Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Primary Identification of Staphylococcus spp. Isolates
2.2. PCR Identification of S. aureus Isolates
2.3. Antimicrobial Susceptibility Testing
2.4. Detection of Genes Encoding Resistance to Antibiotics
2.5. Statistical Analysis
3. Results
3.1. Primary Identification of S. aureus Isolates
3.2. PCR Identification of S. aureus Isolates
3.3. Antimicrobial Susceptibility Testing
3.4. Detection of Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus. In StatPearls. Treasure Island (FL): StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441868/ (accessed on 14 February 2022).
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. Microbiol. Spectr. 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Botrel, M.A.; Haenni, M.; Morignat, E.; Sulpice, P.; Madec, J.Y.; Calavas, D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhone- Alpes, France. Foodborne Pathog. Dis. 2010, 7, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Heikkilä, A.M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertl, J.A.; Schukken, Y.H.; Welcome, F.L.; Tauer, L.W.; Gröhn, Y.T. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J. Dairy Sci. 2014, 97, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Guo, J.; Zhao, C.; Jiang, P.; Maimai, T.; Yanyi, L.; Cao, Y.; Fu, Y.; Zhang, N. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. ISME J. 2020, 14, 1897–1910. [Google Scholar] [CrossRef]
- Taponen, S.; McGuinness, D.; Hiitiö, H.; Simojoki, H.; Zadoks, R.; Pyörälä, S. Bovine milk microbiome: A more complex issue than expected. Vet. Res. 2019, 50, 44. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowski, Ł.; Powierska-Czarny, J.; Wolko, Ł.; Piotrowska-Cyplik, A.; Cyplik, P.; Czarny, J. The Influence of Bacteria Causing Subclinical Mastitis on the Structure of the Cow’s Milk Microbiome. Molecules 2022, 27, 1829. [Google Scholar] [CrossRef]
- Ruegg, P.; Oliveira, L.; Jin, W.; Okwumabua, O. Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in gram-positive mastitis pathogens isolated from Wisconsin dairy cows. J. Dairy Sci. 2015, 98, 4521–4534. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.I.; Zuninob, P.M.; Gila, A.D.; Laportc, A.; Hirigoyenc, D.J. Antibiotic resistance of Staphylococcus aureus associated with subclinical and clinical mastitis in Uruguay during an eight-year period. Austral. J. Vet. Sci. 2017, 49, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Tao, L.; Li, J.; Fang, L.; Cui, L.; Li, J.; Meng, X.; Zhu, G.; Bi, C.; Wang, H. Characterization of Staphylococcus aureus Isolates From Cases of Clinical Bovine Mastitis on Large-Scale Chinese Dairy Farms. Front. Vet. Sci. 2020, 7, 580129. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.S.; Melo, D.A.; Motta, C.C.; Marques, V.F.; Barreto, N.B.; Coelho, S.M.O.; Coelho, I.S.; Souza, M.M.S. Characterization of virulence and antibiotic profile and agr typing of Staphylococcus aureus from milk of subclinical mastitis bovine in State of Rio de Janeiro. Arq. Bras. Med. Vet. Zootec. 2017, 69, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Srednik, M.E.; Crespi, E.; Testorelli, M.F.; Puigdevall, T.; Pereyra, A.M.D.; Rumi, M.V.; Caggiano, N.; Gulone, L.; Mollerach, M.; Gentilini, E.R. First isolation of a methicillin-resistant Staphylococcus aureus from bovine mastitis in Argentina. Vet. Anim. Sci. 2019, 7, 100043. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Bhattarai, R.K.; Luitel, H.; Karki, S.; Basnet, H.B. Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Vet. Res. 2021, 17, 239. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; Entorf, M.; Peters, T. Occurrence and Characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Quarter Milk Samples From Dairy Cows in Germany. Front. Microbiol. 2019, 10, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qolbaini, E.N.; Khoeri, M.M.; Salsabila, K.; Paramaiswari, W.T.; Tafroji, W.; Artika, I.M.; Safari, D. Identification and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus-associated subclinical mastitis isolated from dairy cows in Bogor, Indonesia. Vet. World 2021, 14, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Schnitt, A.; Tenhagen, B.A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ferreri, M.; Liu, X.Q.; Chen, L.B.; Su, J.L.; Han, B. Development of multiplex polymerase chain reaction assay for rapid detection of Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. J. Vet. Diagn. Investig. 2011, 23, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Klibi, A.; Jouini, A.; Gómez, P.; Slimene, K.; Ceballos, S.; Torres, C.; Maaroufi, A. Molecular Characterization and Clonal Diversity of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolates of Milk of Cows with Clinical Mastitis in Tunisia. Microb. Drug Resist. 2018, 24, 8. [Google Scholar] [CrossRef]
- Llarrull, L.; Mobashery, S. Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 2012, 51, 4642–4649. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.C.; Dominguez, S.R.; Prinzi, A.; Lee, K.; Parker, S.K. Reliability of mecA n Predicting Phenotypic Susceptibilities of Coagulase-Negative Staphylococci and Staphylococcus aureus. Open Forum Infect. Dis. 2020, 12, ofaa553. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Ghajavand, H.; Havaei, R.; Jami, M.S.; Khademi, F.; Heydari, L.; Shahin, M.; Havaei, S.A. Distribution of erm genes among Staphylococcus aureus isolates with inducible resistance to clindamycin in Isfahan, Iran. Adv. Biomed. Res. 2016, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Bruce, S.A.; Smith, J.T.; Mydosh, J.L.; Ball, J.; Needle, D.B.; Gibson, R.; Andam, C.P. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci. Rep. 2022, 12, 4413. [Google Scholar] [CrossRef] [PubMed]
- Markey, B.; Leonar, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Mosby, Elsevier Ltd.: Edinburgh, UK, 2013; pp. 105–118. [Google Scholar]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Approved Guideline: Document M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Camargo, C.H.; Mondelli, A.L.; Bôas, P.J. Comparison of teicoplanin disk diffusion and broth microdilution methods against clinical isolates of Staphylococcus aureus and S. epidermidis. Braz. J. Microbiol. 2011, 42, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.W. Estimating disease prevalence and the interpretation of screening test results. Prev. Vet. Med. 1984, 2, 463–472. [Google Scholar] [CrossRef]
- Rusenova, N.; Gebreyes, W.; Koleva, M.; Mitev, J.; Penev, T.; Vasilev, N.; Miteva, T. Comparison of three methods for routine detection of Staphylococcus aureus isolated from bovine mastitis. Kafkas Univ. Vet. Fak. Derg. 2013, 19, 709–712. [Google Scholar]
- Rusenova, N.V.; Rusenov, A.G. Detection of Staphylococcus aureus among coagulase positive staphylococci from animal origin based on conventional and molecular methods. Mac. Vet. Rev. 2017, 40, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Effendi, M.H.; Hisyam, M.; Hastutiek, P.; Tyasningsih, W. Detection of coagulase gene in Staphylococcus aureus from several dairy farms in East Java, Indonesia, by polymerase chain reaction. Vet. World 2019, 12, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phophi, L.; Petzer, I.M.; Qekwana, D.N. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet. Res. 2019, 15, 420. [Google Scholar] [CrossRef] [PubMed]
- Freitas Guimarães, F.F.; Nóbrega, D.B.; Richini-Pereira, V.B.; Marson, P.M.; Figueiredo Pantoja, J.C.; Langoni, H. Enterotoxin genes in coagulasenegative and coagulase-positive staphylococci isolated from bovine milk. J. Dairy Sci. 2013, 96, 2866–2872. [Google Scholar] [CrossRef] [Green Version]
- Karzis, J.; Petzer, I.M.; Naidoo, V.; Donkin, E.F. The spread and antimicrobial resistance of Staphylococcus aureus in South African dairy herds—A review. Onderstepoort J. Vet. Res. 2021, 88, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Monistero, V.; Graber, H.U.; Pollera, C.; Cremonesi, P.; Castiglioni, B.; Bottini, E.; Ceballos-Marquez, A.; Lasso-Rojas, L.; Kroemker, V.; Wente, N.; et al. Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes. Toxins 2018, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Mbindyo, C.M.; Gitao, G.C.; Plummer, P.J.; Kulohoma, B.W.; Mulei, C.M.; Bett, R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow’s Milk in Kenya. Antibiotics 2021, 10, 772. [Google Scholar] [CrossRef]
- McDougall, S.; Hussein, H.; Petrovski, K. Antimicrobial resistance in Staphylococcus aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis. N. Z. Vet. J. 2014, 62, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Prasetyoputri, A.; Jarrad, A.M.; Cooper, M.A.; Blaskovich, M.A.T. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol. 2019, 27, 339–354. [Google Scholar] [CrossRef]
- Pengov, A.; Ceru, S. Antimicrobial drug susceptibility of Staphylococcus aureus strains isolated from bovine and ovine mammary glands. J. Dairy Sci. 2003, 86, 3157–3163. [Google Scholar] [CrossRef]
- Khalili, H.; Soltani, R.; Negahban, S.; Abdollahi, A.; Gholami, K. Reliability of Disk Diffusion Test Results for the Antimicrobial Susceptibility Testing of Nosocomial Gram-positive Microorganisms: Is E-test Method Better? Iran J. Pharm. Res. 2012, 11, 559–563. [Google Scholar] [PubMed]
- Lúcio, É.C.; Gouveia, G.V.; Costa, M.M.; Oliveira, M.B.; Mota, R.A.; Pinheiro Junior, J.W. Phenotypic and genotypic characteristics and resistance profile of Staphylococcus spp. from bovine mastitis. Acta Sci. Vet. 2020, 48, 1759. [Google Scholar] [CrossRef]
- Kalmus, P.; Aasmäe, B.; Kärssin, A.; Orro, T.; Kask, K. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Vet. Scand. 2011, 53, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Meunier, D.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; et al. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004. Acta Vet. Scand. 2008, 50, 28. [Google Scholar] [CrossRef] [Green Version]
- Nam, H.-M.; Lee, A.-L.; Jung, M.-N.K.; Jang, G.-C.; Wee, S.-H.; Lim, S.-K. Antimicrobial susceptibility of staphylococus aureus and characterization of methicillin-resistant staphylococcus aureus isolates from bovine mastitis in Korea. Foodborne Pathog. Dis. 2011, 8, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Qu, W.; Barkema, H.W.; Nobrega, D.B.; Gao, J.; Liu, G.; Buck, J.; Kastelic, J.P.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Kalayu, A.A.; Woldetsadik, D.A.; Woldeamanuel, Y.; Wang, S.H.; Gebreyes, W.A.; Teferi, T. Burden and antimicrobial resistance of S. Aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet. Res. 2020, 16, 20. [Google Scholar] [CrossRef]
- Freu, G.; Tomazi, T.; Filho, A.F.S.; Heinemann, M.B.; Santos, M.V. Antimicrobial Resistance and Molecular Characterization of Staphylococcus aureus Recovered from Cows with Clinical Mastitis in Dairy Herds from Southeastern Brazil. Antibiotics 2022, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Mora-Hernández, Y.; Vera Murguía, E.; Stinenbosch, J.; Hernández Jauregui, P.; van Dijl, J.M.; Buist, G. Molecular typing and antimicrobial resistance profiling of 33 mastitis-related Staphylococcus aureus isolates from cows in the Comarca Lagunera region of Mexico. Sci. Rep. 2021, 11, 6912. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P.; Schielmann, M.; Frankowska, A.; Kot, B.; Zalewska, M. Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: Lysostaphin, nisin and polymyxin B. J. Vet. Med. Sci. 2014, 76, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Käppeli, N.; Morach, M.; Corti, S.; Eicher, C.; Stephan, R.; Johler, S. Staphylococcus aureus related to bovine mastitis in Switzerland: Clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. J. Dairy Sci. 2019, 102, 3274–3281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolova, M.; Urumova, V.; Liuzkanov, M.; Sabev, S. Studies on the causes of bacterial mastities in two dairy bovine farms in northeastern Бulgaria and their sensitivity to antimicrobial products. Tradit. Mod. Vet. Med. 2021, 6, 21–27. [Google Scholar]
- Kumar, V.A.; Steffy, K.; Chatterjee, M.; Sugumar, M.; Dinesh, K.R.; Manoharan, A.; Karim, S.; Biswas, R. Detection of oxacillin-susceptible mecA-positive Staphylococcus aureus isolates by use of chromogenic medium MRSA ID. J. Clin. Microbiol. 2013, 51, 318–319. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Li, T.M.; Zhong, N.; Wang, X.; Jiang, J.; Zhang, W.X.; Tang, R.; Guo, Y.J.; Liu, Y.; Hu, J.; et al. Current status of oxacillin-susceptible mecA-positive Staphylococcus aureus infection in Shanghai, China: A multicenter study. J. Microbiol. Immunol. Infect. 2021, 54, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Saderi, H.; Emadi, B.; Owlia, P. Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of Staphylococcus aureus in Tehran, Iran. Med. Sci. Monit. 2011, 17, BR48–BR53. [Google Scholar] [CrossRef] [Green Version]
- Miklasińska-Majdanik, M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus aureus. Antibiotics 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Feßler, A.T.; Wang, Y.; Wu, C.; Schwarz, S. Mobile macrolide resistance genes in staphylococci. Plasmid 2018, 99, 2–10. [Google Scholar] [CrossRef]
- Martini, C.; Lange, C.; Brito, M.; Ribeiro, J.; Mendonça, L.; Vaz, E. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil. J. Dairy Res. 2017, 84, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Bissong, M.E.A.; Ateba, C.N. Genotypic and Phenotypic Evaluation of Biofilm Production and Antimicrobial Resistance in Staphylococcus aureus Isolated from Milk, North West Province, South Africa. Antibiotics 2020, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antimicrobials | Distribution (%) of MIC (µg/mL) | NI | MIC50 | MIC90 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | ||||
PEN | 68.5 | 4.3 | 8.7 | 5.4 | 4.3 | 0.0 | 2.2 | - | - | - | - | - | 6.5 | 0.12 | 2 |
AMP | 64.1 | 3.3 | 12.0 | 7.6 | 2.2 | 3.3 | 2.2 | - | - | - | - | - | 5.4 | 0.12 | 4 |
ERY | - | 18.5 | 68.5 | 3.3 | 1.1 | 0.0 | - | - | - | - | - | - | 8.7 | 0.5 | 1 |
OXA+ | - | - | - | - | 98.9 | 1.1 | - | - | - | - | - | - | - | 2 | 2 |
PIRL | - | - | 54.3 | 45.7 | 0.0 | 0.0 | - | - | - | - | - | - | - | 0.5 | 1 |
TET | - | - | - | 90.2 | 3.3 | 0.0 | 0.0 | - | - | - | - | - | 6.5 | 1 | 1 |
CEP | - | - | - | - | 98.9 | 1.1 | 0.0 | 0.0 | - | - | - | - | - | 2 | 2 |
XNL | - | - | 75 | 23.9 | 1.1 | 0.0 | - | - | - | - | - | - | - | 0.5 | 1 |
SDM | - | - | - | - | - | - | - | - | 2.2 | 0.0 | 1.1 | 9.8 | 87 | >256 | >256 |
P/N | - | - | - | 100 | 0.0 | 0.0 | 0.0 | - | - | - | - | - | - | 1 | 1 |
Minimum Inhibitory Concentration | Total | ||
---|---|---|---|
N Sensitive Isolates | N Resistant Isolates | ||
Disk diffusion test N sensitive isolates | 55 | 5 | 60 |
Disk diffusion test N resistant isolates | 2 | 30 | 32 |
Total | 57 | 35 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusenova, N.; Vasilev, N.; Rusenov, A.; Milanova, A.; Sirakov, I. Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria. Vet. Sci. 2022, 9, 401. https://doi.org/10.3390/vetsci9080401
Rusenova N, Vasilev N, Rusenov A, Milanova A, Sirakov I. Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria. Veterinary Sciences. 2022; 9(8):401. https://doi.org/10.3390/vetsci9080401
Chicago/Turabian StyleRusenova, Nikolina, Nasko Vasilev, Anton Rusenov, Aneliya Milanova, and Ivo Sirakov. 2022. "Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria" Veterinary Sciences 9, no. 8: 401. https://doi.org/10.3390/vetsci9080401
APA StyleRusenova, N., Vasilev, N., Rusenov, A., Milanova, A., & Sirakov, I. (2022). Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria. Veterinary Sciences, 9(8), 401. https://doi.org/10.3390/vetsci9080401