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Abstract: Diaphragm muscle dysfunction is increasingly recognized as a fundamental marker of
several age-related diseases and conditions including chronic obstructive pulmonary disease, heart
failure and critical illness with respiratory failure. In older individuals with physical frailty and
sarcopenia, the loss of muscle mass and function may also involve the diaphragm, contributing
to respiratory dysfunction. Ultrasound has recently emerged as a feasible and reliable strategy to
visualize diaphragm structure and function. In particular, it can help to predict the timing of extuba-
tion in patients undergoing mechanical ventilation in intensive care units (ICUs). Ultrasonographic
evaluation of diaphragmatic function is relatively cheap, safe and quick and can provide useful
information for real-time monitoring of respiratory function. In this review, we aim to present the
current state of scientific evidence on the usefulness of ultrasound in the assessment of diaphragm
dysfunction in different clinical settings, with a particular focus on older patients. We highlight the
importance of the qualitative information gathered by ultrasound to assess the integrity, excursion,
thickness and thickening of the diaphragm. The implementation of bedside diaphragm ultrasound
could be useful for improving the quality and appropriateness of care, especially in older subjects
with sarcopenia who experience acute respiratory failure, not only in the ICU setting.

Keywords: ultrasound imaging; hospitalized patients; respiratory failure; diaphragm dysfunction;
sarcopenia; heart failure

1. Introduction

The diaphragm is the musculotendinous anatomic barrier between the thoracic and
abdominal cavity. It plays a crucial role in respiratory homeostasis; injury to the diaphragm
impairs ventilation and oxygen exchanges [1]. In addition to the respiratory functions, it
contributes to non-respiratory activities, such as sternutation, vocalization, swallowing,
as well as emesis, urination and defecation by increasing intra-abdominal pressure and
prevention of gastroesophageal reflux by exerting external pressure at the esophageal
hiatus [2]. Conditions that interfere with the regular operations of the diaphragm, such
as muscle wasting, chronic obstructive pulmonary disorder, heart failure, neuromuscular
disease, critical illness, tumor, medications and metabolic abnormalities can result in
diaphragmatic dysfunction and, at the same time, diaphragmatic dysfunction can stratify
the severity of these conditions [3,4].

A number of static and dynamic imaging techniques are used in the evaluation of pa-
tients suspected of diaphragm dysfunction [2]. Static imaging techniques are used to assess
the position, shape and dimensions of the diaphragm and include chest radiography [5],
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computed tomography (CT) [6] and static magnetic resonance imaging (MRI) [7]. Dynamic
imaging techniques are used to assess diaphragm motion in one or more directions. This
group of imaging techniques includes fluoroscopy [8] and dynamic MRI [9].

In the last decade, ultrasound has also emerged as a reliable and reproducible tech-
nique to assess diaphragm structure and function both statically, thanks to brightness
B-mode techniques [10,11], and dynamically, using motion M-mode ultrasonography [12].
The purpose of this review is to evaluate the clinical usefulness of ultrasound evaluation of
the diaphragm muscle in different clinical settings, with a particular focus on older subjects,
who are more prone to diaphragm dysfunction due to the physiological process of aging of
the respiratory system, and due to the high prevalence of physical frailty and sarcopenia.

2. Methods

We performed a literature search on PubMed and Scopus as of February 20th, 2024,
using a search strategy combining one of the following terms, “diaphragm ultrasound”,
“diaphragm dysfunction”, “diaphragm excursion”, “diaphragm thickness”, with one of
the following terms related to the application of ultrasound technique: “geriatric patients”,
“older patients”, “sarcopenia”, “acute sarcopenia”, “respiratory sarcopenia”, “frail older
patients”, “intensive care unit”, “mechanical ventilation”, “non-invasive ventilation”, “res-
piratory failure”, “weaning failure”, “COPD”, “COVID-19”, “pneumonia”, “congestive
heart failure”, “paralysis”, “stroke”, “lateral amyotrophic sclerosis”, “acute care”, “outpa-
tient clinic”. The literature search and first selection of papers were performed by junior
authors, who also checked the results, after the removal of duplicates, and considered
them for inclusion in this review based on their relevance for the study aims. Supervising
senior authors (C.S., T.M. and A.T.) subsequently checked the selected papers, and chose
for inclusion in the review those with particular relevance for the clinical development
of diaphragm ultrasound and those with particular importance for the care of geriatric
patients. Only papers published in the English language were considered. The results are
presented in narrative form, since a high heterogeneity of clinical settings, characteristics
of studied populations, ultrasonographic methodology and definitions of diaphragmatic
dysfunction were identified across the literature.

3. Ultrasound Imaging of the Diaphragm
3.1. General Historical Background

Diaphragm ultrasonography was first used in the late 1960s to determine the posi-
tion, size and anatomical relationships of supra- and subphrenic mass lesions [13]. Two
decades later, Wait et al. developed a technique to measure diaphragm thickness based on
ultrasonography [14]. Since those seminal works, investigators have published a growing
number of studies on the use of ultrasonography to evaluate the diaphragm’s thickness,
strength and recruitment during voluntary contractions [15–17], but the technique was
practiced only by a niche group of experts.

The interest in diaphragm ultrasound was revived from the late 2000s onwards,
especially in an intensive care unit (ICU) setting. Diaphragmatic dysfunction, in fact, is
particularly frequent in critical illness, and its assessment may have fundamental prognostic
implications [17]. The measurement of diaphragm inspiratory excursion, thickness and
thickening fraction during mechanical ventilation can, in fact, be predictive of the optimal
timing of weaning from mechanical ventilation and its success [17].

Apart from the ICU setting, studies on diaphragm ultrasound in acute and chronic
cardiorespiratory illnesses are less numerous, though constantly increasing in number in
recent years. This technique is not part of daily clinical practice in medical wards yet.

However, the growing interest towards age-related sarcopenia, i.e., the loss of muscle
mass and function frequently seen in older patients and responsible for a wide range
of adverse outcomes including disability and mortality [18], has been accompanied by
particular attention applied to the role of musculoskeletal imaging in the geriatric setting.
Although peculiar in anatomical and physiological terms, the diaphragm is part of the
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musculoskeletal system and is affected by sarcopenia exactly like the muscles of other
body districts.

The coexistence of respiratory muscle weakness and reduced respiratory muscle
mass has recently been defined as a separate entity called “respiratory sarcopenia” [19].
Ultrasound has, thus, been recognized as a technique of potential clinical usefulness in the
assessment of this condition, as part of routine geriatric assessment [19]. Ultrasonographic
assessment of lower limb muscles, in fact, has proven effective as a screening method for
sarcopenia in older people [20], and recognized as such also by the European Working
Group on Sarcopenia in Older People (EWGSOP) [18]. By analogy, diaphragm ultrasound
may represent a promising method of assessment of respiratory sarcopenia not only in
geriatric patients but also in patients who experience acute muscle wasting due to an acute
illness, and this is perhaps the most innovative application of this technique.

3.2. Technique of Diaphragm Assessment by Ultrasound

According to a recent methodological systematic review and meta-analysis of the
published literature, diaphragm ultrasound is a valid, reliable and reproducible tool to
assess diaphragmatic dysfunction and monitor its evolution in ICU patients [21]. However,
significant discrepancies in the technique of assessment exist across studies, especially
in the earlier ones [21]. The current literature, anyway, allows us to recommend an as-
sessment protocol based on the best practices identified across the published studies [22].
The following description of how bedside diaphragm ultrasound can be performed is
based on methodological papers retrieved from the scientific literature and expert recom-
mendations [22–29]. All the pieces of equipment and software required to perform this
examination are generally available in typical ultrasound machines used at the patient’s
bedside in hospital settings. Standard ultra-portable wireless devices, that are increasingly
used for performing ultrasonography in the community setting, may instead lack, in some
cases, the required software.

Although ultrasound can theoretically allow us to visualize also the left hemidiaphrag-
matic cupola, basic assessment is limited to the right hemidiaphragm, exploiting the
acoustic window offered by the liver. The patient must rest in a semi-recumbent position,
on his/her back. The right eighth, ninth or tenth intercostal spaces must be identified by
palpation on the area between the anterior and the mid-axillary line. A 5–12 MHz linear
ultrasound probe must be put in these intercostal spaces, with an abundant amount of gel,
perpendicular to the chest wall, to identify the diaphragm zone of apposition (ZOA) with
B-mode imaging (Figure 1). The ZOA is the chest wall area where the lower rib cage reaches
the abdominal content. During inspiration, diaphragm contraction and lung inflation make
this area of the chest wall in contact with lower regions of the lung parenchyma [30]. Ultra-
sonographically, the ZOA is visualized with the so-called “curtain sign”, representing the
descending movement of lung parenchyma following inflation due to diaphragm contrac-
tion [30]. The diaphragm can be identified next to the ZOA as the structure lying between
two hyperechoic parallel lines, representing the pleural and peritoneal lines generated
at the acoustic interface between the corresponding organ parenchyma and the barrier
structure (Figure 2) [31].

The M-mode function must be then turned on. The dynamic changes of diaphragm
thickness on the reference plane will be then visualized during respiratory cycles (Figure 2).
Image freezing will then allow examiners to measure thickness during different timings of
the respiratory cycle. First, the patient should be asked to breathe quietly, and diaphragm
thickness should be measured on end-inspiration, corresponding to tidal volume (TV),
and end-expiration, corresponding to functional residual capacity (FRC). Then, the patient
should be asked to perform maximal voluntary inspirations to total lung capacity (TLC).
Diaphragm thickness should be measured on end-inspiration also in this case, to obtain the
maximal thickness corresponding to the maximal voluntary contraction of the muscle. The
diaphragm thickening fraction (Tdi) on tidal volume (diaphragm thickness on TV minus
diaphragm thickness on FRC) and on peak inspiration (diaphragm thickness on TLC minus
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diaphragm thickness on FRC) can then be calculated. Repeated measures are generally
required to assure reliability. Methodological investigations conducted in different settings,
including in the ICU and with healthy volunteers, suggest that this protocol is reproducible
and repeatable, and the obtained measures are significantly correlated with spirometric
parameters [23–26].
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Figure 1. Ultrasound scans required for measuring diaphragm thickness (a) and diaphragm excursion
(b). The linear ultrasound probe should be first put in the right eighth, ninth or tenth intercostal space,
with an oblique or transversal scan, in order to visualize the zone of apposition as the area where
the curtain sign appears under quiet inspiration. The diaphragm can be visualized as the structure
between two parallel hyperechoic lines just below the curtain sign (a). Then, the convex probe should
be put in the right subcostal region, directing the probe upwards in order to exploit the acoustic
window of the liver. The diaphragm appears as the cupola-like hyperechoic structure surrounding the
right liver lobe, exhibiting movements synchronous with respiration (b). Both diaphragm thickness
and excursion need to be measured with the M-mode function of the ultrasound turned on, asking
the patient to perform quiet breathing and maximal voluntary inspirations.

Diaphragm excursion can be also easily assessed by ultrasound [27]. In this case, a
3.5–5 MHz convex probe must be used, to allow deeper penetration of ultrasound waves.
The probe should be put in the right hypochondrium, between the midclavicular and
anterior axillary lines, immediately under the costal margin, and the ultrasound waves
must be pointed upwards, in order to visualize the right diaphragm hemicupola in the
lower part of the image, below the liver parenchyma (Figure 1). The M-mode function
must be then turned on. Diaphragm movements can be visualized, in synchrony with
breathing cycles, as a sinusoid movement of the hyperechoic line representing the interface
between the abdominal and chest cavities. Image freezing will allow examiners to measure
the amplitude of diaphragmatic excursions on quiet breathing (i.e., tidal volume) and on
maximal voluntary inspiration, asking for the collaboration of the patient in performing
such respiratory acts (Figure 3). Although these measures are generally easier to obtain than
those of thickness, repeated assessment is recommended to assure reliability. This technique
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is also reproducible and related to measures of diaphragmatic excursions obtained with
traditional radiographic techniques [27,28].
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Figure 2. Ultrasonographic appearance of diaphragm thickness in an older subject with heart failure
during quiet breathing. The diaphragm is visualized in the B-mode image as the track-like structure
lying between two hyperechoic parallel lines. Measures of thickness during inspiration and expiration
on quiet breathing are taken after activating the M-mode ultrasound function. The distance between
the two parallel hyperechoic lines appears to increase in synchrony with inspiration (measure of
thickness 7.9 mm) and to decrease during expiration (measure of thickness 4.1 mm).
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Figure 3. Ultrasonographic measurement of diaphragm excursion in an older subject with heart
failure on quiet breathing (A) and maximal voluntary inspiration (B). The diaphragm is visualized in
the B-mode subcostal scan as the hyperechoic cupola-like line surrounding the liver parenchyma.
The movements of this line on quiet breathing (A) and maximal voluntary inspiration (B) are then
assessed activating the M-mode ultrasound functionality, which allows us to visualize peaks in the
hyperechoic line correspondent to the diaphragm, synchronous with breaths. The height of these
peaks corresponds to diaphragm excursion.

Ultrasound evaluation of diaphragm motility can be obtained also indirectly, by
measuring the craniocaudal displacement of the left branch of the portal vein during
breathing [29]. However, this method is not common in clinical practice and research.

The assessment can also be completed with the measurement of the length of the
diaphragm ZOA during maximal inspiration, which is well correlated with pulmonary
volumes [31]. Although this parameter can provide clinically useful information, avoiding
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the need for performing spirometry, it is not part of the usual ultrasound evaluation
of the diaphragm.

Finally, some research groups have proposed to integrate ultrasound imaging of the
diaphragm with shear-wave elastosonography [32]. This is an ultrasound technique pro-
viding non-invasive assessment of tissue elasticity, based on the emission of high-energy
acoustic pulses from the ultrasound probe, inducing compression in body tissues that pro-
duce, as a reaction, shear waves detected and analyzed by the probe [33]. Elastosonography
has been mainly used for detecting and measuring fibrosis in solid parenchymatous organs,
such as the liver or the thyroid [33]. However, it has also been applied to the study of
the elastic properties of the lung parenchyma in chronic obstructive pulmonary disease
(COPD) [34].

Two recent studies suggest that diaphragm stiffness estimated by ultrasonography
is significantly correlated with pulmonary volumes and spirometric parameters, such as
the Tiffeneau index, in COPD, predicting the number of acute exacerbations over time
and stratifying disease severity [35,36]. In critically ill patients undergoing mechanical
ventilation, diaphragm stiffness estimated by shear-wave elastosonography was correlated
with transdiaphragmatic pressure, providing useful information for estimating respiratory
load and regulating ventilatory settings [37,38].

3.3. Reference Values of Diaphragm Ultrasound Parameters

The normative values of diaphragm excursion and thickness in adult patients were
first established by the pioneering studies by Boussuges et al. [27] and Ueki et al. [39],
respectively. Diaphragm excursion on quiet breathing was considered normal above
9 mm in females and 10 mm in males, while the reference values for deep breathing
were considered above 37 mm in females and 47 mm in males [27]. Ueki et al. assessed
diaphragm thickness only in male subjects, finding an average thickness of 1.7 ± 0.2 mm on
FRC (end-expiration) and 4.4 ± 1.4 mm on TLC (maximal voluntary inspiration) [39]. Since
then, other research groups have analyzed diaphragm ultrasound in healthy individuals,
in order to establish reference values for adults [24,25,40–43]. The findings are summarized
in Table 1. Recently, reference values have been established also in the pediatric population,
where diaphragm ultrasound is increasingly used for clinical indications similar to the ones
of adult and older patients [44].

The normative values of diaphragm excursion, both on quiet breathing and maximal
voluntary inspiration, were significantly lower in females than in males [25,40]. In a
large group of subjects from Egypt, Kabil et al. also found a significant trend towards
reduction of diaphragm excursion on quiet breathing across increasing age categories, but
the excursion on deep breathing was surprisingly increased over the age of 65 years old [40].
Diaphragm excursion was also affected by body mass index (BMI), with a trend towards
increases on quiet breathing and decreases on deep breathing in subjects with overweight
and obesity [40]. The available studies establishing normative values, however, suffer from
reduced sample sizes and heterogeneity of the ethnic provenience of participants.

Despite this evidence, however, there is no consensus agreement on the optimal
cut-offs for defining diaphragm dysfunction. A recent systematic review of the studies
investigating the predictive capacity of diaphragm ultrasound for weaning from mechanical
ventilation in the ICU setting highlighted a high level of heterogeneity of the cut-offs used
for defining diaphragm dysfunction across studies [45]. A diaphragm excursion of <1 cm
on quiet breathing, however, is generally considered pathologic [45].

Diaphragm thickness, instead, seems unaffected by age, sex or body habitus [41,42].
Only the study by Carrillo-Esper et al. found significant differences in thickness between
men and women [43]. The variation in thickness during tidal volume (Tdi) is considered
normal when above 20%, even though a significant portion of normal individuals show
negligible or no diaphragm thickness variation on quiet breathing [41,42].
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Table 1. Summary of the normative values of diaphragm ultrasound parameters, according to studies
conducted in healthy individuals.

Author, Year [Ref] Parameter Normative Values in
Males

Normative Values in
Females

Ethnicity of
Participants

Ueki, 1995 [39]
Thickness at TLC 4.5 ± 0.9 mm -

AsianThickness at FRC 1.7 ± 0.2 mm -
Thickness at RV 1.6 ± 0.2 mm -

Boussuges, 2009 [27] Excursion on QB 18 ± 4 mm 16 ± 4 mm
CaucasianExcursion on DB 75 ± 9 mm 64 ± 10 mm

Boon, 2013 [42]
Thickness at FRC 3.8 ± 1.5 mm 2.7 ± 1 mm

CaucasianThickening difference on
DB 18 ± 5 mm 18 ± 5 mm

Harper, 2013 [41]
Thickness at TV 3.7 ± 1.4 mm

CaucasianThickness at FRC 3.2 ± 1.4 mm
Thickening ratio on QB 1.20 ± 0.15

Carrillo-Esper, 2016 [43] Thickness at FRC 1.9 ± 0.4 mm 1.4 ± 0.3 mm Caucasian

Scarlata, 2019 [24]
Excursion on DB 65 ± 13 mm 55 ± 14 mm

CaucasianThickness at TLC 2.8 ± 0.5 mm 2.4 ± 0.5 mm
Thickness at FRC 1.9 ± 0.4 mm 1.7 ± 0.4 mm

Spiesshoefer, 2020 [25]

Excursion on QB 17 ± 6 mm 15 ± 5 mm

Caucasian
Excursion on DB 91 ± 19 mm 75 ± 16 mm
Thickness at TLC 6.3 ± 1.7 mm 4.7 ± 1.7 mm
Thickness at FRC 2.2 ± 0.8 mm 1.8 ± 0.5 mm

Thickening ratio on DB 3.03 ± 0.95 2.77 ± 0.83

Kabil, 2022 [40]

Excursion on QB 24 ± 5 mm 22 ± 5 mm

Arab
Excursion on DB 57 ± 13 mm 52 ± 12 mm

Excursion on QB (over 65) 23 ± 4 mm
Excursion on DB (over 65) 61 ± 22 mm

TLC = total lung capacity, corresponding to maximal voluntary inspiration; FRC = functional residual capacity,
corresponding to end-expiration; RV = residual volume, corresponding to forced expiration; QB = quiet breathing;
DB = deep breathing; TV = tidal volume, corresponding to inspiration during quiet breathing.

The studies, whose findings are summarized in Table 1, also suffer from a significant
degree of heterogeneity in ultrasound procedures, and, in many cases, from small sample
sizes. Although expert recommendations exist, to date there is no consensus on a universal
protocol of diaphragm ultrasound assessment. Therefore, in this context, the establish-
ment of normative values for diaphragm thickness, thickening fraction and excursion in
ultrasound is challenging. The gold standard technique for assessing diaphragm excursion
remains dynamic MRI, which is ideal for research protocols but not feasible in clinical
practice. Interestingly, the dynamic MRI cut-offs for normal diaphragm excursion on deep
breathing are lower (44 ± 4 mm) than those detected in ultrasound studies summarized in
Table 1 [46].

Recent studies have also clarified the normal values of diaphragm thickness, thicken-
ing ratio and excursion under particular circumstances, such as in children under 8 years
old [47], during sniff maneuvers [48] and in the seated position [49,50]. Sniff maneuvers,
i.e., forced expiration through occluded nostrils, can be useful in assessing diaphragmatic
dysfunction in subjects with neuromuscular illnesses [48]. Diaphragm ultrasound can
also be performed with the patient in the seated position in cases of phrenic nerve pare-
sis [49,50]. No significant sex differences were detected either in these studies, while
age-related variations were not investigated.

3.4. Advantages and Disadvantages of Diaphragm Ultrasound

Ultrasound assessment of diaphragm thickness and function is generally considered
safe, feasible and accurate [51,52]. Basic ultrasound equipment, with a linear 5–12 MHz
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and a convex 3.5–5 MHz probe, is sufficient to perform high-quality examinations [53].
No ionizing radiations are involved, and no invasive maneuvers are required [53]. The
complete assessment can be performed also in a busy clinical setting, requiring a maximum
of 15 min and usually less than 10 min in experienced hands [53]. The possibility of
assessing diaphragm structure and function directly at the patient’s bedside, without the
need for transportation to specialized services, and the possibility of integrating images and
measures with the clinical history of the patient represent the most important strengths of
the technique [50,51]. These advantages are particularly evident in older patients, who often
suffer from mobility limitations and cognitive impairment, with a lack of collaboration [54].

The reproducibility of diaphragm ultrasound measures of excursion and thickness is
generally considered good, with interobserver agreement correlation coefficients ranging
from 0.56 to 0.989 [51,53,55], even if a certain degree of dependency on operator skills is un-
avoidable. The accuracy of repeated measures performed by the same operator is, however,
very high, assuring the possibility of performing follow-up examinations [51,53,55].

Limitations of the technique include difficulties in visualizing the diaphragm, espe-
cially the left hemicupola, in obese subjects and in subjects with abdominal diseases increas-
ing intra-abdominal pressure and prompting diaphragm upward displacement [12,56]. A
certain degree of patient collaboration is also necessary, since thickness and excursion need
to be measured both on quiet and deep breathing [51,52]. Acute illnesses and symptoms
like cough may also limit the capacity of performing voluntary respiratory efforts even
in collaborative patients [46]. All these issues may be particularly emphasized in older
patients with frailty and multimorbidity, who are hospitalized with acute respiratory condi-
tions [57]. Adequate training of operators is also an issue. The measurement of diaphragm
excursion can be considered an easy task and has a steep learning curve, while evaluation
of thickness is far more difficult and requires longer training [58].

4. Diaphragm Ultrasound in Specific Clinical Situations or Diseases
4.1. Respiratory Failure Requiring Ventilatory Support

Diaphragm dysfunction is a highly prevalent condition in patients admitted to the
ICU and requiring ventilatory support for respiratory failure [59]. It is particularly pro-
nounced in the context of severe sepsis, representing a manifestation of organ failure [59].
Ultrasonographic assessment of this condition has been particularly studied in relation
to its capacity to predict the optimal timing and outcome of extubation, when performed
repeatedly during the ICU stay [17]. Several systematic reviews and meta-analyses suggest
that ultrasound assessment of the diaphragm thickening fraction during assisted venti-
latory cycles can be helpful in predicting the outcome of weaning, while the evaluation
of diaphragmatic excursion has little clinical significance in this context [17,60–63]. The
reduction in diaphragm thickness, assessed ultrasonographically during an ICU stay in
ventilated patients, is also significantly associated with a prolonged duration of ventila-
tion and ICU stay, in comparison with patients whose thickness remains unchanged or
improves [64]. The integration of clinical and laboratory data with diaphragm, lung and
heart point-of-care ultrasonography may also improve the accuracy of the prediction, and,
thus, be of great clinical importance [61]. Recently, diaphragm ultrasound has emerged as a
reliable tool for monitoring respiratory function even in the pediatric population, predicting
the outcome of ventilation weaning in children with critical illness [65].

However, pitfalls and limitations should be carefully considered. Diaphragmatic dys-
function, assessed by ultrasound, has a poor correlation with ICU-acquired weakness [66],
a frequent complication of an ICU stay combining myopathy and neuropathy [67]. The
cut-offs used for defining diaphragm dysfunction also show substantial variations across
different studies [17]. In addition, one of the largest studies to date, conducted on 191 pa-
tients undergoing mechanical ventilation, showed no significant differences in diaphragm
thickening ratio and excursion between extubation successes and failures [68]. Ventilator
weaning failure, in fact, has a complex pathophysiology that frequently involves concomi-
tant conditions that affect the heart, the lungs and other respiratory muscles as well as the
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diaphragm. Therefore, factors not directly affecting the diaphragm thickening ratio may be
involved [69,70].

Few diaphragm ultrasound studies conducted in an ICU setting have been specifically
focused on older individuals. In 2015, Sarwal and colleagues [71] reported the case of
an 88-year-old woman with COPD, hospitalized for ischemic stroke resulting in acute
hemiplegia, complicated by the onset of acute respiratory failure necessitating intubation
and mechanical ventilation. Despite the intensive support and adequate sedation, persistent
patient–ventilator dyssynchrony arose. Diaphragm ultrasound demonstrated passive
paradoxical movements, an indirect sign of phrenic nerve paralysis resulting from ischemic
disease. This case is paradigmatic of the kind of clinical information provided by point-of-
care diaphragm ultrasound in older multimorbid patients in an ICU setting, going beyond
the simple prediction of weaning failure.

Overall, three studies evaluated the capacity of diaphragm ultrasound to predict weaning
from mechanical ventilation, either invasive or non-invasive, in older individuals [72–74]. The
results are summarized in Table 2, and speak in favor of the clinical application of this
point-of-care method for deciding the timing of weaning and predicting the outcomes. In
one study [74], diaphragm ultrasound was non-inferior to the rapid shallow breathing test,
which represents the most commonly used index to predict weaning [75,76].

Table 2. Studies that have investigated diaphragm ultrasound in older patients with critical illness
undergoing ventilatory support, either invasive or non-invasive.

Author, Year [Ref] Population Exposure Variable
(Ultrasound) Endpoint Assessed Main Findings

Huang, 2017 [72]

40 ICU patients aged ≥80
under IV for ≥48 h and
meeting the criteria for

spontaneous breathing trial

Diaphragm excursion
(DD defined
as <10.7 mm)

Maintenance of
spontaneous breathing

for >48 h

Diaphragm
excursion ≥ 10.7 mm

was predictive of
weaning success
(AUROC 0.839)

Kocyigit, 2021 [73]

60 patients with COPD and
respiratory failure needing
NIV support in ED (mean

age 70)

Diaphragm thickness
(DD defined as

thickening fraction
<20% during

spontaneous breathing)

NIV failure (worsened
blood gas analysis,

altered mental status,
worsening dyspnea,

need for IV)

DD predicted NIV
failure (sensitivity

84.6%, specificity 91.5%,
PPV 73.3%, NPV

95.6%)

Er, 2023 [74]

32 ICU patients aged ≥65
under IV for ≥48 h and
meeting the criteria for

spontaneous breathing trial

Diaphragm thickness
and excursion

Weaning failure
(reintubation or

mortality within 48 h
after extubation)

Diaphragm excursion
was the only parameter

associated with
weaning failure

ICU = intensive care unit, IV = invasive ventilation, DD = diaphragm dysfunction, AUROC = area under the
receiver operating characteristic curve, COPD = chronic obstructive pulmonary disease, NIV = non-invasive
ventilation, ED = emergency department, PPV = positive predictive value, NPV = negative predictive value.

Muscle wasting is a common complication of hospitalization in geriatric patients, and
is often associated with a decline in muscle function in the so-called “acute sarcopenia”
syndrome [77,78]. Muscle wasting is also commonplace in adult patients admitted to
the ICU [79,80], and shows a correlation with diaphragmatic dysfunction assessed by
ultrasound [81]. Thus, physical frailty and sarcopenia should represent highly prevalent
conditions in older patients undergoing intensive care support [82], although studies on this
topic are scarce. The results highlighted in Table 2 suggest that the sensitivity of ultrasound
in the diagnosis of diaphragm dysfunction is higher in older patients undergoing ventilatory
support, either invasive or non-invasive, than in adult subjects. Interestingly, the diaphragm
ultrasound parameter more associated with ventilation weaning outcome, in older patients,
was excursion under spontaneous breathing, and not thickness or thickening ratio, as found
in adult subjects. These results could be influenced by the acute sarcopenia phenomenon,
involving not only skeletal muscles but also the diaphragm structure and function, which
may be more pronounced in older subjects with frailty [19].
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4.2. COPD

Diaphragm dysfunction has been frequently demonstrated in patients with COPD. In
this condition, the diaphragm suffers from a mechanical disadvantage, that is caused by
hyperinflation of the lungs, resulting in shortening of muscular fibers and reduced con-
tractile effectiveness [83]. This phenotype, however, is not common to all subjects. In fact,
obesity, representing one of the main comorbidities of COPD significantly impairing lung
function, seems to be protective against diaphragm dysfunction [84,85]. In an ultrasound
study conducted on 48 stable COPD patients, the size of the diaphragm ring of insertion
was positively correlated with BMI, resulting in normal diaphragm thickness and excursion
in obese subjects [84].

Diaphragm ultrasound has been studied mainly in stable COPD patients, where its
parameters show significant correlations with respiratory function tests and may be helpful
in stratifying the severity of the disease [86–88]. In particular, a recent systematic review
has highlighted that high-quality evidence from the literature supports the presence of
a positive correlation between diaphragm excursion, assessed by ultrasound, and forced
expiratory volume in the first second (FEV1) or forced vital capacity (FVC), assessed by
spirometry [88]. Reduced diaphragm mobility, both on quiet breathing and on maximal
voluntary inspiration, is, in fact, an expression of hyperinflation, and shows correlations
with pulmonary volumes and the Tiffeneau index (FEV1/FVC) [89–92]. In one study
conducted on 37 stable COPD patients, diaphragm mobility on quiet breathing was also
negatively correlated with PaCO2 in arterial blood gas analysis [92].

The correlation between diaphragm excursion and pulmonary volumes is so evident
that some authors have proposed to use diaphragm ultrasound as a proxy for spirometry
or as an auxiliary method to interpret spirometry findings in stable COPD patients [93–95].
In particular, the ratio between the forced expiratory diaphragmatic excursion in the first
second and maximum expiratory diaphragmatic excursion is predictive of an obstructive
spirometric pattern [93]. Furthermore, diaphragmatic excursion of <67 mm at forced
breathing is predictive of obstruction on spirometric tests, while normal values at this
ultrasound test do not help to assess obstructive pattern and severity [94]. A phenotype
characterized by low maximal inspiratory pressure on spirometry and reduced diaphragm
excursion on forced breathing is particularly frequent in patients over 70 years old, is
associated with impaired physical performance and could help identify subjects with
respiratory sarcopenia [95].

From a clinical perspective, reduced diaphragm excursion assessed by ultrasound is
also able to predict the performance on a 6 min walking test [94], exercise capacity and
tolerance [96,97] and, most importantly, the number of yearly acute exacerbations [98].

The clinical value of assessing diaphragm thickness and thickening fraction in COPD
patients is, instead, more controversial. A study conducted on 140 stable COPD patients
showed that diaphragm excursion is negatively correlated with thickness and positively
correlated with the thickening ratio [99]. In COPD patients, an increase in diaphragm
thickening ratio during quiet breathing could be the expression of increased workload with
reduced force reserve, and, thus, should be considered a marker of disease severity [100].
The thickening ratio, however, is reduced on maximal inspiration, when compared with
healthy subjects [101], and the evaluation of this parameter could be helpful for stratifying
the severity of COPD [102]. In fact, one study conducted on 28 older males with COPD
has suggested that the thickening ratio of the diaphragm on maximal inspiration could be
correlated with nocturnal peripheral oxygen saturation [103]. In spite of this, two different
studies found no differences in diaphragm thickness and thickening ratio when comparing
patients with COPD and healthy subjects [104,105].

Only a few studies evaluated diaphragmatic ultrasound during acute exacerbations of
COPD (Table 3), and they were mainly conducted on severe forms with acute respiratory
failure [106–109]. Subjects with acute exacerbations had lower diaphragm thickening
fractions and excursions on maximal voluntary inspiration than patients with COPD but no
sign of acute exacerbation [106]. According to a small study conducted in a non-intensive
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setting, diaphragm thickening fractions improved during the clinical course of the acute
exacerbation, but not excursions [107]. In subjects necessitating non-invasive ventilation
(NIV) support, a favorable clinical course was predicted by better measures of diaphragm
excursion, not by thickness or its variations [108]. However, in another study conducted
on 41 patients with acute exacerbation of COPD and respiratory acidosis, a diaphragm
thickening fraction on quiet spontaneous breathing of <20% was associated with NIV
failure, the need for mechanical ventilation and a longer ICU stay [109].

Table 3. Studies that investigated diaphragm ultrasound in patients with acute exacerbations of COPD.

Author, Year [Ref] Population Mean Age Ultrasound Variable of
Interest Main Findings

An, 2022 [106]
55 patients with COPD,

either stable or
exacerbated

73 ± 8
Thickening fraction

and excursion on
maximum inspiration

Reduced thickening fraction
(AUROC 0.745) and reduced

excursion (AUROC 0.721) were
able to classify exacerbation

status

Lim, 2019 [107]
10 patients with

non-critical acute
exacerbation of COPD

80 ± 8
Thickening fraction of

the right diaphragm on
spontaneous breathing

Thickening fraction improved
from the acute phase to

improvement of symptoms; no
variations in excursion

Cammarota, 2019 [108]
21 patients with acute

hypercapnic respiratory
failure presenting to ED

70–86 (range)
Diaphragm thickness
and excursion under

NIV

The amplitude of diaphragmatic
excursion predicted NIV success

(arterial blood pH > 7.35), but
not thickness or thickening

fraction

Antenora, 2017 [109]
41 patients with acute
exacerbation of COPD

and acidosis
76

Change in diaphragm
thickness under

spontaneous breathing
(∆Tdi)

∆Tdi correlated with NIV failure,
ICU stay and mortality

COPD = chronic obstructive pulmonary disease, AUROC = area under the receiver operating characteristics curve,
ED = emergency department, NIV = non-invasive ventilation, ICU = intensive care unit.

Overall, the data from the literature suggest that the significance of performing di-
aphragm ultrasound in patients with COPD may be different under stable conditions and
during acute exacerbations. In chronic patients, assessment of diaphragm excursion may be
very useful for stratifying the severity of the disease, avoiding repeated spirometric exami-
nations and completing the physiological assessment, also in order to modulate treatment.
In this context, diaphragm ultrasound could also represent a useful tool for monitoring the
response to inspiratory muscle training [97,110,111]. During acute exacerbations, on the
other side, the evaluation of diaphragm thickness and thickening fraction could be useful
to guide treatment, verify response to NIV and, eventually, decide to escalate oxygen and
ventilatory support. In both cases, the presence of physical frailty and sarcopenia, which
is a very common comorbidity in COPD [112], may contribute to worsening diaphragm
function, reducing the response to treatment and negatively affecting prognosis [19].

4.3. COVID-19, Other Pneumonia and Related Conditions

The pandemic of coronavirus disease19 (COVID-19) has substantially contributed to
the spread of the use of point-of-care thoracic ultrasonography, also in clinical contexts
where it was previously neglected. In fact, the capacity of lung ultrasound to detect lung
parenchymal abnormalities associated with interstitial pneumonia and their extent [113]
guaranteed the application of ultrasound also in busy clinical settings, such as emergency
departments [114], or in low-resource settings, including nursing homes [115].

Diaphragm ultrasound was also particularly studied in patients hospitalized with se-
vere forms of COVID-19 requiring semi-intensive or intensive care support. In this context,
SARS-CoV-2 infection is associated with up- and downregulation of several genes in the
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diaphragm muscular fibers, resulting in the activation of pathological pathways leading
to fibrosis [116]. Thus, diaphragm dysfunction was hypothesized as one of the central
pathophysiological mechanisms leading to severe respiratory failure in COVID-19 [117].
Interestingly, one study found that diaphragm muscle echogenicity was increased in pa-
tients with severe forms of COVID-19 requiring mechanical ventilation [118]. In patients
admitted to the ICU, diaphragm ultrasound was initially studied as a possible marker of
inspiratory effort during mechanical ventilation, either invasive or non-invasive. However,
central venous pressure and esophageal pressure outperformed diaphragm ultrasound for
assessing inspiratory effort in that particular setting [119,120].

Beyond their pathophysiological significance, diaphragm thickness and excursion,
measured with ultrasound on hospital admission, were both recognized as able to predict
need for ventilatory support, ICU admission and mortality in patients with moderate to
severe COVID-19 [121–124]. In particular, a poor prognosis was associated with reduced
excursion during spontaneous breathing and reduced thickness, but increased thickening
fraction, probably as the result of increased muscular workload [125].

In the ICU, diaphragmatic dysfunction, defined as a reduced thickening fraction as-
sessed by ultrasound, was predictive of the need for invasive ventilation in patients with
severe respiratory failure related to COVID-19 pneumonia undergoing a NIV trial [126,127].
In mechanically ventilated ICU patients, reduced diaphragm thickness was also associ-
ated with prolonged ventilation time [128] and mortality [129]. Furthermore, a decrease
in diaphragm thickness after five days of ICU stay was recognized as an expression of
acute muscle wasting and was significantly associated with mortality [130]. However, the
diaphragm thickening fraction was not predictive of the weaning outcome in patients under-
going invasive mechanical ventilation [131]. Instead, ultrasound assessment of diaphragm
excursion on spontaneous breathing immediately after weaning of mechanically ventilated
COVID-19 patients was able to predict the success of extubation and survival [132,133].

Overall, all these studies support the usefulness of diaphragm ultrasound as an
aid to clinical decisions and prognosis formulation in patients with severe COVID-19.
Unfortunately, none of the studies conducted in this setting were specifically focused on
older patients.

Other investigators have evaluated diaphragm ultrasound after hospital discharge for
COVID-19. Diaphragm function is generally not impaired in survivors of moderate forms
of COVID-19 pneumonia not requiring ventilatory support [134]. Instead, it is generally im-
paired in survivors of severe COVID-19 with prolonged ICU stays, but ultrasound was not
as effective as the measurement of maximal inspiratory pressure and transdiaphragmatic
pressure in detecting dysfunction [135,136]. However, some studies suggested that a subset
of patients with long COVID or post-COVID syndrome symptoms (approximately 10%)
may actually have diaphragm dysfunction with reduced maximal voluntary excursions
detectable on ultrasound [137–140]. Improvements in diaphragm excursion were also seen
in long-term follow-up of post-COVID syndrome patients, either spontaneously or after
targeted rehabilitation protocols [141,142].

The long COVID syndrome is a complex condition affecting >20% of subjects who
survived moderate and severe forms of COVID-19, especially in the earlier pandemic
waves [143]. This syndrome leads to particularly relevant consequences in older individuals,
increasing the burden of frailty and sarcopenia [144,145], and ultimately causing disability
and loss of independence [146,147]. Since diaphragm sarcopenia has a potential negative
impact on older patients [19], geriatric post-COVID clinics could represent a promising
field of application for diaphragm ultrasound, although this has not yet been explored by
the existing scientific literature.

Despite the frequency in the geriatric population, only two studies have evaluated the
role of assessing diaphragm function by ultrasound in patients with bacterial pneumonia
to date [148,149]. In the earliest one, diaphragm excursion was negatively correlated with
the Acute Physiology and Chronic Health Evaluation (APACHE)-II score and predicted the
need for mechanical ventilation and mortality in critical patients [148]. In the second one,
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conducted on a group of 50 patients presenting to the ED with bacterial pneumonia (mean
age 78 years old), a reduced diaphragm thickening fraction was an independent predictor of
subsequent respiratory failure [149]. Similar results have also been obtained in a pediatric
ED population [150]. Therefore, the predictive role of diaphragm ultrasound assessment in
community-acquired pneumonia may need further investigation in the future.

4.4. Congestive Heart Failure and Related Conditions

Chronic heart failure is associated with diaphragm myopathy characterized by deple-
tion of muscular fibers, fibrosis and infiltration of muscular tissue by adipocytes [151,152].
These changes can ultimately lead to diaphragm dysfunction, with reduced excursion and
contractility, which can be easily detected by ultrasound [153]. In fact, in chronic heart
failure, the right diaphragm even undergoes a change in its position, descending next
to the right renal pelvis, and this alteration also has functional consequences in terms of
contractile capacity and efficiency [154].

These chronic alterations have important clinical implications in acute heart failure.
The main findings of the ultrasound studies dealing with this topic are summarized in
Table 4. In a recent investigation conducted on 72 patients with acutely decompensated
heart failure and in 100 subjects with normal cardiac function, Scarlata et al. showed that di-
aphragmatic excursion was reduced in cases of heart failure, with a trend towards reduction
with increasing New York Heart Association (NYHA) class, and that diaphragm thickness
at any pulmonary volume was increased in comparison with controls [155]. Diaphragm
thickness may in fact be influenced by adipose infiltration and fibrosis of the muscular
tissue [151,152]. However, subjects with acute decompensated heart failure and reduction
in diaphragm thickness generally exhibit poorer physical performance and exercise intol-
erance, representing a subgroup of patients with an unfavorable prognosis [156] affected
by respiratory sarcopenia [19]. Diaphragm sarcopenia, defined as reduced end-expiration
thickness, and dysfunction, defined as reduced thickening ratio on spontaneous breath-
ing, show a significant correlation with physical performance (6 min walking test) and
fatigue (VO2 max), independent of left ventricular ejection fraction [157–160]. Therefore,
diaphragm ultrasound can provide important prognostic information in patients with acute
heart failure, guiding treatment and rehabilitation options.

Table 4. Studies that investigated diaphragm ultrasound in patients with acute decompensated
heart failure.

Author,
Year [Ref] Population Age Ultrasound Variable of

Interest Main Findings

Yamada,
2016 [157]

40 patients hospitalized
with HFpEF 76 ± 12

Diaphragm muscle
thickening at end-inspiration

(cut-off < 3.9 mm)

Diaphragm dysfunction was
associated with inspiratory muscle

weakness and shorter 6MWD

Miyagi,
2018 [156]

77 patients hospitalized
with heart failure 72 ± 15

Diaphragm muscle
thickening at end-inspiration

(cut-off < 4 mm)

Diaphragm dysfunction was
associated with older age, lower vital

capacity, reduced grip strength,
reduced inspiratory muscle strength

and shorter 6MWD

Kinugasa,
2018 [158]

62 patients hospitalized
with heart failure 72 ± 15

Diaphragm muscle
thickening at end-inspiration

(cut-off < 4 mm)

Diaphragm dysfunction was more
prevalent in patients with dynapenia

(reduced muscle strength) or
sarcopenia (reduced muscle mass and

strength)

Spiesshoefer,
2021 [159]

22 patients with HFrEF
(A), 8 patients with

HFpEF (B), 19 healthy
controls (C)

61 ± 13 (A)
68 ± 9 (B)

57 ± 10 (C)

Diaphragm thickening ratio
on maximal inspiration

Diaphragmatic dysfunction was
equally present in subjects with

HFrEF and in subjects with HFpEF
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Table 4. Cont.

Author,
Year [Ref] Population Age Ultrasound Variable of

Interest Main Findings

Andriopoulou,
2022 [160]

25 HFpEF patients,
25 matched controls 64 ± 12 Diaphragm excursion during

deep breathing

Diaphragm excursion exhibited a
strong positive correlation with VO2

in both cases and controls

Scarlata,
2024 [155]

72 acutely
decompensated heart

failure patients (P), 100
healthy volunteers (C)

78 (76–81) (P)
41 (38-44) (C)

Diaphragm thickness on
tidal volume and TLC

Diaphragm motion during
deep breathing

Diaphragm excursion on TLC is
reduced in acute heart failure, with an
inverse correlation with NYHA class.
Diaphragm thickness is increased in

comparison with controls

HFpEF = heart failure with preserved ejection fraction; 6MWD = 6-minute walking distance; HFrEF = heart failure
with reduced ejection fraction; VO2 = peak oxygen uptake; TLC = total lung capacity.

Interestingly, in a study conducted on 98 patients undergoing maintenance hemodial-
ysis for advanced chronic kidney disease, Zheng and colleagues found that diaphragm
dysfunction, defined as a reduced thickening ratio on maximal voluntary inspiration, was
significantly predictive of major cardiovascular events or all-cause mortality on a 36-month
follow-up [161]. Therefore, diaphragm ultrasonography may provide useful clinical and
prognostic information in all conditions associated with impaired fluid balance that imply
loss of muscle mass and function.

4.5. Other Conditions

Diaphragm ultrasound is increasingly used for monitoring respiratory function in pa-
tients with amyotrophic lateral sclerosis (ALS) [162]. In this condition, diaphragm thickness
is reduced on all pulmonary volumes in comparison with healthy controls [163], and corre-
lates with disease staging [164] and with the number of functional motor units assessed
by the phrenic nerve motor amplitude [165]. A reduced diaphragm thickening fraction on
maximal inspiration seems the best parameter able to identify diaphragm dysfunction in
ALS [166,167], while diaphragm excursion is generally of no clinical importance. Recently,
the ratio of the thickening fraction between tidal volume and maximal lung capacity has
been proposed as a clinical marker guiding the initiation of non-invasive ventilation in ALS
patients [168].

Diaphragm paralysis, usually involving only one hemicupola, is an uncommon com-
plication of traumatic lesions or proliferative illnesses of the central nervous system or
the phrenic nerve. Stroke can also be a cause of diaphragm paralysis, especially when
involving the brain stem. Ultrasound assessment of diaphragm motility and thickness
can be useful to diagnose this condition and monitor its evolution [169–171]. Respiratory
symptom severity is generally related to the degree of dysfunction [169–171].

Recent studies have also shown that diaphragm function may also be impaired in
stroke patients that do not have brain stem involvement [172]. In a study conducted
on 48 older hemiplegic patients after stroke, diaphragm motion and thickening fraction
were extremely reduced in comparison with 20 matched healthy controls, and correlated
with the Berg balance scale score [173]. In another recent study, diaphragm ultrasound
parameters correlated with indices of respiratory function and with the National Institutes
of Health Stroke Scale (NIHSS) [174]. Interestingly, acute stroke patients with dysphagia
had worse diaphragm excursions on spontaneous breathing and on voluntary coughing
than acute stroke patients without dysphagia [175], so diaphragm ultrasound could provide
clinically relevant information for estimating the risk of aspiration [176]. This potential
application is of great interest to acute geriatric patients, but larger studies are needed
before recommendations on the use of ultrasound in this setting can be made.
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5. Diaphragm Ultrasound in Geriatric Patients with Frailty and Sarcopenia
5.1. Structural and Functional Changes of the Diaphragm in Sarcopenia

Aging is associated with ultrastructural changes in the diaphragm muscle even when
sarcopenia is not present. Abnormal size and shape of muscular fibers, increased colla-
gen deposition and reduced fiber cross-sectional area have, in fact, been observed with
increasing age in autoptic case series [177].

In studies conducted in mice, the presence of sarcopenia was associated with an
accelerated decline in age-related reduction in diaphragm fiber cross-sectional area, which
was also accompanied by a reduction in maximal specific force, potentially impairing
non-ventilatory behaviors essential for adequate airway clearance [178]. These changes did
not affect, however, fatigue resistance, and were independent of sex [179]. Fiber clustering
was also different in mouse models of sarcopenia, with type I fibers showing a decrease
in reciprocal distance, and type II fibers showing an increase in comparison with non-
sarcopenic mice [180]. Diaphragm fiber atrophy related to sarcopenia seems to involve
almost exclusively type IIx or IIb fibers, which are generally responsible for the generation
of higher forces, and not type IIa or type I fibers, resulting in a reduction of diaphragm
excursion on maximal voluntary inspiration and in reduced efficiency of cough and other
non-ventilatory movements [181]. Conversely, diaphragm muscle fatigability seems not to
be significantly affected by sarcopenia, at least in animal models [182]. Furthermore, the
diaphragm functional performance was not significantly influenced by extreme ages in
older sarcopenic mice, suggesting that sarcopenia could involve respiratory muscles with a
threshold effect [183].

5.2. Diaphragm Ultrasound Studies in Sarcopenic Patients

In the current state-of-the-art of the scientific literature, very few studies have com-
bined diaphragm ultrasound with a formal assessment of sarcopenia in older subjects.
In the ICU setting, diaphragm dysfunction, assessed by ultrasound, is very frequently
associated with reduced lower limb strength and muscle size, also assessed by ultrasound,
two proxies of acute sarcopenia. Overall, these studies indicate that the association be-
tween diaphragm dysfunction and lower limb muscle wasting is predictive of adverse
outcomes [130,184–188]. However, these studies were mainly focused on children or
adult patients.

Two studies combined ultrasound evaluation of diaphragm and quadriceps muscles
in patients with chronic respiratory illness [189,190]. In 40 patients with COPD, quadriceps
thickness and its variations during voluntary contractions were significantly correlated
with the diaphragm thickening fraction [189]. Moreover, in 16 patients with systemic
sclerosis, quadriceps thickness was correlated with diaphragm excursion [190].

Only three studies evaluated the associations of diaphragm ultrasound parameters
with sarcopenia in geriatric patients [191–193]. Their results are summarized in Table 5,
and suggest that diaphragm excursion and thickness are reduced in patients with sarcope-
nia. However, the studies suffer from several limitations, including the relatively low age
range of participants, the reduced sample size, the lack of comprehensive ultrasonographic
evaluation of both excursion and thickness in the same subjects, and the methodology of sar-
copenia assessment, with just one study adopting EWGSOP criteria [192]. Furthermore, the
association between diaphragm ultrasound parameters with BMI was not assessed [194].

Interestingly, a recent study conducted on 142 adult subjects, either healthy or candi-
dates for lung resection for cancer, suggested that the diaphragm thickening fraction during
spontaneous breathing, assessed by ultrasound, was associated with balance [195]. Balance
impairment has been recognized as an important part of the physical frailty and sarcopenia
syndrome in older patients [196,197]. Furthermore, reduced diaphragm thickness has
been recognized as a marker of muscle wasting related to malnutrition in children [198].
Therefore, future studies assessing the relationship between diaphragm dysfunction and
sarcopenia in older individuals should also account for balance and nutritional status.
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Table 5. Studies comparing diaphragm ultrasound parameters in geriatric patients with and without
sarcopenia.

Author,
Year [Ref] Population

Diaphragm
Ultrasound

Parameter of Interest

Method of Sarcopenia
Assessment Main Findings

Zeng, 2021
[191]

64 older (age ≥ 60)
patients undergoing

outpatient evaluation
for lung cancer or

nodules

Diaphragm excursion
ASM/height based on

BIA with internally
validated cut-offs

Diaphragm excursion on forced deep
breathing ≤ 5.27 cm was associated
with increased odds of sarcopenia

(AUROC 0.778)

Deniz,
2021 [192]

30 sarcopenic and
30 non-sarcopenic
subjects (age ≥ 65)

Diaphragm thickness EWGSOP criteria

Diaphragm thickness was reduced at
all pulmonary volumes in subjects

with sarcopenia and was an
independent predictor of the

sarcopenic status

Lee, 2023
[193]

45 healthy volunteers
aged ≥65 Diaphragm thickness ASM/BMI based on

BIA measurement

ASM/BMI showed significant positive
correlation with diaphragm thickness
(r = 0.319). ASM/BMI and diaphragm
thickness were predictors of maximal

expiratory pressure

ASM = appendicular skeletal muscle mass; BIA = bioimpedance analysis; AUROC = area under the receiver
operating characteristic curve; EWGSOP = European Working Group on Sarcopenia in Older People; BMI = body
mass index.

6. Possible Use of Diaphragm Ultrasound in Different Clinical Settings

The analysis of the available scientific literature, summarized in the previous sections,
suggests that the clinical significance of diaphragm ultrasound may change according
to the characteristics of the patient and the setting in which the exam is performed. The
measurement of ultrasound-derived parameters (i.e., excursion on both quiet and deep
breathing, thickness on end-expiration, quiet and deep inspiration, thickening fraction)
may provide different information according to the clinical picture of the patient. In any
case, this information has generally no diagnostic value, but may be helpful to establish
prognosis and predict clinical outcomes.

In critical patients admitted to the ICU undergoing mechanical ventilation, ultrasound
assessment of the diaphragm thickening ratio can be useful as an aid to predict the timing
and the success of ventilation weaning (Table 6). The same prognostic information may be
provided, in older patients, by assessment of diaphragm excursion, but there is insufficient
evidence to recommend such an assessment. The capacity of diaphragm ultrasound pa-
rameters to predict other clinical outcomes in ICU patients has been studied only in critical
COVID-19 patients, where reduced thickness and excursion, and increased thickening
ratio resulting from an increased respiratory workload, may be associated with hospital
mortality (Table 6).

Diaphragm ultrasound may be also useful in acute patients outside the ICU, hospital-
ized in general medical and geriatrics wards (Table 6). In acute congestive heart failure,
reduced excursion and thickness identify a patient phenotype with a more severe clinical
course, and generally a higher NYHA class in stable conditions. In patients with acute
exacerbations of COPD, a reduced excursion and thickening ratio on TLC are probably asso-
ciated with failure of an NIV trial and prolonged hospital stay. Similarly, reduced excursion
and thickening fraction are also associated with poor outcomes in patients with respiratory
failure caused by bacterial pneumonia, although studies in this setting are scarce. In patients
with COVID-19 pneumonia admitted to general wards, the presence of diaphragm dys-
function is also associated with the need for escalating ventilatory support, and mortality,
allowing an early identification of subjects with a high risk of adverse outcomes.
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Table 6. Overview of the main findings of the literature review, in relation to the setting, clinical
scenarios and significance of application of diaphragm ultrasound.

Setting Condition Ultrasound Parameters of
Interest Clinical Significance

Intensive care unit Respiratory failure

Reduced thickening ratio (in
adults)

Reduced excursion (in older
subjects)

Prediction of IV weaning failure

Acute-care wards

Exacerbation of COPD Reduced excursion and
thickening ratio on TLC

Prediction of NIV trial failure and
duration of hospital stay

Congestive heart failure Reduced excursion and thickness Associated with increasing NYHA class
and exercise intolerance

Bacterial pneumonia Reduced excursion and
thickening fraction

Prediction of progression to respiratory
failure, need for IV and mortality

Viral pneumonia
(COVID-19)

Reduced excursion and thickness,
increased thickening ratio

Prediction of need for NIV, IV, ICU
admission and mortality

Long-term
care/outpatient

clinics

COPD Excursion on different pulmonary
volumes

Association with spirometric
parameters

Long COVID syndrome Reduced maximal excursion Associated with exhaustion and
subjective dyspnea (diagnostic aid)

Amyotrophic lateral
sclerosis Reduced thickening ratio Marker of disease progression to

end-stage respiratory failure

Previous stroke Reduced excursion Associated with diaphragm paresis,
dysphagia and reduced balance

Physical frailty and
sarcopenia

Reduced thickness and thickening
ratio, reduced excursion

Marker of respiratory involvement of
the sarcopenia syndrome, marker of

severity

IV = invasive ventilation; COPD = chronic obstructive pulmonary disease; TLC = total lung capacity;
NIV = non-invasive ventilation; NYHA = New York Heart Association; ICU = intensive care unit.

Diaphragm ultrasound can also be applied to stable patients in an outpatient setting,
as a proxy of lung function or as a means to predict the onset of complications associated
with specific illnesses (Table 6). Reduced maximal diaphragm excursion can be useful
to elucidate the pathophysiology of chronic dyspnea in long COVID syndrome, and can
help identify the risk of diaphragm paralysis and onset of dysphagia in stroke survivors.
Evaluation of diaphragm thickening ratio by ultrasound is also an established means of
monitoring the progression of amyotrophic lateral sclerosis. Finally, diaphragm ultrasound
could be included in the panel of sarcopenia assessment in older individuals, and, thus,
find an application in the context of preventive geriatrics.

7. Conclusions and Perspectives

Diaphragm ultrasound has multiple potential fields of application in geriatric medicine,
ranging from the ICU and semi-intensive respiratory units to outpatient clinics dealing with
the prevention and management of physical frailty and sarcopenia. In older patients with
acute respiratory illness, the assessment of diaphragm excursion and thickening fraction
can be useful to predict the need for mechanical ventilation, the outcome of weaning while
on invasive or non-invasive ventilation, and, ultimately, the prognosis. The earliest waves
of the COVID-19 pandemic could have represented the ideal situation for the application of
diaphragm ultrasound, especially in older adults who were often treated in a low-resource
setting, but the lack of competence in this particular ultrasound technique often prevented
its widespread utilization.

In acute medical and geriatric wards, diaphragm ultrasound could help clinicians to
identify patients with respiratory sarcopenia, a condition that can potentially worsen the
clinical course of acute respiratory illness. In particular, a reduced diaphragm thickening
fraction seems to be associated with a poorer prognosis in patients hospitalized with acute
exacerbation of COPD. In patients with acute congestive heart failure, the presence of re-
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duced diaphragm excursion correlates with an increasing NYHA class, while a reduction in
diaphragm thickening fraction is usually associated with a more severe clinical phenotype.
Diaphragm ultrasound could potentially provide important clinical information also in the
assessment of the risk of aspiration in acute and subacute stroke.

Finally, in older outpatients undergoing comprehensive geriatric assessment, di-
aphragm ultrasound could represent a diagnostic tool to complete the assessment of physi-
cal frailty and sarcopenia. However, further studies should assess how diaphragm ultra-
sound parameters correlate with physical performance, muscle mass and muscle strength.

Diaphragm ultrasound should also be integrated with thoracic ultrasonography, in the
assessment of both acute and chronic patients, as recently suggested by a position paper
of the Research Group on Thoracic Ultrasound in the Older Patient by the Italian Society
of Geriatrics and Gerontology [199]. Multi-site ultrasound assessment is generally able to
improve the clinical management of geriatric patients, and this is particularly true for the
frailer ones, who generally do not take advantage of traditional diagnostic examinations.
Research in this particular field of geriatric medicine should, thus, be implemented.
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144. Piotrowicz, K.; Gaşowski, J.; Michel, J.P.; Veronese, N. Post-COVID-19 acute sarcopenia: Physiopathology and management.
Aging Clin. Exp. Res. 2021, 33, 2887–2898. [CrossRef] [PubMed]

145. Montes-Ibarra, M.; Oliveira, C.L.P.; Orsso, C.E.; Landi, F.; Marzetti, E.; Prado, C.M. The Impact of Long COVID-19 on Muscle
Health. Clin. Geriatr. Med. 2022, 38, 545–557. [CrossRef] [PubMed]

https://doi.org/10.1016/j.resmer.2022.100960
https://www.ncbi.nlm.nih.gov/pubmed/36563547
https://doi.org/10.1016/j.resp.2020.103585
https://www.ncbi.nlm.nih.gov/pubmed/33197604
https://doi.org/10.15537/smj.2022.43.10.20220469
https://www.ncbi.nlm.nih.gov/pubmed/36261210
https://doi.org/10.4187/respcare.10063
https://www.ncbi.nlm.nih.gov/pubmed/35882471
https://doi.org/10.1016/j.nut.2021.111449
https://www.ncbi.nlm.nih.gov/pubmed/34583135
https://doi.org/10.1016/j.nut.2023.112250
https://www.ncbi.nlm.nih.gov/pubmed/37918311
https://doi.org/10.1186/s12931-022-02138-y
https://doi.org/10.1016/j.accpm.2021.100875
https://doi.org/10.26502/acbr.50170290
https://www.ncbi.nlm.nih.gov/pubmed/36643338
https://doi.org/10.1371/journal.pone.0281098
https://www.ncbi.nlm.nih.gov/pubmed/36763588
https://doi.org/10.1183/23120541.00329-2022
https://doi.org/10.1164/rccm.202206-1243OC
https://www.ncbi.nlm.nih.gov/pubmed/36596223
https://doi.org/10.3389/fmed.2022.949281
https://www.ncbi.nlm.nih.gov/pubmed/36091672
https://doi.org/10.1007/s00408-023-00614-w
https://www.ncbi.nlm.nih.gov/pubmed/37036522
https://doi.org/10.1002/acn3.51416
https://www.ncbi.nlm.nih.gov/pubmed/34247452
https://doi.org/10.1186/s12931-022-02100-y
https://www.ncbi.nlm.nih.gov/pubmed/35841032
https://doi.org/10.1183/23120541.00623-2022
https://doi.org/10.4081/monaldi.2022.2206
https://doi.org/10.1080/07853890.2023.2265298
https://www.ncbi.nlm.nih.gov/pubmed/37839411
https://doi.org/10.1007/s40520-021-01942-8
https://www.ncbi.nlm.nih.gov/pubmed/34328636
https://doi.org/10.1016/j.cger.2022.03.004
https://www.ncbi.nlm.nih.gov/pubmed/35868672


Geriatrics 2024, 9, 70 25 of 27

146. Ferrara, M.C.; Zarcone, C.; Tassistro, E.; Rebora, P.; Rossi, E.; Luppi, F.; Foti, G.; Squillace, N.; Lettino, M.; Strepparava, M.G.;
et al. Frailty and long-COVID: Is COVID-19 responsible for a transition in frailty status among older adults who survived
hospitalization for COVID-19? Aging Clin. Exp. Res. 2023, 35, 455–461. [CrossRef] [PubMed]

147. Covino, M.; Russo, A.; Salini, S.; De Matteis, G.; Simeoni, B.; Pirone, F.; Massaro, C.; Recupero, C.; Landi, F.; Gasbarrini, A.; et al.
Long-Term Effects of Hospitalization for COVID-19 on Frailty and Quality of Life in Older Adults ≥ 80 Years. J. Clin. Med. 2022,
11, 5787. [CrossRef] [PubMed]

148. Kaya, A.G.; Verdi, E.B.; Süslü, S.N.; Öz, M.; Erol, S.; Çiftçi, F.; Çiledağ, A.; Kaya, A. Can diaphragm excursion predict prognosis in
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