Risk Prediction Models for Post-Stroke Dementia
Abstract
:1. Introduction
2. Risk Factors for PSD
3. Vascular Intervention and Reducing Risk of Cognitive Impairment and Dementia in Stroke Patients
4. Non-Cognitive Risk Prediction Models
5. Risk Prediction Models for Cognitive Decline and Dementia
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seshadri, S.; Beiser, A.; Kelly-Hayes, M.; Kase, C.S.; Au, R.; Kannel, W.B.; Wolf, P.A. The lifetime risk of stroke: Estimates from the Framingham study. Stroke 2006, 37, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Wolf, P.A. Lifetime risk of stroke and dementia: Current concepts, and estimates from the Framingham study. Lancet Neurol. 2007, 6, 1106–1114. [Google Scholar] [CrossRef]
- Savva, G.M.; Stephan, B.C.; Alzheimer's Society Vascular Dementia Systematic Review Group. Epidemiological studies of the effect of stroke on incident dementia: A systematic review. Stroke 2010, 41, e41–e46. [Google Scholar] [CrossRef] [PubMed]
- Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009, 8, 1006–1018. [Google Scholar] [CrossRef]
- Douiri, A.; Rudd, A.G.; Wolfe, C.D. Prevalence of poststroke cognitive impairment: South London stroke register 1995–2010. Stroke 2013, 44, 138–145. [Google Scholar] [CrossRef] [PubMed]
- O'Brien, J.T.; Erkinjuntti, T.; Reisberg, B.; Roman, G.; Sawada, T.; Pantoni, L.; Bowler, J.V.; Ballard, C.; DeCarli, C.; Gorelick, P.B.; et al. Vascular cognitive impairment. Lancet Neurol. 2003, 2, 89–98. [Google Scholar] [CrossRef]
- Pendlebury, S.T. Stroke-related dementia: Rates, risk factors and implications for future research. Maturitas 2009, 64, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Deguchi, K.; Yamashita, T.; Morihara, R.; Matsuzono, K.; Kawahara, Y.; Sato, K.; Kono, S.; Hishikawa, N.; Ohta, Y.; et al. High incidence of dementia conversion than stroke recurrence in poststroke patients of late elder society. J. Stroke Cerebrovasc. Dis. 2015, 24, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Coull, A.J.; Giles, M.F.; Howard, S.C.; Silver, L.E.; Bull, L.M.; Gutnikov, S.A.; Edwards, P.; Mant, D.; Sackley, C.M.; et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study). Lancet 2004, 363, 1925–1933. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Coull, A.J.; Silver, L.E.; Fairhead, J.F.; Giles, M.F.; Lovelock, C.E.; Redgrave, J.N.; Bull, L.M.; Welch, S.J.; Cuthbertson, F.C.; et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (oxford vascular study). Lancet 2005, 366, 1773–1783. [Google Scholar] [CrossRef]
- Fratiglioni, L.; Launer, L.J.; Andersen, K.; Breteler, M.M.; Copeland, J.R.; Dartigues, J.F.; Lobo, A.; Martinez-Lage, J.; Soininen, H.; Hofman, A. Incidence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic diseases in the elderly research group. Neurology 2000, 54, S10–S15. [Google Scholar] [PubMed]
- Arba, F.; Quinn, T.; Hankey, G.J.; Ali, M.; Lees, K.R.; Inzitari, D. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. Eur. J. Neurol. 2017, 24, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Decarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American heart association/American stroke association. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef] [PubMed]
- Leys, D.; Hénon, H.; Mackowiak-Cordoliani, M.A.; Pasquier, F. Poststroke dementia. Lancet Neurol. 2005, 4, 752–759. [Google Scholar] [CrossRef]
- Yang, J.; Wong, A.; Wang, Z.; Liu, W.; Au, L.; Xiong, Y.; Chu, W.W.; Leung, E.Y.; Chen, S.; Lau, C.; et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimer's Dementia 2015, 11, 16–23. [Google Scholar]
- Firbank, M.J.; Burton, E.J.; Barber, R.; Stephens, S.; Kenny, R.A.; Ballard, C.; Kalaria, R.N.; O'Brien, J.T. Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors. Neurobiol. Aging 2007, 28, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Kliper, E.; Assayag, E.B.; Korczyn, A.D.; Auriel, E.; Shopin, L.; Hallevi, H.; Shenhar-Tsarfaty, S.; Mike, A.; Artzi, M.; Klovatch, I.; et al. Cognitive state following mild stroke: A matter of hippocampal mean diffusivity. Hippocampus 2016, 26, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Arba, F.; Quinn, T.; Hankey, G.J.; Inzitari, D.; Ali, M.; Lees, K.R. Determinants of post-stroke cognitive impairment: Analysis from vista. Acta Neurol. Scand. 2017, 135, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Tzourio, C.; Anderson, C.; Chapman, N.; Woodward, M.; Neal, B.; MacMahon, S.; Chalmers, J. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 2003, 163, 1069–1075. [Google Scholar] [PubMed]
- Ihle-Hansen, H.; Thommessen, B.; Fagerland, M.W.; Oksengard, A.R.; Wyller, T.B.; Engedal, K.; Fure, B. Multifactorial vascular risk factor intervention to prevent cognitive impairment after stroke and TIA: A 12-month randomized controlled trial. Int. J. Stroke 2014, 9, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Bath, P.M.; Scutt, P.; Blackburn, D.J.; Ankolekar, S.; Krishnan, K.; Ballard, C.; Burns, A.; Mant, J.; Passmore, P.; Pocock, S.; et al. Intensive versus guideline blood pressure and lipid lowering in patients with previous stroke: Main results from the pilot 'prevention of decline in cognition after stroke trial' (podcast) randomised controlled trial. PLoS ONE 2017, 12, e0164608. [Google Scholar] [CrossRef] [PubMed]
- Matz, K.; Teuschl, Y.; Firlinger, B.; Dachenhausen, A.; Keindl, M.; Seyfang, L.; Tuomilehto, J.; Brainin, M. Multidomain lifestyle interventions for the prevention of cognitive decline after ischemic stroke: Randomized trial. Stroke 2015, 46, 2874–2880. [Google Scholar] [CrossRef] [PubMed]
- Dufouil, C.; Beiser, A.; McLure, L.A.; Wolf, P.A.; Tzourio, C.; Howard, V.J.; Westwood, A.J.; Himali, J.J.; Sullivan, L.; Aparicio, H.J.; et al. Revised framingham stroke risk profile to reflect temporal trends. Circulation 2017, 135, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; Hindricks, G.; Prendergast, B.; et al. Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the european society of cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar] [PubMed]
- Hijazi, Z.; Lindback, J.; Alexander, J.H.; Hanna, M.; Held, C.; Hylek, E.M.; Lopes, R.D.; Oldgren, J.; Siegbahn, A.; Stewart, R.A.; et al. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 2016, 37, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Ntaios, G.; Faouzi, M.; Ferrari, J.; Lang, W.; Vemmos, K.; Michel, P. An integer-based score to predict functional outcome in acute ischemic stroke: The astral score. Neurology 2012, 78, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Strbian, D.; Meretoja, A.; Ahlhelm, F.J.; Pitkaniemi, J.; Lyrer, P.; Kaste, M.; Engelter, S.; Tatlisumak, T. Predicting outcome of IV thrombolysis-treated ischemic stroke patients: The dragon score. Neurology 2012, 78, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Liman, T.G.; Zietemann, V.; Wiedmann, S.; Jungehuelsing, G.J.; Endres, M.; Wollenweber, F.A.; Wellwood, I.; Dichgans, M.; Heuschmann, P.U. Prediction of vascular risk after stroke - protocol and pilot data of the prospective cohort with incident stroke (PROSCIS). Int. J. Stroke 2013, 8, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.E.; Horgan, N.F.; Walsh, C.D.; Galvin, R. Systematic review of risk prediction models for falls after stroke. J. Epidemiol. Community Health 2016, 70, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Bray, B.D.; Hoffman, A.; Meisel, A.; Heuschmann, P.U.; Wolfe, C.D.; Tyrrell, P.J.; Rudd, A.G. Can a novel clinical risk score improve pneumonia prediction in acute stroke care? A UK multicenter cohort study. J. Am. Heart Assoc. 2015, 4, e001307. [Google Scholar] [CrossRef] [PubMed]
- Counsell, C.; Dennis, M.; McDowall, M.; Warlow, C. Predicting outcome after acute and subacute stroke: Development and validation of new prognostic models. Stroke 2002, 33, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.; Farner, L.; Flekkoy, K.; Bruun Wyller, T.; Sandvik, L.; Fure, B.; Stensrod, B.; Engedal, K. Early post-stroke cognition in stroke rehabilitation patients predicts functional outcome at 13 months. Dement. Geriatr. Cogn. Disord. 2011, 31, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; St George, B.; Fenton, M.; Firkins, L. Top 10 research priorities relating to life after stroke--consensus from stroke survivors, caregivers, and health professionals. Int. J. Stroke 2014, 9, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Pantoni, L. Have stroke neurologists entered the arena of stroke-related cognitive dysfunctions? Not yet, but they should! Stroke 2017, 48, 1441–1442. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Stephan, B.C.; Minett, T.; Muniz Terrera, G.; Matthews, F.E.; Brayne, C. Dementia prediction for people with stroke in populations: Is mild cognitive impairment a useful concept? Age Ageing 2014. [CrossRef] [PubMed]
- Harrison, S.L.; Tang, E.Y.; Keage, H.A.; Taylor, J.P.; Allan, L.; Robinson, L.; Jagger, C.; Rockwood, K.; Stephan, B.C. A systematic review of the definitions of vascular cognitive impairment, no dementia in cohort studies. Dement. Geriatr. Cogn. Disord. 2016, 42, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D'Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Siontis, G.C.; Tzoulaki, I.; Siontis, K.C.; Ioannidis, J.P. Comparisons of established risk prediction models for cardiovascular disease: Systematic review. BMJ 2012, 344, e3318. [Google Scholar] [CrossRef] [PubMed]
- Bawamia, B.; Mehran, R.; Qiu, W.; Kunadian, V. Risk scores in acute coronary syndrome and percutaneous coronary intervention: A review. Am. Heart J. 2013, 165, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Noble, D.; Mathur, R.; Dent, T.; Meads, C.; Greenhalgh, T. Risk models and scores for type 2 diabetes: Systematic review. BMJ 2011, 343, d7163. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Kengne, A.P. Risk models to predict chronic kidney disease and its progression: A systematic review. PLoS Med. 2012, 9, e1001344. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Briganti, A.; Gallina, A.; Suardi, N.; Karakiewicz, P.I.; Montorsi, F.; Scattoni, V. Predictive models before and after radical prostatectomy. Prostate 2010, 70, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Geomini, P.; Kruitwagen, R.; Bremer, G.L.; Cnossen, J.; Mol, B.W. The accuracy of risk scores in predicting ovarian malignancy: A systematic review. Obstet. Gynecol. 2009, 113, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 1989, 81, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Stephan, B.C.M.; Kurth, T.; Matthews, F.E.; Brayne, C.; Dufouil, C. Dementia risk prediction in the population: Are screening models accurate? Nat. Rev. Neurol. 2010, 6, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.Y.; Harrison, S.L.; Errington, L.; Gordon, M.F.; Visser, P.J.; Novak, G.; Dufouil, C.; Brayne, C.; Robinson, L.; Launer, L.J.; et al. Current developments in dementia risk prediction modelling: An updated systematic review. PLoS ONE 2015, 10, e0136181. [Google Scholar] [CrossRef] [PubMed]
- Stephan, B.C.; Tang, E.; Muniz-Terrera, G. Composite risk scores for predicting dementia. Curr. Opin. Psychiatry 2016, 29, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Cherbuin, N.; Herath, P.M.; Qiu, C.; Kuller, L.H.; Lopez, O.L.; Wilson, R.S.; Fratiglioni, L. A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: The ANU-ADRI. PLoS ONE 2014, 9, e86141. [Google Scholar] [CrossRef] [PubMed]
- Exalto, L.G.; Biessels, G.J.; Karter, A.J.; Huang, E.S.; Katon, W.J.; Minkoff, J.R.; Whitmer, R.A. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: A cohort study. Lancet Diabetes Endocrinol. 2013, 1, 183–190. [Google Scholar] [CrossRef]
- Exalto, L.G.; Quesenberry, C.P.; Barnes, D.; Kivipelto, M.; Biessels, G.J.; Whitmer, R.A. Midlife risk score for the prediction of dementia four decades later. Alzheimer’s Dement. 2013, 10, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.E.; Beiser, A.S.; Lee, A.; Langa, K.M.; Koyama, A.; Preis, S.R.; Neuhaus, J.; McCammon, R.J.; Yaffe, K.; Seshadri, S.; et al. Development and validation of a brief dementia screening indicator for primary care. Alzheimer’s Dement. 2014. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Moons, K.G.; van der Windt, D.A.; Hayden, J.A.; Perel, P.; Schroter, S.; Riley, R.D.; Hemingway, H.; Altman, D.G. Prognosis research strategy (progress) 3: Prognostic model research. PLoS Med. 2013, 10, e1001381. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, N.; Chander, R.J.; Lin, X.; Ng, A.; Poh, Y.Y.; Cheong, C.Y.; Cenina, A.R.; Assam, P.N. Cognitive impairment after mild stroke: Development and validation of the SIGNAL2 risk score. J. Alzheimer's Dis. 2016, 49, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Lin, R.T.; Tai, C.T.; Hsieh, C.L.; Hsiao, S.F.; Liu, C.K. Prediction of poststroke dementia. Neurology 2003, 61, 343–348. [Google Scholar] [CrossRef] [PubMed]
Reference and Cohort Used | Sample Size | Follow-up | Outcome | Predictor Variables | Predictive Accuracy | Validation |
---|---|---|---|---|---|---|
Kandiah [54] Tertiary Stroke Clinic | 209 | 6-m | CI | Age, education, acute cortical infarcts, white matter hyperintensity, chronic lacunes, global cortical atrophy and intracranial large vessel stenosis | AUC = 0.83 (95%CI: 0.77–0.88) | Yes, AUC = 0.78 (95%CI: 0.70–0.85) |
Lin [55] Acute ischaemic stroke patients admitted to neurology department | 283 | 3-m | Dementia | Age, previous occupation as a laborer, prior stroke, left carotid vascular territory, moderate to severe stroke severity, cognitive impairment, poor functional status at admission | Correct classification = 93.4% of patients | No |
Stephan [36] Population based cohort study | 2640 | 2-yrs | Dementia | Subjective memory complaint, CAMCOG learning memory and praxis scores | AUC = 0.85 (95%CI: 0.77–0.94) | No |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, E.Y.H.; Robinson, L.; Stephan, B.C.M. Risk Prediction Models for Post-Stroke Dementia. Geriatrics 2017, 2, 19. https://doi.org/10.3390/geriatrics2030019
Tang EYH, Robinson L, Stephan BCM. Risk Prediction Models for Post-Stroke Dementia. Geriatrics. 2017; 2(3):19. https://doi.org/10.3390/geriatrics2030019
Chicago/Turabian StyleTang, Eugene Yee Hing, Louise Robinson, and Blossom Christa Maree Stephan. 2017. "Risk Prediction Models for Post-Stroke Dementia" Geriatrics 2, no. 3: 19. https://doi.org/10.3390/geriatrics2030019
APA StyleTang, E. Y. H., Robinson, L., & Stephan, B. C. M. (2017). Risk Prediction Models for Post-Stroke Dementia. Geriatrics, 2(3), 19. https://doi.org/10.3390/geriatrics2030019