Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Measurements
Postural Stability Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brumagne, S.; Cordo, P.; Verschueren, S. Proprioceptive weighting changes in persons with low back pain and elderly persons during upright standing. Neurosci. Lett. 2004, 366, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sakai, Y.; Nakamura, E.; Yamazaki, K.; Yamada, A.; Sato, N.; Morita, Y. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis. J. Phys. Ther. Sci. 2015, 27, 2247–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claeys, K.; Brumagne, S.; Dankaerts, W.; Kiers, H.; Janssens, L. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur. J. Appl. Physiol. 2011, 111, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, I.; Jantti, P.; Aalto, H. Postural control in elderly subjects. Age Ageing 1990, 19, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.E.; Goble, D.J.; Doumas, M. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults’ dynamic postural control. Neuroscience 2016, 322, 251–261. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Ehsani, H.; Miramonte, M.; Mohler, J. Proprioceptive impairments in high fall risk older adults: The effect of mechanical calf vibration on postural balance. Biomed. Eng. Online 2018, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, H.; Mohler, J.; Marlinski, V.; Rashedi, E.; Toosizadeh, N. The influence of mechanical vibration on local and central balance control. J. Biomech. 2018, 71, 59–66. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, Y.; Yamazaki, K.; Igarashi, K.; Sato, N.; Yokoyama, K.; Morita, Y. Proprioceptive change impairs balance control in older patients with low back pain. J. Phys. Ther. Sci. 2017, 29, 1788–1792. [Google Scholar] [CrossRef] [Green Version]
- Abrahámová, D.; Mancini, M.; Hlavacka, F.; Chiari, L. The age-related changes of trunk responses to Achilles tendon vibration. Neurosci. Lett. 2009, 467, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Bacciu, D.; Chessa, S.; Gallicchio, C.; Micheli, A.; Pedrelli, L.; Ferro, E.; Fortunati, L.; La Rosa, D.; Palumbo, F.; Vozzi, F.; et al. A learning system for automatic Berg Balance Scale score estimation. Eng. Appl. Artif. Intell. 2017, 66, 60–74. [Google Scholar] [CrossRef]
- De Souza, N.S.; Martins, A.C.G.; Ferreira, C.L.; Motizuki, Y.S.; Machado, C.B.; Orsini, M.; Leite, M.A.A.; Bastos, V.H. Effect of cervical kinesthetic motor imagery on postural control of healthy young adults with fear of falling. J. Funct. Morphol. Kinesiol. 2017, 2, 21. [Google Scholar] [CrossRef]
- Ito, T.; Sakai, Y.; Morita, Y.; Yamazaki, K.; Igarashi, K.; Nishio, R.; Sato, N. Proprioceptive weighting ratio for balance control in static standing is reduced in elderly patients with non-specific low back pain. Spine (Phila Pa 1976) 2018, 43, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.F.; Winkelmann, R.K.; Dyck, P.J. A quantitative study of Meissner’s corpuscles in man. Neurology 1966, 16, 1–9. [Google Scholar] [CrossRef]
- Della Volpe, R.; Popa, T.; Ginanneschi, F.; Spidalieri, R.; Mazzocchio, R.; Rossi, A. Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture 2006, 24, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Mientjes, M.I.; Frank, J.S. Balance in chronic low back pain patients compared to healthy people under various conditions in upright standing. Clin. Biomech. 1999, 14, 710–716. [Google Scholar] [CrossRef]
- Brumagne, S.; Janssens, L.; Knapen, S.; Claeys, K.; Suuden-Johanson, E. Persons with recurrent low back pain exhibit a rigid postural control strategy. Eur. Spine J. 2008, 17, 1177–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morasso, P.G.; Schieppati, M. Can muscle stiffness alone stabilize upright standing? J. Neurophysiol. 1999, 82, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.; Bloem, B.R.; Carpenter, M.G.; Hulliger, M.; Hadders-Algra, M. Proprioceptive control of posture: Review of new concepts. Gait Posture 1998, 8, 214–242. [Google Scholar] [CrossRef]
- Eklund, G. General features of vibration-induced effects on balance. Ups. J. Med. Sci. 1972, 77, 112–124. [Google Scholar] [CrossRef]
- Menz, H.B.; Morris, M.E.; Lord, S.R. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
Variables | Young (n = 23) | Middle-Aged (n = 23) | Elderly (n = 23) |
---|---|---|---|
Age (years) | 21.7 ± 1.3 | 46.0 ± 3.1 | 72.1 ± 4.8 |
Male/female | 11/12 | 11/12 | 14/9 |
Height (cm) | 165.5 ± 6.4 | 164.9 ± 8.1 | 159.0 ± 9.1 |
Weight (kg) | 55.8 ± 8.1 | 60.1 ± 11.0 | 63.6 ± 12.3 |
BMI (kg/m2) | 20.3 ± 2.5 | 22.0 ± 2.8 | 22.5 ± 3.7 |
Variables | Sum of Squares | Degrees of Freedom | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
GS at 30 Hz | 0.683 | 2 | 0.342 | 9.413 | 0.001 |
GS at 60 Hz | 0.189 | 2 | 0.094 | 0.806 | 0.451 |
GS at 240 Hz | 0.448 | 2 | 0.224 | 3.128 | 0.05 |
LM at 30 Hz | 0.209 | 2 | 0.104 | 2.36 | 0.102 |
LM at 60 Hz | 0.346 | 2 | 0.173 | 2.359 | 0.102 |
LM at 240 Hz | 0.391 | 2 | 0.195 | 4.144 | 0.02 |
Variables | Young (n = 23) | Middle-aged (n = 23) | Elderly (n = 23) | p-Value |
---|---|---|---|---|
GS at 30 Hz | 0.65 ± 0.21 | 0.55 ± 0.17 | 0.80 ± 0.19 | Young and middle-aged: 0.284 Young and elderly: 0.033 Middle-aged and elderly: 0.001 |
GS at 240 Hz | 0.64 ± 0.30 | 0.61 ± 0.23 | 0.79 ± 0.27 | Young and middle-aged: 1.00 Young and elderly: 0.162 Middle-aged and elderly: 0.07 |
LM at 240 Hz | 0.56 ± 0.15 | 0.65 ± 0.21 | 0.75 ± 0.27 | Young and middle-aged: 0.051 Young and elderly: 0.016 Middle-aged and elderly: 0.422 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, T.; Sakai, Y.; Yamazaki, K.; Nishio, R.; Ito, Y.; Morita, Y. Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics 2018, 3, 93. https://doi.org/10.3390/geriatrics3040093
Ito T, Sakai Y, Yamazaki K, Nishio R, Ito Y, Morita Y. Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics. 2018; 3(4):93. https://doi.org/10.3390/geriatrics3040093
Chicago/Turabian StyleIto, Tadashi, Yoshihito Sakai, Kazunori Yamazaki, Reiya Nishio, Yohei Ito, and Yoshifumi Morita. 2018. "Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs" Geriatrics 3, no. 4: 93. https://doi.org/10.3390/geriatrics3040093
APA StyleIto, T., Sakai, Y., Yamazaki, K., Nishio, R., Ito, Y., & Morita, Y. (2018). Postural Strategy in Elderly, Middle-Aged, and Young People during Local Vibratory Stimulation for Proprioceptive Inputs. Geriatrics, 3(4), 93. https://doi.org/10.3390/geriatrics3040093