Improved VO2max Estimation by Combining a Multiple Regression Model and Linear Extrapolation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Anthropometric Measurements
2.2.2. Questionnaire
2.2.3. Step Test
2.2.4. mVO2max
2.2.5. eVO2max
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, J.A.; Rauramaa, R.; Salonen, J.T.; Kurl, S. The predictive value of cardiorespiratory fitness combined with coronary risk evaluation and the risk of cardiovascular and all-cause death. J. Intern. Med. 2007, 262, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Rohatgi, A.; Ayers, C.R.; Willis, B.L.; Haskell, W.L.; Khera, A.; Drazner, M.H.; de Lemos, J.A.; Berry, J.D. Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality. Circulation 2011, 123, 1377–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the american heart association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Domone, S.; Mann, S.; Sandercock, G.; Wade, M.; Beedie, C. A method by which to assess the scalability of field-based fitness tests of cardiorespiratory fitness among schoolchildren. Sports Med. 2016, 46, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- Malek, M.H.; Housh, T.J.; Berger, D.E.; Coburn, J.W.; Beck, T.W. A new nonexercise-based VO2max equation for aerobically trained females. Med. Sci. Sports Exerc. 2004, 36, 1804–1810. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; So, R.; Takahashi, M. Workers’ physical activity data contribute to estimating maximal oxygen consumption: A questionnaire study to concurrently assess workers’ sedentary behavior and cardiorespiratory fitness. BMC Public Health 2020, 20, 22. [Google Scholar] [CrossRef]
- Nes, B.M.; Janszky, I.; Vatten, L.J.; Nilsen, T.I.; Aspenes, S.T.; Wisløff, U. Estimating VO2peak from a nonexercise prediction model: The HUNT Study, Norway. Med. Sci. Sports Exerc. 2011, 43, 2024–2030. [Google Scholar] [CrossRef]
- Wier, L.T.; Jackson, A.S.; Ayers, G.W.; Arenare, B. Nonexercise models for estimating VO2max with waist girth, percent fat, or BMI. Med. Sci. Sports Exerc. 2006, 38, 555–561. [Google Scholar] [CrossRef]
- DE Lannoy, L.; Ross, R. Nonexercise equations for determining change in cardiorespiratory fitness. Med. Sci. Sports Exerc. 2020, 52, 1525–1531. [Google Scholar] [CrossRef]
- Peterman, J.E.; Whaley, M.H.; Harber, M.P.; Fleenor, B.S.; Imboden, M.T.; Myers, J.; Arena, R.; Kaminsky, L.A. Comparison of non-exercise cardiorespiratory fitness prediction equations in apparently healthy adults. Eur. J. Prev. Cardiol. 2021, 28, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Billinger, S.A.; VAN Swearingen, E.; Mcclain, M.; Lentz, A.A.; Good, M.B. Recumbent stepper submaximal exercise test to predict peak oxygen uptake. Med. Sci Sports Exerc. 2012, 44, 1539–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teren, A.; Zachariae, S.; Beutner, F.; Ubrich, R.; Sandri, M.; Engel, C.; Loffler, M.; Gielen, S. Incremental value of Veterans Specific Activity Questionnaire and the YMCA-step test for the assessment of cardiorespiratory fitness in population-based studies. Eur. J. Prev. Cardiol. 2016, 23, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; So, R.; Takahashi, M. Estimating cardiorespiratory fitness from heart rates both during and after stepping exercise: A validated simple and safe procedure for step tests at worksites. Eur. J. Appl. Physiol. 2020, 120, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Webb, C.; Vehrs, P.R.; George, J.D.; Hager, R. Estimating VO2max using a personalized step test. Meas. Phys. Educ. Exerc. Sci. 2014, 18, 184–197. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; So, R.; Murai, F. Estimation methods to detect changes in cardiorespiratory fitness due to exercise training and subsequent detraining. Eur. J. Appl. Physiol. 2022, 1–13. [Google Scholar] [CrossRef]
- Buckley, J.P.; Sim, J.; Eston, R.G.; Hession, R.; Fox, R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br. J. Sports Med. 2004, 38, 197–205. [Google Scholar] [CrossRef]
- Bennett, H.; Parfitt, G.; Davison, K.; Eston, R. Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Med. 2016, 46, 737–750. [Google Scholar] [CrossRef]
- Cuenca-Garcia, M.; Marin-Jimenez, N.; Perez-Bey, A.; Sanchez-Oliva, D.; Camiletti-Moiron, D.; Alvarez-Gallardo, I.C.; Ortega, F.B.; Castro-Pinero, J. Reliability of Field-Based Fitness Tests in Adults: A Systematic Review. Sports Med. 2022, 52, 1961–1979. [Google Scholar] [CrossRef]
- Nakamura, E.; Miyao, K.; Ozeki, T. Assessment of biological age by principal component analysis. Mech. Ageing Dev. 1988, 46, 1–18. [Google Scholar] [CrossRef]
- Arena, R.; Myers, J.; Kaminsky, L.A. Revisiting age-predicted maximal heart rate: Can it be used as a valid measure of effort? Am. Heart J. 2016, 173, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarzynski, M.A.; Rankinen, T.; Earnest, C.P.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C. Measured maximal heart rates compared to commonly used age-based prediction equations in the Heritage Family Study. Am. J. Hum. Biol. 2013, 25, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howley, E.T.; Bassett, D.R.J.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. Clinical exercise testing and interpretation. In ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2017; pp. 111–142. [Google Scholar]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Peterman, J.E.; Harber, M.P.; Imboden, M.T.; Whaley, M.H.; Fleenor, B.S.; Myers, J.; Arena, R.; Finch, W.H.; Kaminsky, L.A. Accuracy of nonexercise prediction equations for assessing longitudinal changes to cardiorespiratory fitness in apparently healthy adults: BALL ST cohort. J. Am. Heart Assoc. 2020, 9, e015117. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, P.; Mukherjee, P.S.; Bandyopadhyay, A. Validity of Queen’s College step test for use with young Indian men. Br. J. Sports Med. 2004, 38, 289–291. [Google Scholar] [CrossRef]
- Astrand, P.O.; Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. Appl. Physiol. 1954, 7, 218–221. [Google Scholar] [CrossRef]
- Gallagher, J.R.; Brouha, L.V. A simple method of evaluating fitness in boys: The step test. Yale. J. Biol. Med. 1943, 15, 769–779. [Google Scholar]
- Lee, O.; Lee, S.; Kang, M.; Mun, J.; Chung, J. Prediction of maximal oxygen consumption using the Young Men’s Christian Association-step test in Korean adults. Eur. J. Appl. Physiol. 2019, 119, 1245–1252. [Google Scholar] [CrossRef]
- Santo, A.S.; Golding, L.A. Predicting maximum oxygen uptake from a modified 3-min step test. Res. Q. Exerc. Sport 2003, 74, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G. Skinfolds and body density and their relation to body fatness: A review. Hum. Biol. 1981, 53, 181–225. [Google Scholar] [PubMed]
- Sinning, W.E.; Dolny, D.G.; Little, K.D.; Cunningham, L.N.; Racaniello, A.; Siconolfi, S.F.; Sholes, J.L. Validity of “generalized” equations for body composition analysis in male athletes. Med. Sci. Sports Exerc. 1985, 17, 124–130. [Google Scholar] [CrossRef] [PubMed]
Females (N = 60) | Males (N = 68) | Total (N = 128) | |||||||
---|---|---|---|---|---|---|---|---|---|
Age, years | 48.3 | ± | 7.0 | 48.3 | ± | 6.9 | 48.3 | ± | 6.9 |
Height, cm | 158.6 | ± | 5.8 | 170.7 | ± | 5.1 | 165.0 | ± | 8.1 |
Body weight, kg | 54.4 | ± | 9.1 | 71.7 | ± | 9.7 | 63.6 | ± | 12.8 |
BMI, kg·m−2 | 21.6 | ± | 3.2 | 24.6 | ± | 2.9 | 23.2 | ± | 3.4 |
VO2max, mL·kg−1·min−1 | 34.4 | ± | 5.0 | 41.2 | ± | 6.3 | 38.0 | ± | 6.6 |
VO2max, L·min−1 | 1.86 | ± | 0.30 | 2.93 | ± | 0.44 | 2.42 | ± | 0.66 |
Questionnaire’s PA score, points | 8.6 | ± | 7.5 | 11.9 | ± | 7.9 | 10.3 | ± | 7.9 |
HR index, step test score, bpm | 46.9 | ± | 15.0 | 35.4 | ± | 9.3 | 40.8 | ± | 13.6 |
Measured VO2max (mL·kg−1·min−1) | Estimated VO2max (mL·kg−1·min−1) | CE (p-Value) | SEE | TE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
38.0 | ± | 6.6 | MRM | 37.6 | ± | 5.4 | 0.5 | ± | 4.2 | (0.21) | 4.15 | 4.17 |
LEM | 38.9 | ± | 7.4 | −0.9 | ± | 6.0 | (0.10) | 5.08 | 6.02 | |||
Combined | 37.9 | ± | 6.4 | 0.1 | ± | 4.1 | (0.76) | 3.99 | 4.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, T.; So, R.; Murai, F. Improved VO2max Estimation by Combining a Multiple Regression Model and Linear Extrapolation Method. J. Cardiovasc. Dev. Dis. 2023, 10, 9. https://doi.org/10.3390/jcdd10010009
Matsuo T, So R, Murai F. Improved VO2max Estimation by Combining a Multiple Regression Model and Linear Extrapolation Method. Journal of Cardiovascular Development and Disease. 2023; 10(1):9. https://doi.org/10.3390/jcdd10010009
Chicago/Turabian StyleMatsuo, Tomoaki, Rina So, and Fumiko Murai. 2023. "Improved VO2max Estimation by Combining a Multiple Regression Model and Linear Extrapolation Method" Journal of Cardiovascular Development and Disease 10, no. 1: 9. https://doi.org/10.3390/jcdd10010009
APA StyleMatsuo, T., So, R., & Murai, F. (2023). Improved VO2max Estimation by Combining a Multiple Regression Model and Linear Extrapolation Method. Journal of Cardiovascular Development and Disease, 10(1), 9. https://doi.org/10.3390/jcdd10010009