Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography
Abstract
:1. Introduction
2. General Thermoregulatory Mechanisms Triggered at Birth
3. Morphoanatomical Differences Associated with Thermoregulation in Precocial and Altricial Newborns
4. Thermoregulatory Mechanisms in Altricial and Precocial Species
4.1. Brown Adipose Tissue Activation (BAT)
4.2. Shivering
4.3. Vasomotor Control
4.4. Behavior and Postural Changes
4.5. Diving Air-Breathing Marine Vertebrates
5. Opportunity Areas and Application of IRT as an Evaluation Tool to Help the Intervention of Animals Cope with Neonatal Hypothermia
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mellor, D.J.; Stafford, K.J. Animal welfare implications of neonatal mortality and morbidity in farm animals. Vet. J. 2004, 168, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.M.; Conington, J.; Corbiere, F.; Holmøy, I.H.; Muri, K.; Nowak, R.; Rooke, J.; Vipond, J.; Gautier, J.M. Invited review: Improving neonatal survival in small ruminants: Science into practice. Animal 2016, 10, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammersgaard, T.S.; Pedersen, L.J.; Jorgensen, E. Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci. 2011, 89, 2073–2085. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Poindron, P. From birth to colostrum: Early steps leading to lamb survival. Reprod. Nutr. Dev. 2006, 46, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannucchi, C.; Rodrigues, J.; Silva, L.; Lúcio, C.; Veiga, G. A clinical and hemogasometric survey of neonatal lambs. Small Rumin. Res. 2012, 108, 107–112. [Google Scholar] [CrossRef]
- Indrebø, A.; Trangerud, C.; Moe, L. Canine neonatal mortality in four large breeds. Acta Vet. Scand. 2007, 49, S2. [Google Scholar] [CrossRef] [Green Version]
- Mullany, L.C.; Katz, J.; Khatry, S.K.; LeClerq, S.C.; Darmstadt, G.L.; Tielsch, J.M. Risk of mortality associated with neonatal hypothermia in southern Nepal. Arch. Pediatr. Adolesc. Med. 2010, 164, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Lawler, D. Neonatal and pediatric care of the puppy and kitten. Theriogenology 2008, 70, 384–392. [Google Scholar] [CrossRef]
- Sibley, C.G.; Ahlguist, J. Phylogeny and Classsification of Birds: A Study in Molecular Evolution; Yale University Press: New Haven, CT, USA, 1990; p. 976. [Google Scholar]
- Rezende, E.L.; Bacigalupe, L.D.; Nespolo, R.F.; Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 2020, 6, eaaw4486. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Knight, Z.A. Regulation of body temperature by the nervous system. Neuron 2018, 98, 31–48. [Google Scholar] [CrossRef]
- Mendoza, K.; Griffin, J. Thermoregulation. In Encyclopedia of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2010; pp. 400–404. [Google Scholar]
- Mrowka, R.; Reuter, S. Thermoregulation. Acta Physiol. 2016, 217, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Lizarralde, P.; Gutiérrez, M.; Martínez, O. Alteraciones de la termorregulación. Emergencias 2000, 12, 197–207. [Google Scholar]
- Nord, A.; Nilsson, J.F.; Sandell, M.I.; Nilsson, J.-Å. Patterns and dynamics of rest-phase hypothermia in wild and captive blue tits during winter. J. Comp. Physiol. B 2009, 179, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.R.; Anderson, K.J.; Hunstiger, M.M.; Andrews, M.T. Turning down the heat: Down-regulation of sarcolipin in a hibernating mammal. Neurosci. Lett. 2019, 696, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Cobos, L.; Rosetti, M.; Distel, H.; Hudson, R. To stay or not to stay: The contribution of tactile and thermal cues to coming to rest in newborn rabbits. J. Comp. Physiol. A 2003, 189, 383–389. [Google Scholar] [CrossRef]
- Roland, L.; Drillich, M.; Klein-Jöbstl, D.; Iwersen, M. Invited review: Influence of climatic conditions on the development, performance, and health of calves. J. Dairy Sci. 2016, 99, 2438–2452. [Google Scholar] [CrossRef] [Green Version]
- Travain, T.; Colombo, E.S.; Heinzl, E.; Bellucci, D.; Prato Previde, E.; Valsecchi, P. Hot dogs: Thermography in the assessment of stress in dogs (Canis familiaris)—A pilot study. J. Vet. Behav. 2015, 10, 17–23. [Google Scholar] [CrossRef]
- Bouwknecht, J.A.; Olivier, B.; Paylor, R.E. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: A review of pharmacological and genetic studies in the mouse. Neurosci. Biobehav. Rev. 2007, 31, 41–59. [Google Scholar] [CrossRef]
- Hanania, N.A.; Zimmerman, J.L. Accidental hypothermia. Crit. Care Clin. 1999, 15, 235–249. [Google Scholar] [CrossRef]
- Plush, K.; Brien, F.D.; Hebart, M.L.; Hynd, P.I. Thermogenesis and physiological maturity in neonatal lambs: A unifying concept in lamb survival. Anim. Prod. Sci. 2016, 56, 736–745. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Martínez-Burnes, J.; Mota-Rojas, D.; Villanueva-García, D.; Ibarra-Rios, D.; Lezama-García, K.; Barrios-García, H.; López-Mayagoitia, A. Invited review: Meconium aspiration syndrome in mammals. CAB Rev 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 21001. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Trujillo, O.; Orozco, H. Animal welfare in the newborn piglet: A review. Vet. Med. 2012, 57, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.M.S.; Younas, U.; Asar, T.O.; Dikmen, S.; Hansen, P.J.; Dahl, G.E. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance. J. Anim. Sci. 2017, 95, 3497–3503. [Google Scholar] [CrossRef]
- Monteiro, A.; Tao, S.; Thompson, I.; Dahl, G. In utero heat stress decreases calf survival and performance through the first lactation. J. Dairy Sci. 2016, 99, 8443–8450. [Google Scholar] [CrossRef]
- Kozat, S. Hypothermia in newborn calves. J. Istanbul Vet. Sci. 2018, 2, 30–37. [Google Scholar] [CrossRef]
- Rowan, T.G. Thermoregulation in neonatal ruminants. BSAP Occas. Publ. 1992, 15, 13–24. [Google Scholar] [CrossRef]
- IUPS. Thermal Commission Glossary of terms for thermal physiology. Jpn. J. Physiol. 2001, 51, 245–248. [Google Scholar]
- Farmer, C.G. Parental care: The key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 2000, 155, 326–334. [Google Scholar] [CrossRef]
- Ivanov, K. The development of the concepts of homeothermy and thermoregulation. J. Therm. Biol. 2006, 31, 24–29. [Google Scholar] [CrossRef]
- Latorre, R.; Brauchi, S.; Madrid, R.; Orio, P. A cool channel in cold transduction. Physiology 2011, 26, 273–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ. 2015, 39, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Carvajal-de la Fuente, V.; Ghezzi, M.; Boscato-Funes, L.; Barrios-García, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Kerman, I.A.; Enquist, L.W.; Watson, S.J.; Yates, B.J. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 2003, 23, 4657–4666. [Google Scholar] [CrossRef]
- Banet, M.; Hensel, H.; Liebermann, H. The central control of shivering and non-shivering thermogenesis in the rat. J. Physiol. 1978, 283, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Grigg, G.C.; Beard, L.A.; Augee, M.L. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 2004, 77, 982–997. [Google Scholar] [CrossRef] [Green Version]
- Ferner, K.; Schultz, J.A.; Zeller, U. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J. Anat. 2017, 231, 798–822. [Google Scholar] [CrossRef]
- Grand, T.I. Altricial and precocial mammals: A model of neural and muscular development. Zoo Biol. 1992, 11, 3–15. [Google Scholar] [CrossRef]
- Versace, E.; Vallortigara, G. Origins of Knowledge: Insights from Precocial Species. Front. Behav. Neurosci. 2015, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Haughton, C.L.; Gawriluk, T.R.; Seifert, A.W. The biology and husbandry of the african spiny mouse (Acomys cahirinus) and the research uses of a laboratory colony. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 9–17. [Google Scholar] [PubMed]
- Geiser, F.; Wen, J.; Sukhchuluun, G.; Chi, Q.-S.; Wang, D.-H. Precocious torpor in an altricial mammal and the functional implications of heterothermy during development. Front. Physiol. 2019, 10, 469. [Google Scholar] [CrossRef] [PubMed]
- Canals, M.; Figueroa, D.P.; Miranda, J.P.; Sabat, P. Effect of gestational and postnatal environmental temperature on metabolic rate in the altricial rodent. Phyllotis Darwini. J. Therm. Biol. 2009, 34, 310–314. [Google Scholar] [CrossRef]
- Symonds, M.E.; Pope, M.; Budge, H. Adipose tissue development during early life: Novel insights into energy balance from small and large mammals. Proc. Nutr. Soc. 2012, 71, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Symonds, M.E. Brown adipose tissue growth and development. Scientifica 2013, 2013, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bautista, A.; Castelán, F.; Pérez-Roldán, H.; Martínez-Gómez, M.; Hudson, R. Competition in newborn rabbits for thermally advantageous positions in the litter huddle is associated with individual differences in brown fat metabolism. Physiol. Behav. 2013, 118, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Zeiss, C.J. Comparative milestones in rodent and human postnatal central nervous system development. Toxicol. Pathol. 2021, 49, 1368–1373. [Google Scholar] [CrossRef]
- Carstens, G.E. Cold thermoregulation in the newborn calf. Vet. Clin. N. Am. Food Anim. Pract. 1994, 10, 69–106. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Berg, F.; Gustafson, U.; Andersson, L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: A genetic explanation for poor thermoregulation in piglets. PLOS Genet. 2006, 2, e129. [Google Scholar] [CrossRef] [Green Version]
- Le Dividich, J.; Noblet, J. Thermoregulation and energy metabolism in the neonatal pig. Ann. Rech. Vet. 1983, 14, 375–381. [Google Scholar] [PubMed]
- Mota-Rojas, D.; Villanueva-Garcia, D.; Gregorio, O.; Suarez, X.; Hernandez, R.; Trujillo-Ortega, M.E. Foetal and neonatal energy metabolism in pigs and humans: A review. Vet. Med. 2011, 56, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Curtis, S. Environmental—thermoregulatory interactions and neonatal piglet survival. J. Anim. Sci. 1970, 31, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Herpin, P.; Vincent, A.; Damon, M. Effect of breed and body weight on thermoregulatory abilities of European (Piétrain×(Landrace×Large White)) and Chinese (Meishan) piglets at birth. Livest. Prod. Sci. 2004, 88, 17–26. [Google Scholar] [CrossRef]
- Malik, S.S.; Fewell, J.E. Thermoregulation in rats during early postnatal maturation: Importance of nitric oxide. Am. J. Physiol. Integr. Comp. Physiol. 2003, 285, R1366–R1372. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.; García-Torres, E.; Prager, G.; Hudson, R.; Rödel, H.G. Development of behavior in the litter huddle in rat pups: Within- and between-litter differences. Dev. Psychobiol. 2010, 52, 35–43. [Google Scholar] [CrossRef]
- Kleitman, N.; Satinoff, E. Thermoregulatory behavior in rat pups from birth to weaning. Physiol. Behav. 1982, 29, 537–541. [Google Scholar] [CrossRef]
- Hull, D.; Hull, J.; Vinter, J. The preferred environmental temperature of newborn rabbits. Neonatology 1986, 50, 323–330. [Google Scholar] [CrossRef]
- Fewell, J.E.; Wong, S.H.; Crisanti, K.C. Age-dependent core temperature responses of conscious rabbits to acute hypoxemia. J. Appl. Physiol. 2000, 89, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.; García-Torres, E.; Martínez-Gómez, M.; Hudson, R. Do newborn domestic rabbits Oryctolagus cuniculus compete for thermally advantageous positions in the litter huddle? Behav. Ecol. Sociobiol. 2008, 62, 331–339. [Google Scholar] [CrossRef]
- Olmstead, C.E.; Villablanca, J.R.; Torbiner, M.; Rhodes, D. Development of thermoregulation in the kitten. Physiol. Behav. 1979, 23, 489–495. [Google Scholar] [CrossRef]
- Rowland, L.A.; Bal, N.C.; Periasamy, M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol. Rev. 2015, 90, 1279–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, W.J.; Alberts, J.R. Rat behavioral thermoregulation integrates with nonshivering thermogenesis during postnatal development. Behav. Neurosci. 2007, 121, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Morrison, S.F. A thermosensory pathway mediating heat-defense responses. Proc. Natl. Acad. Sci. USA 2010, 107, 8848–8853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanosue, K.; Crawshaw, L.I.; Nagashima, K.; Yoda, T. Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur. J. Appl. Physiol. 2010, 109, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Integr. Comp. Physiol. 2011, 301, R1207–R1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferner, K. Skin structure in newborn marsupials with focus on cutaneous gas exchange. J. Anat. 2018, 233, 311–327. [Google Scholar] [CrossRef]
- Makanya, A.N.; Tschanz, S.A.; Haenni, B.; Burri, P.H. Functional respiratory morphology in the newborn quokka wallaby (Setonix brachyurus). J. Anat. 2007, 211, 26–36. [Google Scholar] [CrossRef]
- Laburn, H. Thermoregulation in th Neonate. In Physiology and Pathophysiology of Temperature Regulation; Blatteis, C., Ed.; World Scientific: Singapore, 2001; pp. 145–160. [Google Scholar]
- Ray, D.L. Investigating the surface area to volume ratio (S/V) in Bergmann’s rule. Am. Biol. Teach. 2016, 78, 429–432. [Google Scholar] [CrossRef]
- Hull, D. Thermoregulation in Young Mammals. In Comparative Physiology of Thermoregulation; Whittow, G.C., Ed.; Academic Press: New York, NY, USA, 1973; pp. 167–200. [Google Scholar]
- Cannon, B.; Houstek, J.; Nedergaard, J. Brown adipose tissue: More than an effector of thermogenesis ? Ann. N. Y. Acad. Sci. 1998, 856, 171–187. [Google Scholar] [CrossRef]
- Oelkrug, R.; Polymeropoulos, E.T.; Jastroch, M. Brown adipose tissue: Physiological function and evolutionary significance. J. Comp. Physiol. B 2015, 185, 587–606. [Google Scholar] [CrossRef] [PubMed]
- Negron, S.G.; Ercan-Sencicek, A.G.; Freed, J.; Walters, M.; Lin, Z. Both proliferation and lipogenesis of brown adipocytes contribute to postnatal brown adipose tissue growth in mice. Sci. Rep. 2020, 10, 20335. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Rim, J.-S.; Hogan, J.C.; Coulter, A.A.; Koza, R.A.; Kozak, L.P. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 2007, 48, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanden Hole, C.; Goyens, J.; Prims, S.; Fransen, E.; Ayuso Hernando, M.; Van Cruchten, S.; Aerts, P.; Van Ginneken, C. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets. J. Exp. Biol. 2017, 220, 2706–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herpin, P.; Le Dividich, J. Thermoregulation and the Environment. In The Neonatal Pig: Development and Survival; Varley, M.A., Ed.; CAB International: Wallingford, UK, 1995; pp. 57–98. [Google Scholar]
- Malmkvist, J.; Pedersen, L.J.; Damgaard, B.M.; Thodberg, K.; Jørgensen, E.; Labouriau, R. Does floor heating around parturition affect the vitality of piglets born to loose housed sows? Appl. Anim. Behav. Sci. 2006, 99, 88–105. [Google Scholar] [CrossRef]
- Andersen, H.M.-L.; Pedersen, L.J. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets. Animal 2016, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.F.; Madden, C.J.; Tupone, D. Central control of brown adipose tissue thermogenesis. Front. Endocrinol. 2012, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symonds, M.E.; Pope, M.; Budge, H. The ontogeny of brown adipose tissue. Annu. Rev. Nutr. 2015, 35, 295–320. [Google Scholar] [CrossRef]
- Bi, S. Stress prompts brown fat into combustion. Cell Metab. 2014, 20, 205–207. [Google Scholar] [CrossRef] [Green Version]
- Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef]
- Boss, O.; Muzzin, P.; Giacobino, J. The uncoupling proteins, a review. Eur. J. Endocrinol. 1998, 139, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Bi, S. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis. Front. Endocrinol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Himms-Hagen, J.; Melnyk, A.; Zingaretti, M.C.; Ceresi, E.; Barbatelli, G.; Cinti, S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Physiol. 2000, 279, C670–C681. [Google Scholar] [CrossRef]
- Van Sant, M.J.; Hammond, K.A. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus). Physiol. Biochem. Zool. 2008, 81, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Rossmeisl, M.; McClaine, J.; Kozak, L.P. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Investig. 2003, 111, 399–407. [Google Scholar] [CrossRef]
- Guerra, C.; Koza, R.A.; Yamashita, H.; Walsh, K.; Kozak, L.P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Investig. 1998, 102, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Yang, Q.; Zhang, L.; Maricelli, J.W.; Rodgers, B.D.; Zhu, M.-J.; Du, M. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci. Rep. 2016, 6, 34345. [Google Scholar] [CrossRef] [Green Version]
- Groppetti, D.; Ravasio, G.; Bronzo, V.; Pecile, A. The role of birth weight on litter size and mortality within 24h of life in purebred dogs: What aspects are involved? Anim. Reprod. Sci. 2015, 163, 112–119. [Google Scholar] [CrossRef]
- Schrack, J.; Dolf, G.; Reichler, I.; Schelling, C. Factors influencing litter size and puppy losses in the Entlebucher Mountain dog. Theriogenology 2017, 95, 163–170. [Google Scholar] [CrossRef]
- Smith, S.; Carstens, G. Ontogeny and Metabolism of Brown Adipose Tissue in Livestock Species. In Biology of Growing Animals; Burrin, D., Mersmann, H., Eds.; Elsevier: Philadephia, PA, USA, 2005; pp. 303–322. [Google Scholar]
- Mattson, M.P. Perspective: Does brown fat protect against diseases of aging? Ageing Res. Rev. 2010, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Symonds, M.E.; Bryant, M.J.; Clarke, L.; Darby, C.J.; Lomax, M.A. Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb. J. Physiol. 1992, 455, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Schermer, S.; Bird, J.; Lomax, M.; Shepherd, D.; Symonds, M. Effect of fetal thyroidectomy on brown adipose tissue and thermoregulation in newborn lambs. Reprod. Fertil. Dev. 1996, 8, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Litten, J.; Mostyn, A.; Laws, J.; Corson, A.; Symonds, M.; Clarke, L. Effect of acute administration of recombinant human leptin during the neonatal period on body temperature and endocrine profile of the piglet. Neonatology 2008, 93, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 2006, 86, 435–464. [Google Scholar] [CrossRef] [PubMed]
- Arsenijevic, D.; Onuma, H.; Pecqueur, C.; Raimbault, S.; Manning, B.S.; Miroux, B.; Couplan, E.; Alves-Guerra, M.-C.; Goubern, M.; Surwit, R.; et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 2000, 26, 435–439. [Google Scholar] [CrossRef]
- Zekri, Y.; Flamant, F.; Gauthier, K. Central vs. peripheral action of thyroid hormone in adaptive thermogenesis: A burning topic. Cells 2021, 10, 1327. [Google Scholar] [CrossRef]
- Zaninovich, A.A. Thyroid hormones, obesity and brown adipose tissue thermogenesis. Medicina 2001, 61, 597–602. [Google Scholar]
- Berthon, D.; Herpin, P.; Duchamp, C.; Dauncey, M.J.; Le Dividich, J. Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. J. Dev. Physiol. 1993, 19, 253–261. [Google Scholar]
- Rossi, L.; Lumbreras, A.E.V.; Vagni, S.; Dell’Anno, M.; Bontempo, V. Nutritional and functional properties of colostrum in puppies and kittens. Animals 2021, 11, 3260. [Google Scholar] [CrossRef]
- Mugnier, A.; Chastant, S.; Saegerman, C.; Gaillard, V.; Grellet, A.; Mila, H. Management of low birth weight in canine and feline species: Breeder profiling. Animals 2021, 11, 2953. [Google Scholar] [CrossRef]
- Münnich, A.; Küchenmeister, U. Dystocia in numbers evidence-based parameters for intervention in the dog: Causes for dystocia and treatment recommendations. Reprod. Domest. Anim. 2009, 44, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.; Papasian, C.; Ritter, R. The effects of cold stress on neonatal calves. II. Absorption of calostral immunoglobulins. Can. J. Comp. Med. 1980, 44, 19–23. [Google Scholar] [PubMed]
- Berthon, D.; Herpin, P.; Le Dividich, J. Shivering thermogenesis in the neonatal pig. J. Therm. Biol. 1994, 19, 413–418. [Google Scholar] [CrossRef]
- Seron-Ferre, M.; Reynolds, H.; Mendez, N.A.; Mondaca, M.; Valenzuela, F.; Ebensperger, R.; Valenzuela, G.J.; Herrera, E.A.; Llanos, A.J.; Torres-Farfan, C. Impact of maternal melatonin suppression on amount and functionality of brown adipose tissue (BAT) in the newborn sheep. Front. Endocrinol. 2015, 5, 232. [Google Scholar] [CrossRef]
- Pérez, M.; Cabrera, P.; Varela, M.; Garaulet, M. Distribución regional de la grasa corporal. Uso de técnicas de imagen como herramienta de diagnóstico nutricional. Nutr. Hosp. 2010, 25, 207–223. [Google Scholar]
- Hill, E.M. Seasonal Changes in White Adipose Tissue in American Black Ears (Ursus americanus). Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2013. [Google Scholar]
- Hohtola, E. Shivering Thermogenesis in Birds and Mammals. In Life in the Cold: Evolution, Mechanisms, Adaptation, and Application; Barnes, M., Carey, H.V., Eds.; ARCUS: Fairbanks, AK, USA, 2004; pp. 241–252. [Google Scholar]
- Haman, F. Shivering in the cold: From mechanisms of fuel selection to survival. J. Appl. Physiol. 2006, 100, 1702–1708. [Google Scholar] [CrossRef]
- Olson, D.M.; Grissom, J.L.; Williamson, R.A.; Bennett, S.N.; Bellows, S.T.; James, M.L. Interrater reliability of the bedside shivering assessment scale. Am. J. Crit. Care 2013, 22, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Robertson, C.E.; McClelland, G.B. Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (Peromyscus maniculatus). J. Exp. Biol. 2019, 222, jeb210963. [Google Scholar] [CrossRef]
- Kienzle, E.; Zentek, J.; Meyer, H. Body composition of puppies and young dogs. J. Nutr. 1998, 128, 2680S–2683S. [Google Scholar] [CrossRef] [Green Version]
- Mila, H.; Grellet, A.; Feugier, A.; Chastant-Maillard, S. Differential impact of birth weight and early growth on neonatal mortality in puppies. J. Anim. Sci. 2015, 93, 4436–4442. [Google Scholar] [CrossRef]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Hernández-Ávalos, I.; José, N.; Casas-Alvarado, A.; Gómez, J.; Mora-Medina, P. Thermal homeostasis in the newborn puppy: Behavioral and physiological responses. J. Anim. Behav. Biometeorol. 2021, 9, 1–25. [Google Scholar] [CrossRef]
- Blix, A.S. Adaptations to polar life in mammals and birds. J. Exp. Biol. 2016, 219, 1093–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthon, D.; Herpin, P.; Bertin, R.; De Marco, F.; Le Dividich, J. Metabolic changes associated with sustained 48-Hr shivering thermogenesis in the newborn pig. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996, 114, 327–335. [Google Scholar] [CrossRef]
- Alexander, G.; Williams, D. Shivering and non-shivering thermogenesis during summit metabolism in young lambs. J. Physiol. 1968, 198, 251–276. [Google Scholar] [CrossRef]
- Schmitt, O.; Reigner, S.; Bailly, J.; Ravon, L.; Billon, Y.; Gress, L.; Bluy, L.; Canario, L.; Gilbert, H.; Bonnet, A.; et al. Thermoregulation at birth differs between piglets from two genetic lines divergent for residual feed intake. Animal 2021, 15, 100069. [Google Scholar] [CrossRef]
- Krogstad, A.-L.; Elam, M.; Karlsson, T.; Wallin, B.G. Arteriovenous anastomoses and the thermoregulatory shift between cutaneous vasoconstrictor and vasodilator reflexes. J. Auton. Nerv. Syst. 1995, 53, 215–222. [Google Scholar] [CrossRef]
- Cook, N.; Schaefer, A.; Warren, L.; Burwash, L.; Anderson, M.; Baron, V. Adrenocortical and metabolic responses to ACTH injection in horses: An assessment by salivary cortisol and infrared thermography of the eye. Can. J. Anim. Sci. 2001, 81, 621. [Google Scholar]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.C.; Braun, A.; Bach, V.; Pelletier, A.; Seze, R. Low-level radiofrequency exposure induces vasoconstriction in rats. Bioelectromagnetics 2021, 42, 455–463. [Google Scholar] [CrossRef]
- Stephens, D.P.; Aoki, K.; Kosiba, W.A.; Johnson, J.M. Nonnoradrenergic mechanism of reflex cutaneous vasoconstriction in men. Am. J. Physiol. Circ. Physiol. 2001, 280, H1496–H1504. [Google Scholar] [CrossRef]
- Stephens, D.P.; Saad, A.R.; Bennett, L.A.T.; Kosiba, W.A.; Johnson, J.M. Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Am. J. Physiol. Circ. Physiol. 2004, 287, H1404–H1409. [Google Scholar] [CrossRef] [PubMed]
- Solomon, G.F.; Moos, R.H.; Stone, G.C.; Fessel, W.J. Peripheral vasoconstriction induced by emotional stress in rats. Angiology 1964, 15, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Leclercq-Smekens, M.; Herin, M. Differences in skin characteristics in European (Large White) and Caribbean (Creole) growing pigs with reference to thermoregulation. Anim. Res. 2006, 55, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Gourdine, J.-L.; Riquet, J.; Rosé, R.; Poullet, N.; Giorgi, M.; Billon, Y.; Renaudeau, D.; Gilbert, H. Genotype by environment interactions for performance and thermoregulation responses in growing pigs. J. Anim. Sci. 2019, 97, 3699–3713. [Google Scholar] [CrossRef] [PubMed]
- Magnin, M.; Junot, S.; Cardinali, M.; Ayoub, J.Y.; Paquet, C.; Louzier, V.; Garin, J.M.B.; Allaouchiche, B. Use of infrared thermography to detect early alterations of peripheral perfusion: Evaluation in a porcine model. Biomed. Opt. Express 2020, 11, 2431. [Google Scholar] [CrossRef]
- Kammersgaard, T.; Malmkvist, J.; Pedersen, L. Infrared thermography—A non-invasive tool to evaluate thermal status of neonatal pigs based on surface temperature. Animal 2013, 7, 2026–2034. [Google Scholar] [CrossRef] [Green Version]
- McCoard, S.A.; Henderson, H.V.; Knol, F.W.; Dowling, S.K.; Webster, J.R. Infrared thermal imaging as a method to study thermogenesis in the neonatal lamb. Anim. Prod. Sci. 2014, 54, 1497–1501. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Terrien, J.; Perret, M.; Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 2011, 16, 1428–1444. [Google Scholar] [CrossRef] [Green Version]
- Carlton, P.; Marks, R. Cold exposure and heat reinforced operant behavior. Science 1958, 128, 1344. [Google Scholar] [CrossRef]
- Hrupka, B.J.; Leibbrandt, V.D.; Crenshaw, T.D.; Benevenga, N.J. Effect of sensory stimuli on huddling behavior of pigs. J. Anim. Sci. 2000, 78, 592–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Torres, E.; Hudson, R.; Castelán, F.; Martínez-Gómez, M.; Bautista, A. Differential metabolism of brown adipose tissue in newborn rabbits in relation to position in the litter huddle. J. Therm. Biol. 2015, 51, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Verduzco-Mendoza, A.; Bueno-Nava, A.; Wang, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Casas, A.; Domínguez, A.; Mota-Rojas, D. Experimental applications and factors involved in validating thermal windows using infrared thermography to assess the health and thermostability of laboratory animals. Animals 2021, 11, 3448. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, C.; Arfuso, F.; Fazio, F.; Giudice, E.; Panzera, M.; Piccione, G. Rhythmic function of body temperature, breathing and heart rates in newborn goats and sheep during the first hours of life. J. Vet. Behav. 2017, 18, 29–36. [Google Scholar] [CrossRef]
- Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Non-infectious causes of pre-weaning mortality in piglets. Livest. Sci. 2016, 184, 46–57. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; López, A.; Martínez-Burnes, J.; Muns, R.; Villanueva-García, D.; Mora-Medina, P.; González-Lozano, M.; Olmos-Hernández, A.; Ramírez-Necoechea, R. Is vitality assessment important in neonatal animals? CAB Rev. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Severud, W.J.; DelGiudice, G.D.; Obermoller, T.R. Minimizing mortality of moose neonates from capture-induced abandonment. Alces A J. Devoted Biol. Manag. Moose 2016, 52, 73–83. [Google Scholar]
- Harri, M.; Mononen, J.; Haapanen, K.; Korhonen, H. Postnatal changes in hypothermic response in farmborn blue foxes and raccoon dogs. J. Therm. Biol. 1991, 16, 71–76. [Google Scholar] [CrossRef]
- Reidenberg, J.S. Anatomical adaptations of aquatic mammals. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2007, 290, 507–513. [Google Scholar] [CrossRef]
- Kelley, N.P.; Pyenson, N.D. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 2015, 348, aaa3716. [Google Scholar] [CrossRef] [Green Version]
- Favilla, A.B.; Costa, D.P. Thermoregulatory strategies of diving air-breathing marine vertebrates: A review. Front. Ecol. Evol. 2020, 8, 555509. [Google Scholar] [CrossRef]
- Domning, D.P. Sirenian Evolution. In Encyclopedia of Marine Mammals; Würsig, B., Thewissen, J.G., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 856–859. [Google Scholar]
- Rode, K.; Stirling, I. Polar Bear. In Encyclopedia of Marine Mammals; Würsig, B., Thewissen, J.G., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 743–746. [Google Scholar]
- Enstipp, M.R.; Bost, C.-A.; Le Bohec, C.; Bost, C.; Le Maho, Y.; Weimerskirch, H.; Handrich, Y. Apparent changes in body insulation of juvenile king penguins suggest an energetic challenge during their early life at sea. J. Exp. Biol. 2017, 220, 2666–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knizkova, I.; Kunc, P.; Gurdil, G.; Pinar, Y.; Selvi, K. Applications of infrared thermography in animal production. J. Fac. Agric. OMU 2007, 22, 329–336. [Google Scholar]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and Circulatory Changes in Diverse Body Regions in Dogs and Cats Evaluated by Infrared Thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D.; la Fuente, V.C.; et al. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Santos, N.R.; Beck, A.; Fontbonne, A. A review of maternal behaviour in dogs and potential areas for further research. J. Small Anim. Pract. 2020, 61, 85–92. [Google Scholar] [CrossRef]
- South, K.E. Infrared Thermography of Erinaceus europaeus: Applications with Hypothermia and Hibernation. Master’s Thesis, University of Plymouth, Plymouth, UK, 2018. [Google Scholar]
- Schmitt, O.; O’Driscoll, K. Use of infrared thermography to noninvasively assess neonatal piglet temperature. Transl. Anim. Sci. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Zwyrzykowska, A.; Dudek, K.; Zielińska, P.; Kupczyński, R. Maximum eye temperature in the assessment of training in racehorses: Correlations with salivary cortisol concentration, rectal temperature, and heart rate. J. Equine Vet. Sci. 2016, 45, 39–45. [Google Scholar] [CrossRef]
- Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef] [Green Version]
- Dela Ricci, G.; Silva-Miranda, K.O.; Titto, C.G. Infrared thermography as a non-invasive method for the evaluation of heat stress in pigs kept in pens free of cages in the maternity. Comput. Electron. Agric. 2019, 157, 403–409. [Google Scholar] [CrossRef]
- Labeur, L.; Villiers, G.; Small, A.H.; Hinch, G.N.; Schmoelzl, S. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs. Res. Vet. Sci. 2017, 115, 517–522. [Google Scholar] [CrossRef] [PubMed]
Species | Maturation Time | Main Mechanism of Thermoregulation | References | |
---|---|---|---|---|
Precocial | Bos taurus calves | 1 to 2 h after birth | Non-shivering thermogenesis Shivering thermogenesis Vasomotor control Postural changes | [18,50,51] |
Piglets | 4 to 8 h after birth | [25,52,53,54,55,56] | ||
Lambs | 1 to 5 h after birth | Shivering and non-shivering | [22] | |
Altricial | Rat pups | 13 to 20 days after birth | Postural changes | [57,58,59] |
Rabbits | 9 to 11 days after birth | Vasomotor control | [60,61,62] | |
Kitten | 45 days after birth | Non-shivering thermogenesis | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Vet. Sci. 2022, 9, 246. https://doi.org/10.3390/vetsci9050246
Lezama-García K, Mota-Rojas D, Martínez-Burnes J, Villanueva-García D, Domínguez-Oliva A, Gómez-Prado J, Mora-Medina P, Casas-Alvarado A, Olmos-Hernández A, Soto P, et al. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Veterinary Sciences. 2022; 9(5):246. https://doi.org/10.3390/vetsci9050246
Chicago/Turabian StyleLezama-García, Karina, Daniel Mota-Rojas, Julio Martínez-Burnes, Dina Villanueva-García, Adriana Domínguez-Oliva, Jocelyn Gómez-Prado, Patricia Mora-Medina, Alejandro Casas-Alvarado, Adriana Olmos-Hernández, Paola Soto, and et al. 2022. "Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography" Veterinary Sciences 9, no. 5: 246. https://doi.org/10.3390/vetsci9050246
APA StyleLezama-García, K., Mota-Rojas, D., Martínez-Burnes, J., Villanueva-García, D., Domínguez-Oliva, A., Gómez-Prado, J., Mora-Medina, P., Casas-Alvarado, A., Olmos-Hernández, A., Soto, P., & Muns, R. (2022). Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Veterinary Sciences, 9(5), 246. https://doi.org/10.3390/vetsci9050246