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Abstract: Background: Pharmacogenomic factors affect the susceptibility to drug–drug interactions
(DDI). We identified drug interaction perpetrators among the drugs prescribed to a cohort of 290 older
adults and analysed the prevalence of gene polymorphisms that can increase their interacting potential.
We also pinpointed clinical decision support systems (CDSSs) that incorporate pharmacogenomic
factors in DDI risk evaluation. Methods: Perpetrator drugs were identified using the Drug Interactions
Flockhart Table, the DRUGBANK website, and the Mayo Clinic Pharmacogenomics Association Table.
Allelic variants affecting their activity were identified with the PharmVar, PharmGKB, dbSNP, ensembl
and 1000 genome databases. Results: Amiodarone, amlodipine, atorvastatin, digoxin, esomperazole,
omeprazole, pantoprazole, simvastatin and rosuvastatin were perpetrator drugs prescribed to >5%
of our patients. Few allelic variants affecting their perpetrator activity showed a prevalence >2% in
the European population: CYP3A4/5*22, *1G, *3, CYP2C9*2 and *3, CYP2C19*17 and *2, CYP2D6*4,
*41, *5, *10 and *9 and SLC1B1*15 and *5. Few commercial CDSS include pharmacogenomic factors in
DDI-risk evaluation and none of them was designed for use in older adults. Conclusions: We provided
a list of the allelic variants influencing the activity of drug perpetrators in older adults which should be
included in pharmacogenomics-oriented CDSSs to be used in geriatric medicine.
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1. Introduction

Drug–drug interactions (DDI), i.e., changes in the effects of a drug caused by the
concomitant administration of another drug [1], affect more than 25% of patients in the age
range between 70 and 79 [2]. The high prevalence of DDIs in older adults can be easily
explained by the fact that more than 65% of them are on polypharmacy (i.e., they take
five or more pharmaceutical ingredients a day) [3,4], since the probability of developing
DDIs increases exponentially with the number of prescribed drugs [5]. Usually, in DDIs, a
first drug, known as the perpetrator, modifies the activity of a second drug, which is called
the victim of the interaction. Sometimes, reciprocal interactions occur between drugs that
are at the same time perpetrators and victims. Depending on the interactors involved,
DDIs may either enhance or reduce the effects of the victim drugs causing, respectively,
drug toxicity or therapeutic failure [6–9]. Therefore, to make pharmacological treatments
safe and effective, individual therapies should be adjusted to prevent DDI occurrence by
avoiding the prescription of dangerous combinations of potentially interacting drugs [10].
Physicians may be helped in this process by clinical decision support systems (CDSS)
incorporating DDI checkers. Even better, therapy optimization can be obtained through
medication review, a structured revision of pharmacological treatment performed by a team
of pharmacologists and pharmacists, to identify drugs that are inappropriate, dangerous
or that can be responsible for DDIs [11]. An important limitation of these interventions
is that many of the identified DDIs do not have major clinical consequences, and this
may cause “alert fatigue” in medical doctors with the consequence that even major DDI
warnings and related recommendations are ignored [10,12]. It would be, therefore, highly
desirable to introduce predictors that could help identify patients among those receiving
potentially interacting drugs who are at highest risk of clinically relevant interactions
and deserving the highest attention. The assessment of pharmacogenomic factors may
help achieve this goal considering that the severity of DDIs could be affected by patient
genetic background [13,14]. In fact, variants of genes involved in pharmacokinetics or
pharmacodynamics may not only affect the efficacy of specific drugs [15,16], establishing
the so-called drug–gene interactions (DGIs), but also influence the ability of specific drugs
to act as perpetrators in DDIs. For instance, phase I metabolism of many of the drugs used
in therapy depend on enzymes belonging to the cytochrome P450 (CYP450) superfam-
ily, whose members CYP3A4/5, CYP2C9, CYP2C19, and CYP2D6, have largely different
substrate specificity [17]. CYP450s are encoded by polymorphic enzymes and, therefore,
in the general population, individuals can be identified who display enzymatic activity
of one or more of these CYPs that is higher, slightly reduced or lower than normal [17].
They are called, respectively, ultrarapid metabolizers (UM), intermediate metabolizers
(IM) and poor metabolizers (PM). Since their enzyme activity is lower than normal, PMs
and, in some cases also IMs, are expected to be more susceptible to the effect of drugs that
can further inhibit the already low CYP450 activity and, therefore, to display higher than
normal exposure to drugs metabolized by these CYP450s and, possibly, develop toxicity.
By contrast, UMs, who already have higher than normal enzyme activity, are expected
to be more susceptible than normal individuals to drugs that induce CYP450 expression
and, consequently, to display lower than normal levels and, possibly, therapeutic failure
when exposed to drugs metabolized by the affected CYP450. Another key player in phar-
macokinetic DDIs with a significant pharmacogenomic variability is the drug transporter
SLCO1B1, which is involved in the elimination of important drugs such as statins or an-
giotensin receptor blockers (ARBs) [18]. SLCO1B1 is encoded by a polymorphic gene and
people bearing its loss of function (LoF) variants are expected to be more susceptible than
normal people to SLCO1B1 blockers, which further reduce the already low transporter
activity and may, therefore, increase the plasma concentrations of SLCO1B1 substrates up
to toxic levels. The individual pharmacogenotype should, therefore, be added to the list
of the factors that can establish the severity of drug interactions, which also include the
different individual exposure to environmental factors, biopharmaceutical considerations
concerning the different preparations of the same active principles, individual differences
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in patient compliance to therapy and in the attending physician to the monitoring of early
signs and symptoms of drug toxicity. The term drug–drug–gene interactions (DDGI) has
been introduced to acknowledge the contribution of genetics in drug interactions [13,14].
Some evidence has been reported suggesting that pharmacogenetic testing combined with
CDSS could prevent serious DGIs and, consequently, reduce hospitalizations, emergency
department admissions, and outpatient visits in older adults on polypharmacy and alert
fatigue in their doctors [19,20]. On the contrary, so far, only a few studies have investigated
DDGIs in older adults and the impact of the prevalence of variants in key pharmacogenes
on their occurrence [21,22]. Therefore, in the present study, we identified the drugs most
frequently prescribed in a cohort of geriatric patients from Southern Italy and correlated
to the prevalence of the main variants of the genes affecting disposition of the drugs most
frequently prescribed in these subjects. In addition, given the role played by CDSS in the
medication review process, and in consideration of the relevant role played by pharma-
cogenomics in identifying DDGIs, we also assessed whether tools commonly available for
medication review incorporate DDGI checklists.

2. Materials and Methods
2.1. Study Design

To find gene variants that could enhance the susceptibility to common DDIs in older
adults, we first identified the most prescribed drugs in a cohort of geriatric patients by
means of a retrospective, observational analysis of prescription records. Then, we looked
for potential DDI perpetrators among drugs prescribed to more than 5% of our population.
Finally, we examined the allelic distribution of the genes influencing the pharmacokinetics
of these potential DDI perpetrators focusing on those frequently occurring in Europe and,
when available, specifically in Southern Italy.

2.2. Study Population

The population examined consisted of two groups of patients of both genders fol-
lowed as part of the medication review program at the Federico II University Hospital of
Naples, Italy: 1. Patients admitted to the Internal Medicine-Cardiac Rehabilitation ward,
2. Outpatients followed at the Geriatrics clinic. Inclusion criteria were age older than
65 years and treatment with at least 5 active pharmaceutical ingredients. Patients were
excluded in the presence of at least one of the following conditions: artificial nutrition either
enteral or parenteral, continuous intravenous drug therapy, KDIGO stage 5 chronic kidney
disease, peritoneal dialysis or hemodialysis, Child-Pugh class C liver failure, chemotherapy
for malignant tumors or immunosuppressant therapy for autoimmune diseases or organ
transplantation. Ethical approval for the study was granted by the Ethics Committee of the
Federico II University of Naples, ITALY (approval number 202/16).

2.3. Identification of Potential DDI Perpetrator Drugs

To identify potential DDI perpetrators among the drugs most frequently prescribed to
the patients of our cohort, we matched the list of these drugs with those of the inhibitors
and of the inducers of drug-metabolizing enzymes and transporters. More specifically.
we focused on the cytochromes CYP3A4/5, CYP2C9, CYP2C19 and CYP2D6 and on
SLC1B1 transporters since they are responsible for most of the DDIs commonly observed
in the clinic [23]. The lists of the inhibitors and inducers of these enzymes and trans-
porters were obtained, for CYPs, from the Drug Interactions Flockhart Table™ (freely
downloadable at https://drug-interactions.medicine.iu.edu/MainTable.aspx, accessed
on 27 January 2023) [24], the Mayo Clinic Pharmacogenomics Association Table (https:
//www.mayocliniclabs.com/it-mmfiles/Pharmacogenomic_Associations_Tables.pdf, ac-
cessed on 27 January 2023), the DRUGBANK online website (www.go.drugbank.com,
accessed on 27 January 2023), and, for the SLCO1B1 transporter, the list from Karlgren et al.
(2012) [25].

https://drug-interactions.medicine.iu.edu/MainTable.aspx
https://www.mayocliniclabs.com/it-mmfiles/Pharmacogenomic_Associations_Tables.pdf
https://www.mayocliniclabs.com/it-mmfiles/Pharmacogenomic_Associations_Tables.pdf
www.go.drugbank.com
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2.4. Identification of Gene Variants Potentially Enhancing the Effect of DDI Perpetrators

To identify the gene variants that could potentiate the effect of DDI perpetrators, we
looked for gene variants of CYP3A4/5, CYP2C9, CYP2C19, CYP2D6 and SLC1B1 in some of
the major pharmacogenomic databases including PharmVar (https://www.pharmvar.org/,
accessed on 14 February 2023), PharmGKB (https://www.pharmgkb.org, accessed on 16
February 2023), dbSNP (https://www.ncbi.nlm.nih.gov/snp/, accessed on 17 February
2023), ensembl (https://www.ensembl.org/index.html, accessed on 14 February 2023)
and 1000 genomes (https://www.internationalgenome.org/, accessed on 18 February
2023). Moreover, we retrieved from these databases information on the prevalence of these
variants in Europe, in Italy, and whenever available, in Southern Italy. To investigate the
possible existence of additional information on gene variant prevalence not represented
in the above-mentioned databases, we also performed a systematic search on PubMed
(https://pubmed.ncbi.nlm.nih.gov/, accessed on 27 February 2023) using as key words
Italy, Southern Italy, South Italy and the various genetic variants of interest identified with
either the rs dbSNP nomenclature or, when available, the star (*) allele designation.

2.5. Statistical Analysis

Statistical analysis of the data was performed using the IBM SPSS Statistic 26 software
(1 New Orchard Road Armonk, New York, NY, USA). All data are reported as median and
interquartile range. Data comparisons were performed with Wilcoxon signed-rank test.
Prevalence data were compared using the χ2 test. The threshold for statistical significance
was set at p < 0.05.

3. Results
3.1. Identification of the Most Prescribed Drugs in the Study Population

The study population consisted of 290 older adults (median age 74, IQR 69–79;
126 females): 221 (96 females) were admitted to the Internal Medicine ward and 69
(30 females) were followed as outpatients at the Geriatric Clinics.

All patients were affected by multiple comorbidities, the most frequent of which
were arterial hypertension, dyslipidemia, type II diabetes, carotid artery atherosclerosis,
ischemic heart disease (IHD), chronic renal failure, and chronic obstructive pulmonary
disease (COPD) (Table 1). Most of the comorbidities showed a similar prevalence in the two
genders with the only exceptions of arterial hypertension, hepatic cirrhosis, diverticulosis,
osteoarthritis, osteoporosis, anxiety, and depression, which occurred more frequently in
females, and IHD, peripheral artery disease and COPD, which were more prevalent in
males. All patients were on polypharmacy and the average number of drugs was 8 (IQR
6–10).

Table 1. Main demographic and clinical characteristics of the study population.

Disease Whole Population (n = 290) Males (n = 164) Females (n = 126)

Age 74 (69–79) 73 (68–78) 75 (70–80)
Prescribed drugs number 8 (6–10) 8 (6–10) 8 (7–10)
Comorbidities number 6 (4–8) 6 (4–7) 7 (5–9)
Arterial Hypertension 185 (63.8) 88 (53.7) 97 (77.0) ***
Type II DM 112 (38.6) 58 (35.4) 54 (42.9)
Dyslipidemia 101 (34.8) 56 (34.1) 45 (35.7)
Ischemic Heart Disease 90 (31.0) 68 (41.5) 22 (17.5) ***
Carotid artery atherosclerosis 81 (27.9) 42 (25.6) 39 (30.9)
CKD 71 (24.5) 38 (23.2) 33 (26.2)
Atrial fibrillation 66 (22.8) 41 (25.0) 25 (19.8)
COPD 58 (20.0) 40 (24.4) 18 (14.3) *
Benign Prostatic Hyperplasia 45 (15.5) 45 (27.5) --
Goiter 34 (11.7) 14 (8.5) 20 (15.9)
Anemia 30 (10.3) 17 (10.4) 13 (10.3)

https://www.pharmvar.org/
https://www.pharmgkb.org
https://www.ncbi.nlm.nih.gov/snp/
https://www.ensembl.org/index.html
https://www.internationalgenome.org/
https://pubmed.ncbi.nlm.nih.gov/
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Table 1. Cont.

Disease Whole Population (n = 290) Males (n = 164) Females (n = 126)

History of cancer 30 (10.3) 12 (7.3) 18 (14.3)
Diverticulosis 25 (8.6) 8 (4.9) 17 (13.5) **
Depression and anxiety 23 (7.9) 7 (4.3) 16 (12.7) **
Osteoarthritis 22 (7.6) 4 (2.4) 18 (14.3) ***
Peripheral artery disease 21 (7.2) 20 (12.2) 1 (0.8) ***
Chronic hepatitis 19 (6.6) 7 (4.3) 12 (9.5)
Hepatic cirrhosis 19 (6.6) 3 (1.8) 16 (12.7) ***
Osteoporosis 11 (3.8) 2 (1.2) 9 (7.1) **
GERD 11 (3.8) 4 (2.4) 7 (5.6)
Angina 10 (3.4) 4 (2.4) 6 (4.8)

Comorbidities are listed in order of prevalence. For each comorbidity we reported the number of patient and, in
parentheses, the percentage in the respective group. *, p < 0.05; **, p < 0.01; ***, p < 0.001 at χ2 test. Abbreviations:
CKD, Chronic Kidney Disease; COPD, chronic obstructive pulmonary disease; DM, Diabetes Mellitus; GERD,
Gastroesophageal reflux disease.

Table 2 reports the list of the drugs prescribed to more than 5% of patients of our pop-
ulation. Most of them were either cardiovascular drugs, proton pump inhibitors (PPIs), or
antidiabetic drugs. The list also included allopurinol, a drug for hyperuricemia, tiotropium
an anticholinergic drug for COPD, rifaximin, an antibiotic frequently prescribed for colonic
diverticula, and tamsulosin, an alpha-adrenergic blocker for prostate hyperplasia. No sig-
nificant difference was observed between males and females in the prevalence of use of the
different drugs with the only exceptions of hydrochlorothiazide, potassium canrenoate and
enoxaparin, which were more frequently prescribed in females, and atorvastatin, low-dose
aspirin, clopidogrel, carvedilol, and spironolactone, which were more prevalent in males.

Table 2. Active principles prescribed to 5% or more of the patients in study population.

Whole
Population Males Females

Low dose aspirin 124 (42.8) 85 (51.8) 39 (31.0) ***
Furosemide 104 (35.9) 62 (37.8) 42 (33.3)
Atorvastatin 104 (35.9) 68 (41.5) 36 (28.6) *
Esomeprazole 77 (26.6) 39 (23.8) 38 (30.2)
Pantoprazole 76 (26.2) 38 (23.2) 38 (30.2)
Clopidogrel 70 (24.1) 48 (29.3) 22 (17.5) *
Ramipril 69 (23.8) 44 (26.8) 25 (19.8)
Allopurinol 60 (20.7) 36 (22.0) 24 (19.0)
Carvedilol 58 (20.0) 40 (24.4) 18 (14.3) *
Amlodipine 55 (19.0) 30 (18.3) 25 (19.8)
Metformin 54 (18.6) 28 (17.1) 26 (20.6)
Omeprazole 54 (18.6) 33 (20.1) 21 (16.7)
Bisoprolol 52 (17.9) 24 (14.6) 28 (22.2)
Hydrochlorothiazide 49 (16.9) 19 (11.6) 30 (23.8) **
Insulin glargine 48 (16.6) 25 (15.2) 23 (18.3)
Warfarin 37 (12.8) 18 (11.0) 19 (15.1)
Potassium canrenoate 35 (12.1) 14 (8.5) 21 (16.7) *
Insulin Lispro 33 (11.4) 18 (11.0) 15 (11.9)
Digoxin 33 (11.4) 21 (12.8) 12 (9.5)
Tiotropium 31 (10.7) 19 (11.6) 12 (9.5)
Olmesartan 30 (10.3) 14 (8.5) 16 (12.7)
Irbesartan 29 (10.0) 14 (8.5) 15 (11.9)
Simvastatin 28 (9.7) 17 (10.4) 11 (8.7)
Spironolactone 26 (9.0) 22 (13.4) 4 (3.2) **
Nebivolol 22 (7.6) 11 (6.1) 11 (8.7)
Nitroglycerin 21 (7.2) 13 (7.9) 8 (6.3)
Rosuvastatin 21 (7.2) 10 (6.1) 11 (8.7)
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Table 2. Cont.

Whole
Population Males Females

Folic Acid 20 (6.9) 13 (7.9) 7 (5.6)
Tamsulosin 19 (6.6) 19 (11.6) --
Insulin aspart 19 (6.6) 9 (5.5) 10 (7.9)
Doxazosin 18 (6.2) 8 (4.5) 10 (7.9)
Rifaximin 18 (6.2) 10 (6.1) 8 (6.3)
Ursodeoxycholic acid 17 (5.9) 7 (4.3) 10 (7.9)
Amiodarone 17 (5.9) 14 (8.5) 3 (2.4)
Atenolol 16 (5.5) 9 (5.5) 7 (5.6)
Enoxaparin 16 (5.5) 5 (3.0) 13 (10.3) *
Telmisartan 15 (5.2) 6 (3.7) 9 (7.1)

Active pharmaceutical ingredients are listed in order of prevalence. For each active principle we reported the
number of patients and, in parentheses, the percentage in the respective group. *, p < 0.05; **, p < 0.01; ***, p < 0.001
at χ2 test.

3.2. Identification of Gene Polymorphism Potentially Enhancing the Effect of Perpetrator Drugs

Table 3 lists the inhibitors and inducers of CYPs and SLC1B1 identified among the
drugs most prescribed in older adults and summarizes the main findings of our search in ge-
nomic databases for gene variants which could be responsible for DDGIs. We found seven
different active principles that may act as drug perpetrators in DDGIs involving CYP3A4:
one of them, amiodarone, is a strong inhibitor of this cytochrome, four are weak inhibitors
(amlodipine, esomeprazole, omeprazole and pantoprazole), one is a strong inducer (rifax-
imin) and one is a weak inducer (warfarin). Genomic database analysis showed that in the
European population the most represented loss of function variant, potentially involved in
those DDGIs, are CYP3A4*1G [26–28] and CYP3A4*22 [29] which occur, respectively, in
about 8% and 5% of the European population (https://www.internationalgenome.org/,
accessed on 18 February 2023).The in/del CYP3A4*20 allele [30–32] also causes a com-
plete loss of function, but it is observed only in about 0.04% of the European popu-
lation (https://gnomad.broadinstitute.org/, accessed on 20 February 2023) (Table 3).
Data on the prevalence of CYP3A4 alleles in Italy were retrieved from the Tuscans in
Italy cohort of the 1000 genome project, which reports a prevalence of 8% and 7.5% for
CYP3A4*1G and CYP3A4*22, respectively, and from Apellániz-Ruiz et al. (2015) [33], who
showed the absence in the Italian population of the CYP3A4*20 allele. A small series
of 50 epileptic patients from Southern Italy reports a prevalence of 6% of CYP3A4*22
in heterozygosity (*1/*22) [34]. A gain of function CYP3A4 variant, CYP3A4*18, has
been described in Asians [35], but it is apparently absent in the European population
(https://www.ensembl.org/, accessed on 14 February 2023). An additional factor that
might impact on the DDGI involving CYP3A4 is the genetic variability of CYP3A5, a
polymorphic cytochrome closely related to CYP3A4 and sharing most of its substrates [36].
Database analysis showed that in the European population, the most represented variant
of CYP3A5 is the loss of function CYP3A5*3 allele with a prevalence of 92.4% whereas the
normal allele CYP3A5*1 occurs only in 7.4% of the population (the 1000 genomes project,
https://www.internationalgenome.org/, accessed on 18 February 2023). Data from the
Tuscans in Italy cohort showed that the prevalence of CYP3A5*1 is low also in the Italian pop-
ulation and we found similar results also in several small series from Central and Northern
Italy [37–39]. We found only one published study on CYP3A5 alleles in Southern Italy re-
porting a prevalence of only 1.3% for the *1/*1 fully functional diplotype [40]. Amiodarone
is the only CYP2C9 (moderate) inhibitor in the list of the drugs most prescribed in our older
adult cohort, which also includes two inducers of this cytochrome, one of moderate (ri-
fampicin) and the other of weak potency (warfarin). In the European population, the most
represented CYP2C9 loss of function gene variant is CYP2C9*3 with a prevalence of 7.3%,
whereas CYP2C9*2 is the most frequently occurring intermediate activity allele, showing
a prevalence of 12.4% (https://www.internationalgenome.org/, accessed on 18 February

https://www.internationalgenome.org/
https://gnomad.broadinstitute.org/
https://www.ensembl.org/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
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2023). The few studies that assessed the prevalence of CYP2C9 alleles in Italy report values
ranging from 8.4 to 16.7% for the loss of activity CYP2C9*3 allele, and from 12.4 to 35.6%
for the intermediate activity CYP2C9*2 allele (https://www.internationalgenome.org/,
accessed on 18 February 2023) [41–44], with no significant regional difference between
Northern, Central and Southern Italy [45]. Five of the active principles more frequently pre-
scribed to older adults might act as drug perpetrators in DDGIs involving CYP2C19, four
weak inhibitors (amiodarone, esomeprazole, omeprazole and pantoprazole) and one strong
inducer, rifaximin. Database analysis showed that CYP2C19*2, CYP2C19*8, CYP2C19*4,
and CYP2C19*3 are the loss of function alleles of this highly variable cytochrome [46] that
occur more frequently in Europe (prevalence: 14.5%, 0.3%, 0.20% and 0.17%, respectively).
CYP2C19 hyperfunctioning variants are also highly represented [47]; among these, the
CYP2C19*17 allele, which could theoretically enhance the effect of the inducers of this
cytochrome, ranks second for prevalence (21.6%) in Europe among CYP2C19 alleles. Sig-
nificant differences in the regional prevalence of CYP2C19 variants have been observed
among the Italian macroregions; in fact, poor metabolizer variants with low enzyme activity
were not observed in Southern Italy but occurred in about 5% and 1.6% of people from
Central and Northern Italy, respectively [45]. Three weak CYP2D6 inhibitors, amiodarone,
amlodipine, and omeprazole, appear in the list of the drugs most frequently used in our
cohort of geriatric patients. Genetic database search showed that loss of function variants
of this cytochrome are highly represented in the European population with prevalence
of 18.5, 2.95, 1.59, and 1.11%, respectively, for the CYP2D6*4, CYP2D6*5, CYP2D6*3 and
CYP2D6*6 alleles (https://www.pharmgkb.org/, accessed on 16 February 2023). In addi-
tion, some intermediate activity variants occur frequently in Europe, including CYP2D6*41,
CYP2D6*10, CYP2D6*9 and CYP2D6*17 with a prevalence of 9.4, 1.57, 2.76 and 0.39%,
respectively. Based on the data from the Tuscans in Italy cohort and from several additional
small series [43,48,49], these loss of function and intermediate function variants seem to
also be highly prevalent in Italy. Marked differences have been observed between Northern
Italy, where loss of function alleles are more represented, and Central and Southern Italy,
where the prevalence of intermediate variants is higher [45].

Table 3. Inhibitors and inducers of CYPs and SLCO1B1 and main gene variants potentially enhancing
their effects on drug disposition.

Inhibitors Inducers Main Gene
Variants

Functional
Effect

Prevalence in
Europe (1)

Prevalence
in Italy

Prevalence in
Southern Italy

CYP3A4/5
amiodarone, amlodipine,

esomeprazole, omeprazole,
pantoprazole

warfarin,
rifaximin

CYP3A4*22 LoF 5% 3.7% (2) 3% (3)
CYP3A4*1G IM 8% 8.4 (2) N/A
CYP3A5*3 LoF 92.4% 94.9% (2) 96.6 (4)

CYP2C9 amiodarone warfarin,
rifaximin

CYP2C9*2 IM 12.4% 17.6% (5) 13.6% (5)
CYP2C9*3 LoF 7.3% 9.5% (5) 10.0% (5)

CYP2C19
amiodarone, esomeprazole,
omeprazole, pantoprazole rifaximin

CYP2C19*17 GoF 21.6% 17.6 (5) N/A
CYP2C19*2 LoF 14.5% 13.8% (5) 6.4% (5)
CYP2C19*8 LoF 0.3% 0 (2) N/A

CYP2D6
amiodarone, amlodipine,

omeprazole
----

CYP2D6*4 LoF 18.5% 14.9% (5) 11.82 (5)
CYP2D6*41 IM 9.2% 15.2% (5) 18.2 (5)
CYP2D6*5 LoF 2.95% 0.9% (5) 0.9 (5)
CYP2D6*10 IM 1.6% 2.6% (5) 3.6 (5)
CYP2D6*9 IM 2.8% 1.7% (5) 0.9 (5)
CYP2D6*17 IM 0.4% 0.3% (5) 0 (5)

SLCO1B1
atorvastatin, digoxin,

pantoprazole, rosuvastatin,
simvastatin

----
SLCO1B1*15 LoF 15.0% N/A N/A
SLCO1B1*5 LoF 2.0% N/A N/A
rs4149056 LoF 16.1% 21.5% (2) N/A

(1) Prevalence data in Europe were obtained from the ensembl database (https://www.ensembl.org/, accessed on
14 February 2023) and from the PharmGKB PGx Gene-specific Information Tables (https://www.pharmgkb.org/
page/pgxGeneRef, accessed on 16 February 2023). (2) Data from the Tuscans in Italy cohort of the 1000 genomes
phase 3 (https://www.internationalgenome.org/, accessed on 14 February 2023) as reported in the ensembl
database (https://www.ensembl.org/, accessed on 14 February 2023). (3) Caruso et al., 2014 [34]. (4) Provenzani
et al., 2011 [40]. (5) Carano et al., 2017 [45]. Abbreviations: GoF: gain of function; IM: intermediate function; LoF:
loss of function; N/A: not available.

https://www.internationalgenome.org/
https://www.pharmgkb.org/
https://www.ensembl.org/
https://www.pharmgkb.org/page/pgxGeneRef
https://www.pharmgkb.org/page/pgxGeneRef
https://www.internationalgenome.org/
https://www.ensembl.org/
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Five SLCO1B1 inhibitors (Atorvastatin, Digoxin, Pantoprazole, Rosuvastatin, Simvas-
tatin) appear in the list of the drugs most frequently prescribed to the patients of our cohort.
The effect of these inhibitors is expected to be potentiated in the presence of SLCO1B1
variants with reduced or null activity. In the European population, the nonfunctioning
variants SLCO1B1*5 and SLCO1B1*15 account for about 17% (2.04 and 15.02, respectively)
of all SLCO1B1 alleles. The nonfunctioning SLCO1B1 variants *5, *15 and *17 contain all
the rs4149056 C SNP, which is, therefore, often used to identify the loss of function of
this transporter. In the Tuscans in Italy cohort (https://www.internationalgenome.org/,
accessed on 18 February 2023), the prevalence of rs4149056 C is 21.5%.

3.3. Currently Available CDSS with Pharmacogenomic Integration in DDIs Checkers

We searched the web and the current scientific literature to identify CDSS that include
an evaluation of pharmacogenomic-related factors and to assess whether any of them
take into account the role of these variations in determining the risk of DDIs. Table 4
reports the main currently available pharmacogenomic-based CDSS that we identified
in our search. Most of them have been developed by University Hospitals for internal
use upon integration with their local electronic health records (EHRs). These systems
have been usually designed as stand-alone tools to suggest dose adjustments or changes
of therapy in patients with specific gene variants (e.g., for thiopurines and thiopurine-
methyltransferases) and not as more complex systems that incorporate pharmacogenomic
information into larger databases of DDGIs. This is the case, for instance, of the CDSS
developed at the Clinical Pharmacogenomics Service of the Boston Children’s Hospi-
tal (https://www.childrenshospital.org/centers-and-services/programs/a-_-e/clinical-
pharmacogenomics-service-program#, accessed on 12 April 2023), of the Genomic Pre-
scribing System (GPS) of the Center for Personalized Therapeutics, University of Chicago
(https://cpt.uchicago.edu/gps/, accessed on 12 April 2023), of the CDSS developed at the
University of Washington, Seattle to provide PGx-related alerts in the fields of oncology
and cardiology [50] and FARMAPRICE, a prototype PGx-based CDSS, which is intended
for a larger scale implementation but is currently tested at the Italian Centro di Riferimento
Oncologico -Aviano Hospital mainly for oncological patients [51]. We found only a few
CDSS which also analyze DDIs and DDGIs. The YouScript Precision Prescribing Software
(https://youscript.com/what-we-do/clinical-decision-support-software/, accessed on
10 April 2023) is a fully developed, commercially available platform that incorporates
testing for DDIs, DGIs and DDGIs. It includes data on more than 4000 drugs, herbal
remedies, and OTC drugs. YouScript is fully compatible with EHRs, and a mobile device
version is also available. GenXys (https://www.genxys.com/, accessed on 10 April 2023)
is a software solution package for precision medicine, which includes two software tools:
the TreatGx software, a CDSS for Pharmacogenetic Testing Interpretation and Precision
Prescribing through the assessment of potential DGIs, DDIs and DDGIs, and the ReviewGx
(https://www.genxys.com/content/mtm-software/, accessed on 10 April 2023), a com-
puter engine for PGx-based automated medication review. GenXys can be easily integrated
with into EHRs, electronic medical records (EMRs), and Pharmacy Management Systems
(PMS). Importantly, none of the examined CDSS is specifically designed to be used in
geriatric medicine.

Table 4. CDSS including pharmacogenetic factor evaluation.

Name of the System or
of the Institution/Project Main Features DDGI Ref.

Clinical Pharmacogenomic
Service/Boston Children’s Hospital

A software solution developed for internal use at the Boston Children’s Hospital
Clinical; fully integrated with the EHR it generates alerts based on PGx-testing

results upon drug prescribing.
NO [52]

https://www.internationalgenome.org/
https://www.childrenshospital.org/centers-and-services/programs/a-_-e/clinical-pharmacogenomics-service-program#
https://www.childrenshospital.org/centers-and-services/programs/a-_-e/clinical-pharmacogenomics-service-program#
https://cpt.uchicago.edu/gps/
https://youscript.com/what-we-do/clinical-decision-support-software/
https://www.genxys.com/
https://www.genxys.com/content/mtm-software/
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Table 4. Cont.

Name of the System or
of the Institution/Project Main Features DDGI Ref.

University of Washington, Seattle

A prototype developed at the University of Washington, Seattle to incorporate
into the PowerChart®/Cerner Millennium® environment, a semi-active

PGx-based CDSS which upon prescription of selected drugs triggers either an
alert for ordering PGx testing, or, when PGx data are already available, or

displays a link to e-resources to provide information to support clinical decision.

NO [50,53–56]

RIGHT/Mayo Clinic
https://www.mayo.edu/research/

clinical-trials/cls-20316196
(accessed on 27 January 2023)

A CDSS developed at Mayo Clinic for internal use as a tool of the Right Drug,
Right Dose, Right Time project on preemptive PGx testing in precision medicine.
The system generates PGx alerts at the time of drug prescription by interacting
with a EHR in which data on preemptive genotyping of 85 pharmacogenes are

stored.

NO [57–59]

PREDICT/Vanderbilt University
Medical Center https://www.vumc.

org/predict-pdx/welcome
(accessed on 27 January 2023)

A locally developed EHR supporting the request for PGx testing either
preempting or upon prescription of specific drugs. The system stores genomic

data until drugs that could generate DGIs are prescribed; at that time
PGx-related alert, a list of potential DGIs and advice for therapy adjustments are

generated.

NO [60,61]

Personalized Medication
Program/University of Florida

An EHR modified for the preemptive request of CYP2C19 for patients
undergoing cardiovascular procedures at the University of Florida. After
storage of patient PGx data the system automatically generate a BPA (best

practice advice) whenever a CYP2C19 drug substrate is prescribed.

NO [62]

Personalized Medication
Program/Cleveland Clinic Health

System

A PGx software developed at the Cleveland Clinic as a complement of the My
Family prescription tool, which reports family health information in the HER; it
prompts clinicians to ordering PGx testing when prescribing selected drugs or, if
this information is already available, it displays PGx results together with BPAs

(best practice advices) for PGx-guided drug prescription.

NO [63]

PG4KDS/St. Jude Children
Research Hospital

https://www.stjude.org/
treatment/clinical-trials/pg4kds-

pharmaceutical-science.html
(accessed on 10 April 2023)

An automated system developed at the St. Jude Children Research Hospital as
part of the PG4KDS project to incorporate into the EHR the results of

preemptive testing of 225 pharmacogenes, their clinical interpretation and,
when available, direction on drug prescription and dose adjustments according

to CPIC guidelines.

NO [64–66]

CLIPMERGE PGx/The Mount Sinai
Hospital

A PGx knowledge platform independent from, but fully integrated with the
Mount Sinai’s Epic HER; it has been developed to generate alerts, and suggest
specific corrective actions upon drug prescription based on the drug prescribed

and the results of patient genetic testing.

NO [67]

FARMAPRICE/Centro Oncologico
di Aviano

A prototype PGx-based CDSS to identify potential DGIs and suggest therapy
adjustment developed at the Centro Oncologico di Aviano and currently tested

mainly on oncological patients.
NO [51]

GPS/University of Chicago
https://cpt.uchicago.edu/gps/

(accessed on 12 April 2023)

A web-based portal developed by the Center for Personalized Therapeutics of
the University of Chicago to support PGx-based drug prescription at the

Chicago University Medical Center.
NO [68–70]

Medication Safety Code
(MSC)/University of Vienna

https://safety-code.org/ (accessed
on 14 April 2023)

A research prototype service available upon request that generates a QR code
containing the results of patient genetic testing. This QR code is printed onto a

plastic card and after scanning provides web-based patient-specific dosing
recommendations.

NO [71,72]

GIMS
(Genetic Information Management

Suite/the U-PGx project)
https://upgx.eu/ (accessed on 14

April 2023)

A knowledge database developed in the context of the UPGx project to support
the implementation of PGx-based drug therapy adjustments in the CDSS

already available at the clinical sites participating to the project.
NO [73]

GeneSight
https://genesight.com/ (accessed

on 16 April 2023)

A commercial service that performs genetic testing for patients who have to be
given psychotropic drugs and also provides a short report with PGx-oriented

recommendations for drug prescription.
NO [74]

YouScript
https://youscript.com/ (accessed

on 10 April 2023)

A commercial CDSS software solution for the combined evaluation of DGIs and
DDGIs. It covers not only prescription drugs but also herbal remedies and OTC

medicine. Full integration with EHR.
YES [19,75]

GenXys
https:

//www.genxys.com/content/
(accessed on 10 April 2023)

A commercial software suite which also includes a tool for precision prescribing
based on PGx testing results (TreatGx) and a software for automated medicine

review (ReviewGx) which also includes PGx-based recommendations and
advice for drug deprescribing.

YES [76]

Data obtained from web search and Blagec et al. (2018) [72], Hinderer et al. (2017) [77], and Roosan et al. (2020) [78].

https://www.mayo.edu/research/clinical-trials/cls-20316196
https://www.mayo.edu/research/clinical-trials/cls-20316196
https://www.vumc.org/predict-pdx/welcome
https://www.vumc.org/predict-pdx/welcome
https://www.stjude.org/treatment/clinical-trials/pg4kds-pharmaceutical-science.html
https://www.stjude.org/treatment/clinical-trials/pg4kds-pharmaceutical-science.html
https://www.stjude.org/treatment/clinical-trials/pg4kds-pharmaceutical-science.html
https://cpt.uchicago.edu/gps/
https://safety-code.org/
https://upgx.eu/
https://genesight.com/
https://youscript.com/
https://www.genxys.com/content/
https://www.genxys.com/content/
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4. Discussion

In the present manuscript, we identified the most frequently prescribed perpetrator
drugs in a cohort of older adults from Sothern Italy and searched the literature to find
the gene variants enhancing their perpetrator effect, which are most prevalent in Europe,
Italy and, more specifically Southern Italy. In particular, we focused on perpetrator drugs
prescribed in at least 5% of our cohort of older adults which may be responsible for phar-
macokinetics DDIs involving CYP3A4/5, CYP2C9, CYP2C19 and CYP2D6 and SLC1B1
transporters. These frequently prescribed drugs were mainly represented by antiplatelet
drugs, statins and cardiovascular drugs including Angiotensin-converting-enzyme in-
hibitors (ACE-I), β-blockers and diuretics. Quite surprisingly, about 13% of the patients in
our cohort took warfarin, not only because some of them were bearing mechanical valve
prostheses but also because, in our retrospective series, most of them were admitted to the
hospital before Direct Oral Anti-Coagulant (DOAC) became the standard for oral anticoag-
ulation. Three PPIs, omeprazole, esomeprazole, and pantoprazole, were also included in
the list of drugs prescribed in at least 5% of our patients; although the largest fraction of
patients assumed PPIs together with low-dose aspirin, these drugs were also prescribed
in association with other antiplatelet drugs or without any antithrombotic treatment, as
also reported in other published studies [79–81]. Allopurinol ranked eighth in our list,
being prescribed in about 18% of the older adults of our cohort even though none of
them was affected with gout, and the use of allopurinol for secondary hyperuricemia is
not recommended by current guidelines [82,83]. Quite unexpectedly, no psychiatric drug
appeared among those prescribed the most. This result could be explained both by the
source of our data that were mostly collected in an internal medicine ward with a strong
cardiovascular specialization and by the fact that, in our database, several different drugs
are used for similar indications (e.g., insomnia or agitation), thus leading to a “fragmented”
prescription, with none of them reaching the 5% threshold.

Only a few of the drugs prescribed to more than 5% of our patients are potential DDI
perpetrators, suggesting that it should be easy to spot them during the prescription process
and to prevent or minimize their potential interactions. Among them, amlodipine is an
inhibitor of CYP3A4 and CYP2D6, atorvastatin and digoxin block the SLCO1B1 transporter,
and the PPIs esomeprazole, omeprazole and pantoprazole may inhibit CYP3A4/5, CYP2C19,
CYP2D6 and SLCO1B1. It is also worth noting that amiodarone not only inhibits CYP3A4/5,
CYP2C9, CYP219 and CYP2D6 but it also blocks the plasmamembrane pump ABC1B1 and,
therefore, it may be responsible for clinically relevant drug interactions [84]. The only CYP
inducers were warfarin, which induces the expression of CYP3A4/5 and CYP2C9, and
rifaximin, an inducer of CYP3A4/5, CYP2C9 and CYP2C19, whose involvement in DDIs is,
however, debatable and probably only minor considering its limited oral bioavailability.

In searching for genetic variations in CYPs and SLCO1B1 which could increase the
effect of perpetrator drugs and be involved in DDGIs, we reasoned that variants reducing
the activity or expression of these proteins should potentiate the effects of drug inhibitors
whereas gain of function variants should potentiate the effect of drug inducers. Our search
showed that several functionally relevant gene variants in cytochromes and SLCO1B1
occur in the European population with a non-negligible prevalence higher than 1% and
sometimes up to 5%. They include, CYP3A4*22 and CYP3A5*1, for CYP3A4, CYP2C9*2 and
CYP2C9*3 for CYP2C9, CYP2C19*17 and CYP2C19*2 for CYP2C19, CYP2D6*4, CYP2D6*5,
CYP2D6*9, CYP2D6*10, and CYP2D6*41 for CYP2D6, and SLCO1B1*5 and SLCO1B1*15
for SLCO1B1. Previous studies largely demonstrated the ability of these variants to affect
the pharmacokinetics of major drug classes including, for instance, clopidogrel, statins,
immunosuppressant drugs, NSAIDs, warfarin and antiepileptic drugs even when given
alone and independently from DDIs; accordingly, guideline recommendations and software
solutions for dose correction in people with these variants have been developed [85–91].

On the contrary, only few studies investigated their relevance in DDGIs. In the seminal
paper by Verbeurgt et al. (2014) [14], drug therapy was examined with the YouScript®

CDSS for DDIs, DGIs and DDGIs in 1143 patients aged 18–89 years. Potential DDGIs
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were detected in 12% of the study population and the drugs more frequently involved
in interactions were metoprolol, clopidogrel, simvastatin, aspirin and hydrocodone. The
YouScript® CDSS was also used in the study by Hocum et al. (2016), [22] in which drug
prescriptions from 22,000 patients (age range, 1–108 years with a mean of 60 years) were
examined for DDI, DGI and DDGI occurrence. Patients were stratified for age, higher or
lower than 65, and results showed that DGIs and DDGIs requiring changes in therapy
were 120% more frequent in older adults. One hundred older adults were examined by
Bain et al. (2019) [21] as part of the Program of All-inclusive Care for the Elderly (PACE)
population. On average, three DDGIs were identified per participant with the help of a
proprietary CDSS (Medication Risk Mitigation™ Matrix, CareKinesis, NJ, USA) and more
than one-third of them involved CYP2D6 variants. The perpetrator drugs responsible for
most of these DDGIs were Metoprolol, Pantoprazole, Oxycodone, Trazodone, Duloxetine,
Hydrocodone, Sertraline and Tamsulosin. This list of major interacting drugs differs from
what we found in our study for the presence of CNS drugs and tamsulosin. Among the
factors possibly responsible for these differences is the fact that our study population
was mainly represented by patients from internal medicine wards/consultation and that
the prescription of antidepressant drugs was highly fragmented with a large number of
different pharmaceutical ingredients used for this purpose, none of which reached the 5%
threshold set in our study.

The present study did not directly identify the victims of the potential DDGIs that
could be caused by the combos between perpetrator drugs and pharmacogene variants.
However, several theoretical predictions may be formulated and are summarized in Table 5.
More specifically, CYP3A4 metabolizes many drugs frequently prescribed in older adults,
such as amiodarone, amlodipine, buprenorphine, citalopram, diltiazem, manidipine, ra-
nolazine, verapamil and many statins and PPIs [17]. Clopidogrel, which is used either alone
or in combination with low-dose aspirin for the secondary prevention of cardiovascular
events, PPIs, and SSRI are among the substrates of CYP2C19 more frequently prescribed to
older adults, whereas CYP2D6 participates to the metabolism of β-blockers, antidepressants
belonging to the families of Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin
and Noradrenaline Reuptake Inhibitors (SNRIs), antipsychotics, such as clozapine and
quetiapine, the analgesics codeine and tramadol, and the anticancer drug tamoxifen [92].
Real world data are needed to substantiate these theoretical predictions; indeed, we are
currently performing at our institution a prospective study aiming to identify the victim
drugs that are most commonly associated in older adults with the gene–drug combos that
we identified.

The results of the present study suggest that the characterization of the genetic patterns
potentiating the effects of drug perpetrators could help identify geriatric patients at high
risk of dangerous drug interactions. With information about the pharmacogenotype of
their patients in mind, physicians could avoid dangerous drugs, choosing safer alternatives
or correcting their dosage accordingly to genotype and to the potentially coprescribed drug
perpetrators. It is important, however, to emphasize that for the routine implementation
of pharmacogenomics both in the specific context of geriatrics and, more in general, in
clinical medicine, solid evidence about its efficacy and cost-effectiveness is still awaited
and the development of a larger set of detailed guidelines will be needed as well [93]. An
additional potential advantage of pharmacogenotyping is that it could enable physicians to
correctly interpret the warnings provided by medication review reports and CDSS, hence,
avoiding alert fatigue. Considering that only a limited number of potentially relevant gene
variants occurs in the European population, the inclusion of pharmacogenetic testing in the
diagnostic workup that precedes drug prescription in older adults should be practically
feasible and economically sustainable. The result of this testing should be included among
the parameters evaluated by CDSS to identify DDGIs. This is a field that needs to be further
developed also with tools more specifically designed for older adults. In fact, our web
search showed that very few pharmacogenomic-oriented CDSS with DDGI checkers are
available. Some of them have been successfully used to detect potential DDGIs [14,22]



Geriatrics 2023, 8, 84 12 of 18

but none of them has been specifically designed for older adults. An important practical
problem in designing such a kind of CDSS is represented by the need to identify active
principles from drug brand names, which often differ from one country to the other. In this
perspective, the efforts of developing a univocal identification of medicines as foreseen
through the adoption of IDMP codes appear of major relevance also considering that
they could be modified to include key pharmacogenomic information among critical drug
attributes [94].

Table 5. Some notable examples of Drug Perpetrator–Gene Combinations and of their main potential
victims and clinical implications.

Drug Perpetrator–Gene
Combination Main Victims Potential Clinical

Consequences of DDGIs

CYP3A4/5 LoF or IM variants +
CYP3A4/5 inhibitors

amlodipine, diltiazem, verapamil Hypotension, bradyarrhytmias

atorvastatin, simvastatin Increased risk of myopathy

quetiapine

Increased in drug toxicity (e.g., hypotension, dizziness,
drowsiness, QT prolongation, hyperlipidemia,

hyperglycemia),
loss of antidepressant activity

tacrolimus
Increased in drug toxicity (e.g., opportunistic infections,

hyperglycemia, hyperlipidemia, hypertension,
nephrotoxicity, hepatotoxicity)

CYP2C9 LoF or IM variants
+

CYP2C9 inhibitors

Phenytoin
Ataxia, dizziness, drowsiness, nystagmus, hepatotoxicity,

megaloblastic anemia, leukopenia, hepatotoxicity,
osteoporosis

celecoxib, ibuprofen,
flurbiprofen, meloxicam

Diarrhea, dyspepsia, vomiting, heartburn, increased risk of
peptic ulcer and gastric bleeding,

Fluvastatin Higher myopathy risk

Warfarin Increased risk of bleeding

CYP2C19 LoF or IM variants
+

CYP2C19 inhibitors

Clopidogrel Loss of clopidogrel efficacy: increased risk of ischemic
cardiovascular disease

omeprazole, lansoprazole, pantoprazole,
dexlansoprazole

Increased risk of bone fractures, of gastrointestinal and
respiratory tract infections, of vitamin and electrolyte

deficiencies, especially hypomagnesemia

SSRI (citalopram, escitalopram, sertraline)
Headache, drowsiness, blurred vision, tremor, xerostomia,
nausea, vomiting, increased risk of falls, of SIADH, and of

serotonin syndrome

Voriconazole Central neurotoxicity (confusion, hallucinations),
hepatotoxicity

CYP2D6 LoF or IM variants
+

CYP2D6 inhibitors

SSRI
(paroxetine, fluvoxamine)

Headache, drowsiness, blurred vision, tremor, xerostomia,
nausea, vomiting, increased risk of falls, of SIADH, and of

serotonin syndrome

SNRI
Tachycardia, hypertension, mydriasis, insomnia,

xerostomia, nausea, vomiting, increased risk of falls, of
SIADH, and of serotonin syndrome

Codeine, tramadol Loss of codeine and tramadol efficacy: uncontrolled pain

β-blockers
(metoprolol) Severe bradycardia

Tamoxifen Loss of tamoxifen efficacy

SLCO1B1 LoF variants
+

SLCO1B1 inhibitors

atorvastatin, rosuvastatin, simvastatin higher myopathy risk

Enalaprilat, olmesartan,
valsartan cough

Abbreviations: IM: intermediate function LoF: loss of function.

The present study has several points of strength and limitations. The strength of the
present study is that we focused on a cohort of patients from a small geographic area.
The prevalence of variations in specific pharmacogenes may, indeed, significantly change
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from one region to another, as has been demonstrated, for instance, for several CYPs in
Italy subregions by Carano et al. (2014) [45]. This suggests that geographic and ethnicity
factors should be considered in the evaluation of patient risk for DDGIs. It has, however,
to be considered that because of massive, unprecedented migratory fluxes, the ethnicity
of the European population is rapidly changing. This implies that an intrinsic limitation
of our study is that the prevalence figures of specific pharmacogene variants that we
retrieved from genomic databases could not accurately reflect the actual prevalence of these
variants whose assessment would require constantly updated data. A second limitation of
our study is that a significant percentage of our study population included older adults
admitted to the Internal Medicine ward of the Federico II University hospital because of
cardiovascular disorders, and this has likely biased the estimated prevalence of prescribed
drugs toward cardiovascular, antiplatelet, anticoagulant and lipid-lowering drugs. An
additional limitation is that we evaluated single active principles individually and did not
consider drug classes (or subclasses) as a whole. While this was a forced choice since in
many cases different members of the same class have different pharmacokinetics, it also led
to a gross underestimation of the impact of drug classes, which have many members and
whose prescription is, therefore, highly fragmented. For instance, this might have been the
case of SSRI. Finally, a further limitation of the present study is that our predictions about
the gene variants potentially relevant for DDGIs were based only on the search on already
available data from databases or scientific papers and not on the genotyping of our patients.
Such an approach has, however, the advantage of providing prevalence estimates on a
larger scale than the small regional scale given by patients recruited at a single institution.
Finally, in our analysis we did not consider pharmacodynamic interactions, which are also
well-known to represent an important cause of drug toxicity.

5. Conclusions

In conclusion, the present study provides a list of the most prescribed drugs potentially
acting as perpetrator drugs in older adults and of the allelic variants, which could enhance
their effects in a significant percentage of European older adults. This information might be
instrumental for designing pharmacogenomics oriented CDSSs and, ultimately, to optimize
the medicine review process.
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