Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Welfare
2.2. Dietary Preparation
2.3. Animals, Experimental Design, and Treatments
2.4. Data Collection and Sampling Procedures
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Diets
3.2. Feed Intake and Nutrient Digestibility
3.3. Blood Urea Nitrogen and Hematological Parameters
3.4. Microbial Protein Synthesis
3.5. Milk Production and Compositions
4. Discussion
4.1. Chemical Composition of Diets
4.2. Feed Intake and Nutrient Digestibility
4.3. Blood Urea Nitrogen and Hematological Parameters
4.4. Microbial Protein Synthesis
4.5. Milk Production and Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical forms and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Anim. Biosci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Hao, X.Y.; Yu, S.C.; Mu, C.T.; Wu, X.D.; Zhang, C.X.; Zhao, J.X. Replacing soybean meal with flax seed meal: Effects on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Animal 2020, 14, 1841–1848. [Google Scholar] [CrossRef]
- Sekali, M.; Mlambo, V.; Marume, U.; Mathuthu, M. Replacement of soybean meal with heat-treated canola meal in finishing diets of meatmaster lambs: Physiological and meat qauality responses. Animals 2020, 10, 1735. [Google Scholar] [CrossRef] [PubMed]
- Chanjula, P.; Siriwathananukul, Y.; Lawpetchara, A. Effect of feeding rubber seed kernel and palm kernel cake in combination on nutrient utilization, rumen fermentation characteristics, and microbial populations in goats fed on Briachiaria humidicola hay-based diets. Anim. Biosci. 2011, 24, 73–81. [Google Scholar] [CrossRef]
- Pha-obnga, N.; Aiumlamai, S.; Wachirapakorn, C. Nutritive value and effect of different levels of rubber seed kernel in total mixed ration on digestibility using in vitro gas production technique. KKU Res. J. 2016, 21, 51–62. [Google Scholar]
- Boonnop, K.; Wanapat, M.; Nontaso, N.; Wanapat, S. Enriching nutritive value of cassava root by yeast fermentation. Sci. Agric. 2009, 66, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Pilajun, R.; Wanapat, M. Chemical composition and in vitro gas production of fermented cassava pulp with different types of supplements. J. Appl. Anim. Res. 2018, 46, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Wanapat, M.; Wongwungchun, W.; Yeekeng, S.; Niltho, T.; Rakwongrit, D.; Khota, W.; Khantharin, S.; Tangmutthapattharakun, G.; Phesatcha, K.; et al. Effect of feeding feed blocks containing different levels of urea calcium sulphate mixture on feed intake, digestibility and rumen fermentation in Thai native beef cattle fed on rice straw. Anim. Feed Sci. Technol. 2014, 198, 151–157. [Google Scholar] [CrossRef]
- Huntington, G.B.; Harmon, D.L.; Kristensen, N.B.; Hanson, K.C.; Spears, J.W. Effects of a slow-release urea source on absorption of ammonia and endogenous production of urea by cattle. Anim. Feed Sci. Technol. 2006, 130, 225–241. [Google Scholar] [CrossRef]
- Salami, S.A.; Devant, M.; Apajalahti, J.; Holder, V.; Salomaa, S.; Keegan, J.D.; Moran, C.A. Slow-releasse urea as a sustainable alternative to soybean meal in ruminant nutrition. Sustainability 2021, 13, 2464. [Google Scholar] [CrossRef]
- Roland, L.; Drillich, M.; Iwersen, M. Hematology as a diagnostic tool in bovine medicine. J. Vet. Diagn. Investig. 2014, 26, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanapat, M.; Polyorach, S.; Chanthakhoun, V.; Sornsongnern, N. Yeast-fermented cassava chip protein (YEFECAP) concentrate for lactating dairy cows fed on urea-lime treated rice straw. Livest. Sci. 2011, 139, 258–263. [Google Scholar] [CrossRef]
- Phesatcha, K.; Wanapat, M. Performance of lactating dairy cows fed a diet based on treated rice straw and supplemented with pelleted sweet potato vines. Trop. Anim. Health Prod. 2013, 45, 533–538. [Google Scholar] [CrossRef]
- Gunun, P.; Gunun, N.; Khejornsart, P.; Ouppamong, T.; Cherdthong, A.; Wanapat, M.; Sililaophaisan, S.; Yuangklang, C.; Polyorach, S.; Kenchaiwong, W.; et al. Effects of Antidesma thwaitesianum Muell. Arg. pomace as a source of plant secondary compounds on digestibility, rumen environment, hematology, and milk production in dairy cows. Anim. Sci. J. 2019, 90, 372–381. [Google Scholar] [CrossRef]
- Insoongnern, H.; Srakaew, W.; Prapaiwong, T.; Suphrap, N.; Potirahong, S.; Wachirapakorn, C. Effect of mineral salt blocks containing sodium bicarbonate or selenium on ruminal pH, rumen fermentation and milk production and composition in crossbred dairy cows. Vet. Sci. 2021, 8, 322. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Udén, P.; Robinson, P.H.; Wiseman, J. Use of detergent system terminology and criteria for submission of manuscripts on new, or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 2005, 118, 181–186. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- IAEA. Determination of Purine Derivative in Urine. In Estimation of the Rumen Microbial Protein Production from Purine Derivatives in Rumen; Animal Production and Health Section: Vienna, Austria, 1997. [Google Scholar]
- Hawk, P.B.; Oser, B.L.; Summerson, W.H. Practical Physiological Chemistry, 13th ed.; McGraw Hill Publishing Company Ltd.: London, UK, 1954. [Google Scholar]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivative—An Overview of the Technique Details; International Feed Resources Unit, Rowett Research Institute: Aberdeen, UK, 1995. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar] [PubMed]
- Statistical Analysis Systems. SAS/STAT User’s Guide: Version 6.12, 4th ed.; SAS Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Verduin, J.; den Uijl, M.J.; Peters, R.J.B.; van Bommel, M.R. Photodegradation products and their analysis in food. J. Food Sci. Nutr. 2020, 6, 67–83. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry and reaction of reactive oxygen species in food. J. Food Sci. 2005, 70, 28–36. [Google Scholar] [CrossRef]
- Lateef, A.; Oloke, J.K.; Gueguim Kana, E.B.; Oyeniyi, S.O.; Onifade, O.R.; Oyeleye, A.O.; Oladosu, O.C.; Oyelami, A.O. Improving the quality of agro-wastes by solid-state fermentation: Enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 2008, 24, 2369–2374. [Google Scholar] [CrossRef]
- Doreau, M.; Chillard, Y. Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reprod. Nutr. Dev. 1997, 37, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Morsy, T.A.; Kholif, S.M.; Kholif, A.E.; Matloup, O.H.; Salem, A.Z.M.; Abu Elella, A. Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Anim. Biosci. 2015, 28, 1116–1122. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, A.S.; Kholif, A.E.; Kholif, A.M.; Salama, R.; El-Alamy, H.A.; Olafadehan, O.A. Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem. 2018, 66, 1751–1759. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef]
- Hammond, A.C. The use of blood urea nitrogen concentration as an indicator of protein status in cattle. Bov. Pract. 1983, 18, 114–118. [Google Scholar]
- Saeed, O.A.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A. Effects of corn supplementation into PKC-urea treated rice straw basal diet on hematological indices and serum mineral level in lambs. Animals 2019, 9, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piamphon, N.; Wachirapakorn, C.; Bannasan, K.; Pornsopin, P.; Sotawong, P.; Gunun, P. Influence of Aspergillus niger or Saccharomyces cerevisiae-fermented Napier grass (Pennisetum purpureum) mixed with fresh cassava root on blood parameters and nutrient digestibility in growing beef cattle. Pak. J. Nutr. 2017, 16, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Herman, N.; Trumel, C.; Geffré, A.; Braun, J.-P.; Thibault, M.; Schelcher, F.; Bourgès-Abella, N. Hematology reference intervals for adult cows in France using the Sysmex XT-2000iV analyzer. J. Vet. Diagn. 2018, 30, 678–687. [Google Scholar] [CrossRef]
- Wood, D.; Quiroz-Rocha, G.F. Normal hematology of cattle. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Ed.; Wiley: Ames, IA, USA, 2010; pp. 829–835. [Google Scholar]
- Vaithiyanathan, S.; Bhatta, R.; Mishra, A.S.; Prasad, R.; Verma, D.L.; Singh, N.P. Effect of feeding graded levels of prosopis cineraria leaves on rumen ciliate protozoa, nitrogen balance and microbial protein synthesis in lambs and kids. Anim. Feed Sci. Technol. 2007, 133, 177–191. [Google Scholar] [CrossRef]
- Weisbjerg, M.R.; Hvelplund, T.; Hellberg, S.; Olsson, S.; Same, S. Effective rumen degradability and intestinal digestibility of individual amino acids in different concentrates determined in situ. Anim. Feed Sci. Technol. 1996, 62, 179–188. [Google Scholar] [CrossRef]
- Promkot, C.; Pornanek, P. The use of yeast-fermented cassava roots as a sole source of protein in beef cows. J. Anim. Feed Sci. 2020, 29, 206–214. [Google Scholar] [CrossRef]
- Udo, M.D.; Ahamefule, F.O.; Ibeawuchi, J.A.; Ekpo, J.S. Lactating performance of West African dwarf does fed dietary levels of boiled rubber seed meal based diets. Niger. J. Anim. Prod. 2020, 47, 227–236. [Google Scholar] [CrossRef]
- Pi, Y.; Gao, S.T.; Ma, L.; Zhu, Y.X.; Wang, J.Q.; Zhang, J.M.; Xu, J.C.; Bu, D.P. Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows. J. Dairy Sci. 2016, 99, 5719–5730. [Google Scholar] [CrossRef] [Green Version]
- Welter, K.C.; Martins, C.M.d.; de Palma, A.S.V.; Martins, M.M.; dos Reis, B.R.; Schmidt, B.L.U.; Netto, A.S. Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS ONE 2016, 11, e0151876. [Google Scholar] [CrossRef] [Green Version]
Item | Level of YERSEK (%DM) | ||
---|---|---|---|
0 | 10 | 20 | |
Ingredient, kg dry matter (DM) | |||
Cassava chip | 53.0 | 53.0 | 53.0 |
Soybean meal | 27.0 | 20.0 | 13.3 |
YERSEK | 0.0 | 10.0 | 20.0 |
Coconut meal | 8.4 | 6.9 | 5.1 |
Rice bran | 6.0 | 4.5 | 3.0 |
Molasses | 2.5 | 2.5 | 2.5 |
Urea | 1.1 | 1.1 | 1.1 |
Mineral and vitamin mixture | 1.0 | 1.0 | 1.0 |
Salt | 0.5 | 0.5 | 0.5 |
Sulfur | 0.5 | 0.5 | 0.5 |
Item | Level of YERSEK (%DM) | Rice Straw | RSK | YERSEK | ||
---|---|---|---|---|---|---|
0 | 10 | 20 | ||||
Chemical composition | ||||||
Dry matter, % | 88.8 | 88.4 | 88.7 | 95.3 | 94.9 | 97.5 |
Organic matter, %DM | 94.3 | 94.6 | 94.5 | 90.5 | 96.7 | 96.6 |
Crude protein, %DM | 18.2 | 18.3 | 18.6 | 2.6 | 18.6 | 35.7 |
Ether extract, %DM | 1.3 | 5.4 | 9.8 | 0.6 | 39.4 | 32.5 |
Neutral detergent fiber, %DM | 28.7 | 27.6 | 29.3 | 74.9 | 26.9 | 24.2 |
Acid detergent fiber, %DM | 14.8 | 16.7 | 15.8 | 54.7 | 23.9 | 15.9 |
Ash, %DM | 5.7 | 5.4 | 5.5 | 9.5 | 3.4 | 3.4 |
Gross energy, MJ/kg DM | 20.5 | 25.0 | 26.3 | 13.2 | 28.0 | 25.5 |
Price, Thai baht/kg | 11.1 | 10.7 | 10.4 | - | - | - |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||
---|---|---|---|---|---|---|
0 | 10 | 20 | p-Linear | p-Quadratic | ||
DM intake, kg/d | ||||||
Rice straw | 5.4 | 5.2 | 4.8 | 0.09 | 0.09 | 0.63 |
Concentrate | 9.9 | 10.1 | 10.2 | 0.12 | 0.56 | 0.82 |
Total intake | 15.3 | 15.4 | 15.0 | 0.14 | 0.51 | 0.62 |
Nutrient intake, kg/d | ||||||
Organic matter | 14.2 | 14.3 | 14.0 | 0.18 | 0.57 | 0.60 |
Crude protein | 2.0 | 2.0 | 2.0 | 0.03 | 0.37 | 0.90 |
Ether extract | 0.2 | 0.6 | 1.0 | 0.04 | <0.01 | 0.79 |
Neutral detergent fiber | 7.4 | 7.2 | 7.0 | 0.18 | 0.22 | 0.96 |
Acid detergent fiber | 4.4 | 4.5 | 4.2 | 0.08 | 0.31 | 0.16 |
Digestibility coefficients, % | ||||||
Dry matter | 71.9 | 69.4 | 68.5 | 1.03 | 0.14 | 0.66 |
Organic matter | 74.2 | 71.6 | 70.6 | 1.34 | 0.12 | 0.65 |
Crude protein | 71.5 | 69.1 | 67.2 | 1.51 | 0.11 | 0.92 |
Ether extract | 75.4 | 91.4 | 93.5 | 0.67 | <0.01 | 0.00 |
Neutral detergent fiber | 57.5 | 55.2 | 56.4 | 0.82 | 0.71 | 0.50 |
Acid detergent fiber | 54.8 | 51.3 | 50.3 | 1.73 | 0.19 | 0.66 |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||
---|---|---|---|---|---|---|
0 | 10 | 20 | p-Linear | p-Quadratic | ||
Blood urea nitrogen, mg/dL | 15.3 | 17.5 | 13.6 | 1.34 | 0.84 | 0.08 |
Red blood cell, 1012/L | 5.0 | 4.7 | 5.5 | 0.14 | 0.39 | 0.28 |
Hemoglobin, g/dL | 8.6 | 8.1 | 9.4 | 0.56 | 0.43 | 0.36 |
Hematocrit, % | 25.9 | 24.6 | 28.3 | 1.39 | 0.46 | 0.37 |
Mean corpuscular volume, fL | 52.9 | 53.3 | 53.5 | 0.49 | 0.75 | 0.93 |
Mean corpuscular hemoglobin, pg | 17.8 | 17.1 | 18.3 | 0.48 | 0.72 | 0.44 |
White blood cells, 109/L | 9.0 | 8.9 | 11.3 | 0.85 | 0.24 | 0.42 |
Neutrophils, % | 68.8 | 69.8 | 64.8 | 1.84 | 0.29 | 0.42 |
Lymphocytes, % | 28.9 | 27.5 | 34.3 | 1.88 | 0.44 | 0.49 |
Monocytes, % | 0.9 | 0.4 | 0.7 | 0.20 | 0.69 | 0.11 |
Eosinophils, % | 1.6 | 2.2 | 3.2 | 0.62 | 0.23 | 0.53 |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||
---|---|---|---|---|---|---|
0 | 10 | 20 | p-Linear | p-Quadratic | ||
Urinary purine derivatives (mmol/d) | ||||||
Purine excretion | 98.2 | 104.2 | 111.6 | 8.41 | 0.30 | 0.94 |
Purine absorption | 79.3 | 87.3 | 97.2 | 11.08 | 0.28 | 0.95 |
Urine creatinine | 5.9 | 5.7 | 6.7 | 0.33 | 0.81 | 0.40 |
MN (g/d) | 57.6 | 63.5 | 70.6 | 8.06 | 0.28 | 0.95 |
MCP (g/d) | 360.2 | 396.7 | 441.7 | 50.35 | 0.28 | 0.95 |
EMNS (g/kg OMDR) | 7.7 | 10.1 | 10.2 | 1.19 | 0.24 | 0.73 |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||
---|---|---|---|---|---|---|
0 | 10 | 20 | p-Linear | p-Quadratic | ||
Production, kg/day | ||||||
Milk yield | 16.7 | 17.2 | 16.8 | 0.15 | 0.86 | 0.33 |
4% FCM | 15.9 | 14.8 | 13.5 | 1.07 | 0.06 | 0.96 |
Milk composition, % | ||||||
Fat | 3.8 | 3.4 | 2.9 | 0.09 | 0.01 | 0.90 |
Protein | 3.3 | 3.2 | 3.1 | 0.13 | 0.10 | 0.49 |
Lactose | 4.5 | 4.6 | 4.6 | 0.05 | 0.09 | 0.29 |
Solids-not-fat | 8.7 | 8.8 | 8.8 | 0.04 | 0.73 | 0.82 |
Total solids | 12.6 | 12.3 | 12.0 | 0.28 | 0.04 | 0.94 |
Somatic cell counts (n/mL) 105 | 2.3 | 3.9 | 1.3 | 1.3 | 0.65 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouppamong, T.; Gunun, N.; Tamkhonburee, C.; Khejornsart, P.; Kaewpila, C.; Kesorn, P.; Kimprasit, T.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; et al. Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition. Vet. Sci. 2022, 9, 360. https://doi.org/10.3390/vetsci9070360
Ouppamong T, Gunun N, Tamkhonburee C, Khejornsart P, Kaewpila C, Kesorn P, Kimprasit T, Cherdthong A, Wanapat M, Polyorach S, et al. Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition. Veterinary Sciences. 2022; 9(7):360. https://doi.org/10.3390/vetsci9070360
Chicago/Turabian StyleOuppamong, Thanaporn, Nirawan Gunun, Chayapol Tamkhonburee, Pichad Khejornsart, Chatchai Kaewpila, Piyawit Kesorn, Thachawech Kimprasit, Anusorn Cherdthong, Metha Wanapat, Sineenart Polyorach, and et al. 2022. "Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition" Veterinary Sciences 9, no. 7: 360. https://doi.org/10.3390/vetsci9070360
APA StyleOuppamong, T., Gunun, N., Tamkhonburee, C., Khejornsart, P., Kaewpila, C., Kesorn, P., Kimprasit, T., Cherdthong, A., Wanapat, M., Polyorach, S., Foiklang, S., & Gunun, P. (2022). Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition. Veterinary Sciences, 9(7), 360. https://doi.org/10.3390/vetsci9070360