Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. CoNS Isolates
2.2. Biofilm Formation Assay
2.3. Antimicrobial Susceptibility Testing
2.4. Detection of Biofilm-Associated Genes
2.5. Statistical Analysis
3. Results
3.1. Biofilm Formation Potential
3.2. Distribution of Biofilm-Associated Genes
3.3. Relationship between Biofilm-Associated Genes and Biofilm-Forming Ability
3.4. Relationship between MDR and Biofilm-Forming Ability
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- França, A.; Gaio, V.; Lopes, N.; Melo, D.R. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Marek, A.; Pyzik, E.; Stępień-Pyśniak, D.; Dec, M.; Jarosz, Ł.S.; Nowaczek, A.; Sulikowska, M. Biofilm-formation ability and the presence of adhesion genes in coagulase-negative staphylococci isolates from chicken broilers. Animals 2021, 11, 728. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.A.; Motta, C.C.; Rojas, A.C.C.M.; Soares, B.S.; Coelho, I.S.; Coelho, S.M.O.; Souza, M.M.S. Characterization of Coagulase-Negative Staphylococci and pheno-genotypic beta lactam resistance evaluation in samples from bovine Intramammary infection. Arq. Bras. De Med. Veteriná Ria E Zootec. 2018, 70, 368–374. [Google Scholar] [CrossRef]
- Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents 2018, 52, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Kirwa, E.; Gabriel, A.O.; Maitho, T.E.; Mbindyo, C.M.; Abuom, T.O.; Mainga, A.O. Antibiotic profile of Staphylococcus aureus and Coagulase negative Staphylococci species isolated from raw camel milk from Garissa County, Kenya. East African J. Sci. Technol. Innov. 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Goetz, C.; Tremblay, Y.D.N.; Lamarche, D.; Blondeau, A.; Gaudreau, A.M.; Labrie, J.; Malouin, F.; Jacques, M. Coagulase-negative staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. J. Dairy Sci. 2017, 100, 6454–6464. [Google Scholar] [CrossRef] [PubMed]
- Coffey, B.M.; Anderson, G.G. Biofilm formation in the 96-well microtiter plate. Methods Mol. Biol. 2014, 1149, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Chajęcka-Wierzchowska, W. Biofilm formation ability and presence of adhesion genes among coagulase-negative and coagulase-positive staphylococci isolates from raw cow’s milk. Pathogens 2020, 9, 654. [Google Scholar] [CrossRef]
- Jayaweera, T.S.P.; Ruwandeepika, H.A.D.; Deekshit, V.K.; Kodithuwakku, S.P.; Cyril, H.W.; Karunasagar, I.; Vidanarachchi, J.K. Biofilm Forming Ability of Broiler Chicken Meat Associated Salmonella spp. on Food Contact Surfaces. Trop. Agric. Res. 2021, 32, 17–26. [Google Scholar] [CrossRef]
- Nam, H.M.; Lim, S.K.; Moon, J.S.; Kang, H.M.; Kim, J.M.; Jang, K.C.; Kim, J.M.; Kang, M.I.; Joo, Y.S.; Jung, S.C. Antimicrobial resistance of enterococci isolated from mastitic bovine milk samples in Korea. Zoonoses Public Health 2010, 57, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Moon, D.C.; Park, S.C.; Kang, H.Y.; Na, S.H.; Lim, S.K. Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.J.; Yoon, S.; Lee, Y.J. Monitoring and characteristics of major mastitis pathogens from Bulk tank milk in Korea. Animals 2020, 10, 1562. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Food and Drug Safety (MFDS). Processing Standards and Ingredient Specifications for Livestock Products; NIFDS: Cheong ju, Korea, 2018. [Google Scholar]
- Martineau, F.; Picard, F.J.; Ke, D.; Paradis, S.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol. 2001, 39, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.; Séguin, D.L.; Asselin, A.E.; Déziel, E.; Cantin, A.M.; Frost, E.H.; Michaud, S.; Malouin, F. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol. 2010, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Ren, S.X.; Li, H.L.; Wang, Y.X.; Fu, G.; Yang, J.; Qin, Z.Q.; Miao, Y.G.; Wang, W.Y.; Chen, R.S.; et al. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 2003, 49, 1577–1593. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.R.; Fouts, D.E.; Archer, G.L.; Mongodin, E.F.; DeBoy, R.T.; Ravel, J.; Paulsen, I.T.; Kolonay, J.F.; Brinkac, L.; Beanan, M.; et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 2005, 187, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Silva, B.; de Souza, F.N.; Mertens, K.; Piepers, S.; Haesebrouck, F.; De Vliegher, S. Bovine-associated non-aureus staphylococci suppress Staphylococcus aureus biofilm dispersal in vitro yet not through agr regulation. Vet. Res. 2021, 52, 114. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018; ISBN 156238838X. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, C.S.; Shah, D.H.; Verma, R.; Singh, R.K.; Malik, M. Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR. Vet. Microbiol. 2005, 109, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Cucarella, C.; Tormo, M.Á.; Úbeda, C.; Trotonda, M.P.; Monzón, M.; Peris, C.; Amorena, B.; Lasa, Í.; Penadés, J.R. Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus. Infect. Immun. 2004, 72, 2177–2185. [Google Scholar] [CrossRef]
- Rohde, H.; Burdelski, C.; Bartscht, K.; Hussain, M.; Buck, F.; Horstkotte, M.A.; Knobloch, J.K.M.; Heilmann, C.; Herrmann, M.; Mack, D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 2005, 55, 1883–1895. [Google Scholar] [CrossRef] [PubMed]
- Rohde, H.; Burandt, E.C.; Siemssen, N.; Frommelt, L.; Burdelski, C.; Wurster, S.; Scherpe, S.; Davies, A.P.; Harris, L.G.; Horstkotte, M.A.; et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Simojoki, H.; Hyvönen, P.; Plumed Ferrer, C.; Taponen, S.; Pyörälä, S. Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection? Vet. Microbiol. 2012, 158, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, Z.; Radinović, M.; Čabarkapa, I.; Kladar, N.; Božin, B. Natural agents against bovine mastitis pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Pyatov, V.; Vrtková, I.; Knoll, A. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic. Acta Vet. Brno 2017, 86, 167–174. [Google Scholar] [CrossRef]
- Mbindyo, C.M.; Gitao, G.C.; Mulei, C.M. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Park, J.Y.; Fox, L.K.; Seo, K.S.; McGuire, M.A.; Park, Y.H.; Rurangirwa, F.R.; Sischo, W.M.; Bohach, G.A. Comparison of phenotypic and genotypic methods for the species identification of coagulase-negative staphylococcal isolates from bovine intramammary infections. Vet. Microbiol. 2011, 147, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Walid, M.S. Antibiogram and antibiotic resistance genes among coagulase-negative staphylococci recovered from bovine mastitis. Arch. Anesthesiol. Crit. Care 2021, 9, 1267–1274. [Google Scholar] [CrossRef]
- Maity, S.; Ambatipudi, K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: A One-Health perspective. FEMS Microbiol. Ecol. 2021, 97, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, Y.D.N.; Lamarche, D.; Chever, P.; Haine, D.; Messier, S.; Jacques, M. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J. Dairy Sci. 2013, 96, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Srednik, M.E.; Tremblay, Y.D.N.; Labrie, J.; Archambault, M.; Jacques, M.; Cirelli, A.F.; Gentilini, E.R. Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol. Lett. 2017, 364, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Van Meervenne, E.; De Weirdt, R.; Van Coillie, E.; Devlieghere, F.; Herman, L.; Boon, N. Biofilm models for the food industry: Hot spots for plasmid transfer? Pathog. Dis. 2014, 70, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Secondary, C.A.; Author, C.; Lin, J.; Jin, Y.; Pang, Q.; Lin, J. Application of ica D, eno, sar A and agr gene testing in early diagnosis of periprosthetic joint infection. Int. Surg. 2021, 106, 82–94. [Google Scholar] [CrossRef]
- Ibtissem, K.T.; Hafida, H.; Salwa, O.; Samia, B.; Imen, M.; Meriem, L.; Mohammed, T. Detection of icaA and icaD genes and biofilmformation in Staphylococcus spp. isolated from urinary catheters at the University Hospital of Tlemcen (Algeria). African J. Microbiol. Res. 2013, 7, 5350–5357. [Google Scholar] [CrossRef]
- Osman, K.M.; Abd El-Razik, K.A.; Marie, H.S.H.; Arafa, A. Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.; Cantekin, Z.; Mimoune, N.; Ergun, Y.; Solmaz, H.; Khelef, D.; Kaidi, R. Investigation of the presence of slime production, VanA gene and antiseptic resistance genes in Staphylococci isolated from bovine mastitis in Algeria. Vet. Stanica 2021, 52, 57–63. [Google Scholar] [CrossRef]
- Machado, T.S.; Pinheiro, F.R.; Soares, L.; Andre, P.; Freire, R.; Pereira, A.; Correa, R.F.; De Mello, G.C.; Aparecida, T.; Ribeiro, N.; et al. Virulence Factors Found in Nasal Colonization and Infection of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates and Their Ability to Form a Biofilm. Toxins 2020, 13, 14. [Google Scholar] [CrossRef]
- Poppele, E.H.; Hozalski, R.M. Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. J. Microbiol. Methods 2003, 55, 607–615. [Google Scholar] [CrossRef]
- Lu, D.; Bai, H.; Kong, F.; Liss, S.N.; Liao, B. Recent advances in membrane aerated biofilm reactors. Crit. Rev. Environ. Sci. Technol. 2021, 51, 649–703. [Google Scholar] [CrossRef]
- Karimi, K.; Zarei, O.; Sedighi, P.; Taheri, M.; Doosti-Irani, A.; Shokoohizadeh, L. Investigation of Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Klebsiella pneumoniae. Int. J. Microbiol. 2021, 2021, 5573388. [Google Scholar] [CrossRef] [PubMed]
- Phophi, L.; Petzer, I.M.; Qekwana, D.N. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet. Res. 2019, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.; Pereira, V.C.; Pinheiro, L.; Riboli, D.F.M.; Martins, K.B.; Ribeiro de Souza da Cunha, M.D.L. Antimicrobial resistance profile of planktonic and biofilm cells of staphylococcus aureus and coagulase-negative staphylococci. Int. J. Mol. Sci. 2016, 17, 1423. [Google Scholar] [CrossRef] [PubMed]
Staphylococcus chromogenes (n = 65) | Staphylococcus saprophyticus (n = 46) | Staphylococcus xylosus (n = 17) | Staphylococcus haemolyticus (n = 11) | Staphylococcus simulans (n = 4) | Staphylococcus sciuri (n = 5) | Others 2 (n = 14) | Total (%) | |
---|---|---|---|---|---|---|---|---|
Biofilm formation(A490) 1 | ||||||||
Negative | 5 (7.7) c | 17 (37.0) a | 5 (29.4) a,b | 1 (9.1) b,c | 1 (25.0) a,b | 1 (20.0) a,b | 5 (35.7) a | 35 (21.6) |
Positive | 60 (92.3) a* | 29 (63.0) c* | 12 (70.6) c* | 10 (90.9) a,b* | 3 (75.0) b,c* | 4 (80.0) a,b,c* | 9 (64.3) c* | 127 (78.4) * |
Weak | 26 (40.0) cA | 18 (39.1) cA | 12 (70.6) a,bA | 5 (45.5) cA | 2 (50.0) b,cA | 4 (80.0) aA | 6 (42.9) c A | 73 (45.1) A |
Moderate | 18 (27.7) aB | 1 (2.2) b,cC | 0 (0.0) cB | 1 (9.1) b,cC | 1 (25.0) aB | 0 (0.0) cB | 2 (14.3) a,bB | 23 (14.2) B |
Strong | 16 (24.6) a,bB | 10 (21.7) a,bB | 0 (0.0) cB | 4 (36.4) aB | 0 (0.0) cC | 0 (0.0) cB | 1 (7.1) b,cC | 31 (19.1) B |
Biofilm-associated gene | ||||||||
None | 4 (6.2) b,cD | 2 (4.3) b,cD | 2 (11.8) a,bC | 1 (9.1) a,bC | 1 (25.0) aB | 0 (0.0) cC | 0 (0.0) cD | 10 (6.2) D |
aap | 20 (30.8) B,C | 15 (32.6) B,C | 3 (17.6) B,C | 4 (36.4) B,C | 1 (25.0) B | 1 (20.0) B | 5 (35.7) B,C | 49 (30.2) B,C |
atlE | 12 (18.5) C,D | 6 (13.0) C,D | 4 (23.5) B,C | 2 (18.2) C | 1 (25.0) B | 1 (20.0) B | 4 (28.6) C | 30 (18.5) C |
bap | 15 (23.1) b,cC,D | 17 (37.0) aB,C | 2 (11.8) cC | 3 (27.3) b,cB,C | 1 (25.0) b,cB | 0 (0.0) cC | 5 (35.7) a,bB,C | 43 (26.5) C |
embP | 14 (21.5) b,cC,D | 5 (10.9) b,cC,D | 3 (17.6) b,cB,C | 1 (9.1) cC | 1 (25.0) a,bB | 0 (0.0) cC | 6 (42.9) aB,C | 30 (18.5) C |
eno | 27 (41.5) cB,C | 38 (82.6) aA | 11 (64.7) a,bA | 9 (81.8) aA | 2 (50.0) b,cA | 4 (80.0) aA | 10 (71.4) a,bA | 101 (62.3) A |
fbe | 32 (49.2) a,bB,C | 25 (54.3) a,bB | 7 (41.2) b,cB | 3 (27.3) cB,C | 1 (25.0) cB | 3 (60.0) aB | 5 (35.7) b,cB,C | 76 (46.9) B |
icaA | 40 (61.5) aA | 15 (32.6) a,bB,C | 4 (23.5) b,cB,C | 0 (0.0) cD | 1 (25.0) b,cB | 1 (20.0) b,cB | 3 (21.4) b,cC | 64 (39.5) B,C |
Antimicrobial Resistance | Biofilm Producer | ||
---|---|---|---|
Strong or Moderate Biofilm Former (n = 54) | Weak Biofilm Former (n = 73) | Non-Former (n = 35) | |
Non-MDR | 10 (18.5) cB | 24 (32.9) bB | 28 (80.0) aA |
MDR | 44 (81.5) aA | 49 (67.1) bA | 7 (20.0) cB |
Biofilm-Associated Gene | Biofilm Producer | ||
---|---|---|---|
Strong or Moderate Biofilm Former (n = 54) | Weak Biofilm Former (n = 73) | Non-Former (n = 35) | |
None | 0 (0.0) bE | 6 (8.2) a,bD | 4 (11.4) aC,D |
aap | 28 (51.9) aA,B,C | 16 (21.9) bB,C | 5 (14.3) cC,D |
atlE | 18 (33.3) aC,D | 9 (12.3) bC,D | 3 (8.6) cD |
bap | 22 (40.7) aB,C,D | 16 (21.9) bB,C | 5 (14.3) cC,D |
embP | 12 (22.2) a,bD | 9 (12.3) bC,D | 9 (25.7) aB,C |
eno | 35 (64.8) a,bA | 38 (52.1) bA | 28 (80.0) aA |
fbe | 32 (59.3) aA,B | 28 (38.4) bA,B | 16 (45.7) a,bB |
icaA | 35 (64.8) aA | 24 (32.9) bA,B | 5 (14.3) cC,D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Lee, Y.J. Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Vet. Sci. 2022, 9, 430. https://doi.org/10.3390/vetsci9080430
Lee YJ, Lee YJ. Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Veterinary Sciences. 2022; 9(8):430. https://doi.org/10.3390/vetsci9080430
Chicago/Turabian StyleLee, Yu Jin, and Young Ju Lee. 2022. "Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk" Veterinary Sciences 9, no. 8: 430. https://doi.org/10.3390/vetsci9080430
APA StyleLee, Y. J., & Lee, Y. J. (2022). Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Veterinary Sciences, 9(8), 430. https://doi.org/10.3390/vetsci9080430