.55 | 74.69bc ± 3.76 | 7.22d ± 0.64 |
GE 6 | 14.45ab ± 0.88 | 39.99ab ± 3.30 | 73.97c ± 3.20 | 7.50c ± 0.70 |
GE 8 | 15.32a ± 1.00 | 39.93ab ± 2.61 | 72.28c ± 4.19 | 7.49c ± 0.59 |
GE 10 | 13.01b ± 0.71 | 33.14bc ± 4.05 | 77.99b ± 3.58 | 7.57c ± 0.82 |
WE 2 | 15.44a ± 0.82 | 37.00b ± 3.92 | 74.15c ± 3.91 | 7.42cd ± 0.71 |
WE 4 | 15.20a ± 0.95 | 42.20a ± 3.51 | 73.91c ± 3.64 | 7.91c ± 0.52 |
WE 6 | 14.17b ± 0.90 | 35.51bc ± 2.70 | 77.08b ± 3.22 | 8.00c ± 0.56 |
WE 8 | 14.10b ± 0.75 | 35.50bc ± 3.51 | 77.90b ± 4.18 | 8.29c ± 0.77 |
WE 10 | 14.05b ± 0.91 | 30.21dc ± 4.10 | 77.96b ± 2.79 | 8.33c ± 0.72 |
DG 2 | 11.02b ± 1.06 | 29.99dc ± 3.77 | 79.92b ± 3.20 | 9.05bc ± 0.84 |
DG 4 | 15.07a ± 0.99 | 33.22c ± 3.45 | 73.05c ± 4.10 | 8.90c ± 0.62 |
DG 6 | 10.10bc ± 1.10 | 19.87e ± 4.22 | 79.00b ± 3.76 | 11.40b ± 0.51 |
DG 8 | 6.50c ± 0.94 | 18.46e ± 4.54 | 80.11ab ± 3.55 | 11.55ab ± 0.63 |
DG 10 | 5.12cd ± 0.90 | 14.08e ± 3.00 | 87.06a ± 3.41 | 12.09a ± 0.88 |
Groups | Fertility Rate (%) | Control | WG 2 | WG 4 | GE 2 | GE 4 | GE 6 |
---|---|---|---|---|---|---|---|
70 | 70 | 60 | 80 | 90 | 70 | ||
Control | 70 | - | ns | * | * | ** | ns |
WG 2 | 70 | 0.9980 | - | * | * | ** | ns |
WG 4 | 60 | 0.0311 | 0.0232 | - | ** | ** | * |
GE 2 | 80 | 0.0411 | 0.0312 | 0.0001 | - | ** | * |
GE 4 | 90 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | - | ** |
GE 6 | 70 | 0.9786 | 0.9998 | 0.4251 | 0.0411 | 0.0001 | - |
chi-square = 19.3, p-value |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, A.; Gałęska, E.; Szul, A.; Łącka, K.; Bubel, A.; Araujo, J.P.; Ullah, R.; Wrzecińska, M. Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa. Vet. Sci. 2022, 9, 189. https://doi.org/10.3390/vetsci9040189
Kowalczyk A, Gałęska E, Szul A, Łącka K, Bubel A, Araujo JP, Ullah R, Wrzecińska M. Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa. Veterinary Sciences. 2022; 9(4):189. https://doi.org/10.3390/vetsci9040189
Chicago/Turabian StyleKowalczyk, Alicja, Elżbieta Gałęska, Anna Szul, Katarzyna Łącka, Anna Bubel, Jose P. Araujo, Riaz Ullah, and Marcjanna Wrzecińska. 2022. "Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa" Veterinary Sciences 9, no. 4: 189. https://doi.org/10.3390/vetsci9040189
APA StyleKowalczyk, A., Gałęska, E., Szul, A., Łącka, K., Bubel, A., Araujo, J. P., Ullah, R., & Wrzecińska, M. (2022). Fertility Rate and Assessment of the Cytoprotective Capacity of Various Types of Holothuroidea Extracts on Spermatozoa. Veterinary Sciences, 9(4), 189. https://doi.org/10.3390/vetsci9040189