Antibacterial Activity of Romanian Propolis against Staphylococcus aureus Isolated from Dogs with Superficial Pyoderma: In Vitro Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Romanian Propolis
2.2. Staphylococcus aureus Clinical Strains
2.3. Inocula
2.4. Determination of Minimum Inhibitory Concentration
2.5. Determination of Minimum Bactericidal Concentration
2.6. Statistical Analyses
3. Results
3.1. Ethanolic Extract of Romanian Propolis Analyses
3.2. Bacteriological Study
3.3. Determinations MIC and MBC Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dezmirean, D.S.; Paşca, C.; Moise, A.R.; Bobiş, O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. Plants 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Kosalec, I.; Pepeljnjak, S.; Bakmaz, M.; Vladimir-Knezević, S. Flavonoid analysis and antimicrobial activity of commercially available propolis products. Acta Pharm 2005, 55, 423–430. [Google Scholar]
- Tlak, G.I.; Iva, P.; Mirza, B.; Ivan, K.; Siniša, S.; Toni, V.; Josipa, V. Components responsible for antimicrobial activity of propolis from continental and Mediterranean regions in Croatian. Czech J. Food Sci. 2017, 35, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomassigny, C.; Bouttier, S.; Henriques, J.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [Green Version]
- János, D.; Viorel, H.; Ionica, I.; Corina, P.; Tiana, F.; Roxana, D. Carriage of Multidrug Resistance Staphylococci in Shelter Dogs in Timisoara, Romania. Antibiotics 2021, 10, 801. [Google Scholar] [CrossRef]
- Dégi, J.; Imre, K.; Catana, N.; Morar, A.; Sala, C.; Herman, V. Frequency of isolation and antibiotic resistance of stapylococcal flora from external otitis of dogs. Vet. Rec. 2013, 173, 42. [Google Scholar] [CrossRef]
- Lindsay, J.A. Staphylococci: Evolving Genomes. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures. Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, G.F.Q.; Vilar-Cordeiro, L.; Andrade-Júnior, F.P.D. Main laboratory methods used for the isolation and identification of Staphylococcus spp. Rev. Colomb. Cienc. Quím. Farm. 2021, 50, 5–28. [Google Scholar]
- González-Domínguez, M.S.; Carvajal, H.D.; Calle-Echeverri, D.A.; Chinchilla-Cárdenas, D. Molecular Detection and Characterization of the mecA and nuc Genes from Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated from Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Front. Vet. Sci. 2020, 7, 376. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristivojević, P.; Trifković, J.; Gašić, U.; Andrić, F.; Nedić, N.; Tešić, Ž.; Milojković-Opsenica, D. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem. Anal. 2015, 26, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, N.M.; Falcão, S.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Biosafety Manual of the University Veterinary Clinics of Timisoara. 2019. Available online: https://www.usab-tm.ro/utilizatori/medicinaveterinara/file/Manual%20Biosecuritate%20CVU%202019.pdf (accessed on 26 April 2022).
- Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wąsik, T.J. Susceptibility of Staphylococcus aureus Clinical Isolates to Propolis Extract Alone or in Combination with Antimicrobial Drugs. Molecules 2013, 18, 9623–9640. [Google Scholar] [CrossRef] [Green Version]
- Rantakokko-Jalava, K.; Jalava, J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol. 2002, 40, 4211–4217. [Google Scholar] [CrossRef] [Green Version]
- M07-A9; Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically—Approved Standards—Ninth Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32.
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [Green Version]
- CLSI M31-A4/VET01-A4; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals—Approved Standard—4th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; Volume 33.
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and Addressing CLSI Breakpoint Revisions: A Primer for Clinical Laboratories. J. Clin. Microbiol. 2019, 57, e00203-19. [Google Scholar] [CrossRef] [Green Version]
- LaPlante, K.L.; Rybak, M.J. Impact of high-inoculum Staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother. 2004, 48, 4665–4672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Baquer, F.; Sawan, A.A.; Auzou, M.; Grillon, A.; Jaulhac, B.; Join-Lambert, O.; Boyer, P.H. Broth Microdilution and Gradient Diffusion Strips vs. Reference Agar Dilution Method: First Evaluation for Clostridiales Species Antimicrobial Susceptibility Testing. Antibiotics 2021, 10, 975. [Google Scholar] [CrossRef] [PubMed]
- Mihai, C.M. Evaluation of Propolis Quality from Transilvania with Regards to Standardization. Ph.D. Thesis, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania, 2011. [Google Scholar]
- Coneac, G.; Gafiţeanu, E.; Hădărugă, D.I. Flavonoid contents of propolis from the West Side of Romania and correlation with the antioxidant activity. Chem. Bull. Politeh. Univ. Timişoara 2008, 53, 56–60. [Google Scholar]
- Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O. Important Developments in Romanian Propolis Research. Evid. Based Complement. Alternat. Med. 2013, 2013, 159392. [Google Scholar] [CrossRef] [Green Version]
- Bouchelaghem, S.; Das, S.; Naorem, R.S.; Czuni, L.; Papp, G.; Kocsis, M. Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus. Molecules 2022, 27, 574. [Google Scholar] [CrossRef]
- Teixeira, E.W.; Message, D.; Negri, G.; Salatino, A.; Stringheta, P.C. Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. Evid. Based Comp. Alter. Med. 2010, 7, 307–315. [Google Scholar] [CrossRef]
- Seidel, V.; Peyfoon, E.; Watson, D.G.; Fearnley, J. Comparative study of the antibacterial activity of propolis from different geographical and climatic zones. Phytother. Res. 2008, 22, 1256–1263. [Google Scholar] [CrossRef]
- Koru, O.; Toksoy, F.; Acikel, C.H.; Tunca, Y.M.; Baysallar, M.; Guclu, A.U.; Akca, E.; Tuylu, A.O.; Sorkun, K.; Tanyuksel, M.; et al. In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe 2007, 13, 140–145. [Google Scholar] [CrossRef]
- Guz, N.R.; Stermitz, F.R.; Johnson, J.B.; Beeson, T.D.; Willen, S.; Hsiang, J.; Lewis, K. Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump: Structure-activity relationships. J. Med. Chem. 2001, 44, 261–268. [Google Scholar] [CrossRef]
- Herman, V.; Roșoiu, D.; Catana, N.; Degi, J.; Iancu, I.; Mițiți, I.; Ciobanu, G.; Grema, C.F.; Pascu, C. Evaluation of propolis for antibacterial activity in vitro. Rev. Rom. Med. Vet. 2018, 28, 13–17. [Google Scholar]
- Pătruică, S.; Simiz, E.; Peț, I.; Ștef, L. Some correlations between environmental parameters and the foraging behaviour of honeybees (Apismellifera) on oilseed rape (Brassica napusoleifera). Sci. Pap. Ser. D Anim. Sci. 2019, LXII, 180–184. [Google Scholar]
- Veiga, R.S.; De Mendonça, S.; Mendes, P.B.; Paulino, N.; Mimica, M.J.; Netto, A.A.L.; Lira, I.S.; López, B.G.; Negrão, V.; Marcucci, M.C. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J. Appl. Microbiol. 2017, 122, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.B.; Bautista-Silva, J.P.; Amparo, T.R.; Petit, A.; Pervier, P.; Dos Santos Almeida, J.C.; Azevedo, M.C.; Silveira, B.M.; Brandão, G.C.; de Souza, G.; et al. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem. 2019, 287, 61–67. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid. Based Comp. Alter. Med. eCAM 2015, 206439. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Kedzia, E.H.K.B. Aktywno’s’c antybiotyczna propolisu krajowego i europejskiego. The antibiotic activity of native and european propolis. Postepy. Fitoter. 2013, 2, 97–107. [Google Scholar]
- Bridi, R.; Montenegro, G.; Nuñez-Quijada, G.; Giordano, A.; Fernanda Morán-Romero, M.; Jara-Pezoa, I.; Speisky, H.; Atala, E.; López-Alarcón, C. International regulations of propolis quality: Required assays do not necessarily reflect their polyphenolicrelated in vitro activities. J. Food Sci. 2015, 80, C1188–C1195. [Google Scholar] [CrossRef] [PubMed]
- Pamplona-Zomenhan, L.C.; Pamplona, B.C.; da Silva, C.B.; Marcucci, M.C.; Mimica, L.M.J. Evaluation of the in vitro antimicrobial activity of an ethanol extract of Brazilian classified propolis on strains of Staphylococcus aureus. Braz. J. Microbiol. 2011, 42, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, L.; Carreck, V.D.; Neumann, P.; James, D.E. The Coloss Beebok: Global standards in honey bee research. J. Apic. Res. 2020, 59, 1–4. [Google Scholar]
- Piccinelli, A.L.; Lotti, C.; Campone, L.; Cuesta-Rubio, O.; Fernandez, M.C.; Rastrelli, L. Cuban and Brazilian red propolis: Botanical origin and comparative analysis by high-performance liquid chromatography-photodiode array detection/electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2011, 59, 6484–6491. [Google Scholar] [CrossRef] [PubMed]
- Righi, A.A.; Negri, G.; Salatino, A. Comparative chemistry of propolis from eight brazilian localities. Evid. Based Comp. Alter. Med. eCAM 2013, 2013, 267878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeotti, F.; Maccari, F.; Fachini, A.; Volpi, N. Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products. Foods 2018, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Sun, S.; He, J.; Liu, M.; Yin, G.; Zhang, X. A Great Concern Regarding the Authenticity Identification and Quality Control of Chinese Propolis and Brazilian Green Propolis. J. Food Nutr. Res. 2019, 7, 725–735. [Google Scholar] [CrossRef]
Chemical Composition | Crude Romanian Propolis Sample | Ethanolic Romanian Propolis Extract Samples (ERPE) | ||
---|---|---|---|---|
Mean (mg/g) | Standard Deviation | Mean (mg/g) | Standard Deviation | |
phenyl acrylic acid 3-[4-hydroxy-3-(oxo butyl)] | 3.465 | 0.049 | 0.905 | 0.012 |
phenyl cinnamic acid-5-3-prenyl-3(E)-(4-hydroxy-3-methyl-2-butenol) | 0.129 | 0.007 | 0.682 | 0.002 |
cinnamic acid—3-prenyl-4-(2-methylpropionyloxi) | 0.789 | 0.023 | 0.187 | 0.014 |
3-prenyl-4-dihydrocynamoiloxicinnamic acid | 0.224 | 0.003 | 0.202 | 0.000 |
Ferulic acid | 0.318 | 0.004 | 0.325 | 0.016 |
3-prenyl-4-hydroxycinnamic acid | 1.991 | 0.011 | 3.439 | 0.088 |
2.2-dimethyl-6-carboxyethenyl-2H-1-benzopirane | 3.993 | 0.001 | 2.782 | 0.046 |
2.2-dimethyl-8-prenyl-2H-1-benzopirano-6-propenoic acid | 1.569 | 0.032 | 1.119 | 0.001 |
(E)-3-{4-hydroxy-3-[(E)-4-(2.3)-dihydrocynamoiloxi-3-methyl-2-butenyl]-5-prenylphenyl-2-propenoic acid (artepillin C) | 1.910 | 0.014 | 0.658 | 0.432 |
Chrysin (5,7-Dihydroxyflavone) | 1.398 | 0.028 | 0.896 | 0.214 |
3.5-diprenyl-4-hydroxycinnamic acid | 21.524 | 0.392 | 12.335 | 0.056 |
Apigenin (5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-benzopyrone) | 9.134 | 0.198 | 3.794 | 0.008 |
p-coumaric acid | 11.321 | 0.819 | 6.183 | 0.072 |
Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) | 4.861 | 0.043 | 1.538 | 0.033 |
Kaempferol | 0.418 | 0.028 | 0.312 | 0.001 |
Quercetin-3-rutinoside hydrate (Rutin hydrate) | 4.685 | 0.032 | 1.621 | 0.415 |
Caffeic acid | 0.342 | 0.002 | 0.175 | 0.004 |
1—caffeoylquinic acid | 0.495 | 0.485 | 0.314 | 0.005 |
2—caffeoylquinic acid | 0.725 | 0.594 | 0.062 | 0.028 |
3—caffeoylquinic acid | 1.427 | 0.484 | 0.612 | 0.003 |
4—caffeoylquinic acid | 2.619 | 0.001 | 0.117 | 0.000 |
Pinocembrin | 0.536 | 0.001 | 0.876 | 0.067 |
Total | 69.897 | - | 32.811 | - |
MRSA/MSSA | Ethanolic Extract of Romanian Propolis | Gentamicin (30 µg) | Enrofloxacin (15 µg) | |||
---|---|---|---|---|---|---|
MIC (µg/mL) | MBC (µg/mL) | MIC (Sensible ≤ 4; Resistant ≥ 16 µg/mL *) | MIC (Sensible ≤ 0.5; Resistant ≥ 4 µg/mL *) | |||
Sensible | Resistant | Sensible | Resistant | |||
Staphylococcus aureus 1—MSSA | 8 | 12 | 2 | - | 0.225 | - |
Staphylococcus aureus 2—MRSA | 6 | 10 | - | 24 | - | 6 |
Staphylococcus aureus 3—MSSA | 8 | 10 | - | 18 | 0.125 | - |
Staphylococcus aureus 4—MSSA | 10 | 14 | 2 | - | 0.75 | - |
Staphylococcus aureus 5—MRSA | 10 | 12 | - | 18 | 0.5 | - |
Staphylococcus aureus 6—MRSA | 8 | 10 | - | 22 | 0.125 | - |
Staphylococcus aureus 7—MSSA | 6 | 8 | 1 | - | 0.75 | - |
Staphylococcus aureus 8—MSSA | 10 | 12 | 2 | - | 0.225 | - |
Staphylococcus aureus 9—MSSA | 6 | 8 | 4 | - | - | 4 |
Staphylococcus aureus 10—MRSA | 6 | 8 | - | 24 | 0.5 | - |
Staphylococcus aureus 11—MSSA | 8 | 12 | 2 | - | 0.125 | - |
Staphylococcus aureus 12—MSSA | 8 | 10 | 4 | - | 0.75 | - |
Staphylococcus aureus 13—MSSA | 10 | 14 | 1 | - | 0.125 | - |
Staphylococcus aureus 14—MSSA | 6 | 8 | 4 | - | 0.225 | - |
Staphylococcus aureus 15—MSSA | 6 | 8 | - | 16 | 0.25 | - |
Staphylococcus aureus 16—MSSA | 8 | 10 | 2 | - | 0.25 | - |
Staphylococcus aureus 17—MRSA | 10 | 14 | 2 | - | - | 6 |
Staphylococcus aureus 18—MSSA | 8 | 10 | 4 | - | 0.125 | - |
Staphylococcus aureus 19—MSSA | 8 | 10 | - | 18 | 0.225 | - |
Staphylococcus aureus 21—MRSA | 6 | 8 | - | 24 | - | 8 |
Staphylococcus aureus 22—MSSA | 6 | 6 | 2 | - | 0.5 | - |
Staphylococcus aureus 23—MSSA | 8 | 10 | 2 | - | 0.125 | - |
Staphylococcus aureus 24—MRSA | 10 | 14 | 4 | - | 0.25 | - |
Staphylococcus aureus 25—MRSA | 10 | 12 | 4 | - | - | 6 |
Staphylococcus aureus 26—MSSA | 8 | 10 | 1 | - | 0.125 | - |
Staphylococcus aureus 27—MSSA | 6 | 8 | 2 | - | 0.225 | - |
Staphylococcus aureus 28—MSSA | 6 | 6 | - | 18 | 0.5 | - |
Staphylococcus aureus 29—MSSA | 10 | 12 | 1 | - | 0.25 | - |
Staphylococcus aureus 30—MRSA | 8 | 8 | 4 | - | - | 8 |
Staphylococcus aureus 31—MSSA | 10 | 12 | 2 | - | - | 6 |
Staphylococcus aureus 32—MRSA | 6 | 8 | 4 | - | 0.125 | - |
Staphylococcus aureus 33—MSSA | 6 | 8 | - | 22 | 0.25 | - |
Staphylococcus aureus 34—MSSA | 8 | 10 | 1 | - | 0.5 | - |
Staphylococcus aureus 35—MRSA | 8 | 8 | 2 | - | 0.125 | - |
Staphylococcus aureus 36—MSSA | 10 | 12 | - | 16 | 0.125 | - |
Staphylococcus aureus 37—MSSA | 10 | 14 | 2 | - | 0.25 | - |
Staphylococcus aureus 38—MRSA | 8 | 10 | 4 | - | 0.225 | - |
Staphylococcus aureus ATCC 25923—MSSA | 8 | 10 | 1 | - | 0.225 | - |
Staphylococcus aureus ATCC 43300—MRSA | 8 | 10 | 2 | - | 0.225 | - |
Total (Mean + STDEV.P) | 9.483 | 12.344 | 3.339 | 16 | 0.5 | 8 |
Microorganism (No. of Strain) | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|
Staphylococcus aureus 2—MRSA | 6 | 10 |
Staphylococcus aureus 5—MRSA | 10 | 12 |
Staphylococcus aureus 6—MRSA | 8 | 10 |
Staphylococcus aureus 10—MRSA | 6 | 8 |
Staphylococcus aureus 17—MRSA | 10 | 14 |
Staphylococcus aureus 21—MRSA | 6 | 8 |
Staphylococcus aureus 24—MRSA | 10 | 14 |
Staphylococcus aureus 25—MRSA | 10 | 12 |
Staphylococcus aureus 30—MRSA | 8 | 8 |
Staphylococcus aureus 32—MRSA | 6 | 8 |
Staphylococcus aureus 35—MRSA | 8 | 8 |
Staphylococcus aureus 38—MRSA | 8 | 10 |
Total (Mean + STDEV.P) | 9.632 | 12.396 |
Microorganism (No. of Strain) | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|
Staphylococcus aureus 1—MSSA | 8 | 12 |
Staphylococcus aureus 3—MSSA | 8 | 10 |
Staphylococcus aureus 4—MSSA | 10 | 14 |
Staphylococcus aureus 7—MSSA | 6 | 8 |
Staphylococcus aureus 8—MSSA | 10 | 12 |
Staphylococcus aureus 9—MSSA | 6 | 8 |
Staphylococcus aureus 11—MSSA | 8 | 12 |
Staphylococcus aureus 12—MSSA | 8 | 10 |
Staphylococcus aureus 13—MSSA | 10 | 14 |
Staphylococcus aureus 14—MSSA | 6 | 8 |
Staphylococcus aureus 15—MSSA | 6 | 8 |
Staphylococcus aureus 16—MSSA | 8 | 10 |
Staphylococcus aureus 18—MSSA | 8 | 10 |
Staphylococcus aureus 19—MSSA | 8 | 10 |
Staphylococcus aureus 22—MSSA | 6 | 6 |
Staphylococcus aureus 23—MSSA | 8 | 10 |
Staphylococcus aureus 26—MSSA | 8 | 10 |
Staphylococcus aureus 27—MSSA | 6 | 8 |
Staphylococcus aureus 28—MSSA | 6 | 6 |
Staphylococcus aureus 29—MSSA | 10 | 12 |
Staphylococcus aureus 31—MSSA | 10 | 12 |
Staphylococcus aureus 33—MSSA | 6 | 8 |
Staphylococcus aureus 34—MSSA | 8 | 10 |
Staphylococcus aureus 36—MSSA | 10 | 12 |
Staphylococcus aureus 37—MSSA | 10 | 14 |
Total (Mean + STDEV.P) | 9.467 | 12.417 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dégi, J.; Herman, V.; Igna, V.; Dégi, D.M.; Hulea, A.; Muselin, F.; Cristina, R.T. Antibacterial Activity of Romanian Propolis against Staphylococcus aureus Isolated from Dogs with Superficial Pyoderma: In Vitro Test. Vet. Sci. 2022, 9, 299. https://doi.org/10.3390/vetsci9060299
Dégi J, Herman V, Igna V, Dégi DM, Hulea A, Muselin F, Cristina RT. Antibacterial Activity of Romanian Propolis against Staphylococcus aureus Isolated from Dogs with Superficial Pyoderma: In Vitro Test. Veterinary Sciences. 2022; 9(6):299. https://doi.org/10.3390/vetsci9060299
Chicago/Turabian StyleDégi, János, Viorel Herman, Violeta Igna, Diana Maria Dégi, Anca Hulea, Florin Muselin, and Romeo Teodor Cristina. 2022. "Antibacterial Activity of Romanian Propolis against Staphylococcus aureus Isolated from Dogs with Superficial Pyoderma: In Vitro Test" Veterinary Sciences 9, no. 6: 299. https://doi.org/10.3390/vetsci9060299
APA StyleDégi, J., Herman, V., Igna, V., Dégi, D. M., Hulea, A., Muselin, F., & Cristina, R. T. (2022). Antibacterial Activity of Romanian Propolis against Staphylococcus aureus Isolated from Dogs with Superficial Pyoderma: In Vitro Test. Veterinary Sciences, 9(6), 299. https://doi.org/10.3390/vetsci9060299