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Abstract: Background and Motivation: Coronary artery disease (CAD) has the highest mortality
rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging
solution that can image coronary arteries, but the diagnosis software via wall segmentation and
quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along
with its bias. Methods: Using a PRISMA model, 145 best UNet-based and non-UNet-based methods
for wall segmentation were selected and analyzed for their characteristics and scientific and clinical
validation. This study computed the coronary wall thickness by estimating the inner and outer
borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias
in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias
methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a
Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework.
Findings and Conclusions: UNet provides a powerful paradigm for the segmentation of coronary
walls in IVUS scans due to its ability to extract automated features at different scales in encoders,
reconstruct the segmented image using decoders, and embed the variants in skip connections. Most
of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None
of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is
necessary to move from a paper-to-practice approach.

Keywords: coronary artery disease; intravascular ultrasound; deep learning; UNet; wall segmentation;
AI bias
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1. Introduction

One of the world’s greatest contributors to mortality and morbidity is cardiovascular
disease (CVD), which accounts for about 18 million deaths per year [1]. The primary
two causes of CVD-related fatalities are coronary artery disease (CAD) and acute coronary
syndrome (ACS) [2]. Generally speaking, CAD entails the shrinking of arteries as a result
of the buildup of atherosclerotic plaque within their walls, resulting in coronary artery
obstruction [3]. Aiming to enhance the diagnosis and treatment of heart disorders as
well as lowering the fatality rate from CVD, significant advancements have been made in
cardiovascular research and therapy in recent decades [4]. It is now possible to carry out a
comprehensive qualitative and quantitative assessment of heart morphological structures
as well as operations with the use of contemporary medical imaging techniques, includ-
ing intravascular ultrasound (IVUS) [5–9], computed tomography (CT) [10], magnetic
resonance imaging (MRI) [11–13], and ultrasound (US) [14,15], which assist identification,
disease monitoring, surgical planning, and evaluation. An example of the coronary artery
is shown in Figure 1a, while the IVUS acquisition device for the coronary vascular system
is shown in Figure 1b.
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Figure 1. (a) Coronary arteries of the heart showing LAD (left anterior descending coronary artery)
and RCA (right coronary artery) (Courtesy of AtheroPoint™, Roseville, CA, USA). (b) IVUS acquisi-
tion device (Courtesy of Dr. Alberto Boi and Luca Saba, University of Cagliari, Cagliari, Italy).

The diagnosis of CAD is frequently made by coronary CT angiography (CCTA),
which enables non-invasive measurement of the arterial lumen’s diameter and plaque
localization [16–20]. However, radiologists presently manually assess the location and
severity of the plaque(s) leading to the stenosis in CCTA pictures, which, in addition
to being costly and time-consuming, is also susceptible to mistake and inaccuracy [21].
In order to develop computerized and accurate coronary artery stenosis as well as a
plaque identification method, it is crucial that coronary arteries in CCTA pictures must
be automatically segmented. The following factors, however, make automatic coronary
artery segmentation for CCTA pictures particularly complicated. To begin with, coronary
circulation has a complicated pattern, with several arteries of different thicknesses [22].
For perfect segmentation, some of the branches are even too thin. Additionally, individual
differences in the structure of the coronary artery tree may be relevant. Second, other
vascular organs that seem like the coronary arteries adjacent to the heart can be mistaken
for them because of their similar appearance [23]. Third, the coronary arteries only make
up a tiny fraction of the entire heart’s cells, and the methods for segmentation must
consider this imbalance [24]. Additionally, several variables, including heart rate, the data
reconstruction method, the quantity of the injected contrast agent, and radiation exposure,
affect the quality of the pictures obtained during CT angiography [25]. Coronary artery
segmentation, therefore, is more challenging due to low-resolution image quality.

Figure 1b shows a popular imaging method for the assessment and control of CVD,
intravascular ultrasound (IVUS) [5,26]. In conjunction with positional data, IVUS images
are segmented into interior and exterior regions as lumen and media regions, respectively.



J. Cardiovasc. Dev. Dis. 2023, 10, 485 3 of 54

Arteries’ representation in 3D heavily depends on arterial vessel walls for various purposes
such as surgical planning. The arteries’ segmentation is helpful for plaque identification
in clinical practices. IVUS-guided percutaneous coronary intervention (PCI) is a more
advanced and superior technique in comparison to standard angiography-guided PCI,
minimizing death risks in patients [6]. IVUS segmentation for lumen and vessel cross-
sectional based on 3D vessel reconstruction is precise and quick for accurate and real-time
segmentation during PCI [27]. However, IVUS segmentation requires recent, accurate, and
faster techniques, typically at 30 Hz and 100 Hz frame rates. To record an IVUS sequence, a
catheter-borne ultrasound transducer is inserted into the coronary artery and then returned
via arteries at a speed of roughly 1 mm/s [5]. Raw radio frequency (RF) information from
the probe is typically not used for analysis. However, amplified and filtered gray-scale
B-mode Euclidean ultrasound pictures showing the coronary cross-section provide a typical
output format for downstream evaluation (see Figure 2) The arrows in Figure 2 depict
a typical example of five (1–5) frames with calcified plaques. Six patients’ IVUS videos’
worth of frames were collected, and they were placed in a 6 × 5 matrix. The symbol I (1,1)-I
(6,5) is used to represent this.

IVUS segmentation is one of the most challenging tasks in medical images. It consists
of lumen–intima (LI) and media–adventitia (MA) border detection. This challenge is due
to the presence of the artifacts, namely shadows, bifurcation, and echogenic plaques, and
the fact that public expert-labeled ground-truth databases only contain a small number of
captures [28]. Even though artificial intelligence (AI) has shown promising signs toward
higher accuracy and learning strategy, it has been observed that these AI-based black boxes
lack clinical validation and the ability to perform well in clinical settings, and they are
unable to explain the outcomes [29–35]. The clinical validation requires that the outcome
from the AI system must have a behavior leading to correct coronary artery disease risk
assessment. For example, should an AI system perform accurately on a test patient who
has a high risk, then the syntax score of this patient should be high [36]. Other ways to
show the clinical validation include by estimating the relationships or correlations between
two quantities such as computed tomography (CT) coronary artery score vs. AI outcome of
the risk [37]. Such consistent behavior needs to be exhibited by AI systems. Other than the
clinical validation, there are attributes such as imbalanced classes in the datasets that can
introduce AI bias [38]. Such causes can lead to bias in AI modules or system designs.

The ability of UNet-based deep learning models as shown before is very powerful
in the imaging domain and can handle image noise, structure, scale, size, resolution, and
further, the variability in the shapes [39]. Thus, we applied that as an assumption to
hypothesize that UNet-based solutions are more powerful than conventional models for
wall segmentation in IVUS scans. The second component of the AI-based solutions is
the ability to explain the output results due to input variations. Its explainability has
been successfully applied in immunology contexts [40–42]. We hypothesized that once
AI explainability is applied, it will help elucidate the internal design of the AI system
for wall segmentation in IVUS. Therefore, we hypothesized that a similar trend could be
observed in our studies, which means the IVUS model is likely to be biased. Second, with
the evolution of AI, it has been observed that the fusion of the techniques leads to superior
performance [18]. Thus, we hypothesized that the deep learning (DL)-based UNet AI model
is likely to provide a superior performance as compared to the non-UNet (conventional)
method. This review study addresses conventional and AI-based UNet methods of coronary
artery wall segmentation in IVUS scans, integrating the three AI dimensions: explainable
AI (XAI), risk of bias (RoB), and DL-based pruning among DL systems.

The review has the following layout. Section 2 presents the PRISMA model for study
selection and the statistical distribution of the AI attributes used in the study. Section 3
shows the classification tree for the AI-based method for wall segmentation. Section 4
represents the RoB estimation in a deep-learning-based coronary artery disease system.
The explainability of the AI system is represented in Section 5. The pruning approach is
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covered in Section 6. The critical analysis of this research is presented in Section 7. Finally,
the conclusions of the review are summarized in Section 8.
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overall intravascular ultrasonography (IVUS) films [43].

2. Search Strategy and Statistical Distribution

To comprehend the various CAD methodologies, the gold-standard modifications
regarding such machine learning solutions, the involvement of the feature extraction
methodologies, and bias in AI-based approaches, it is vital to grasp the statistical distribu-
tion of the literature. In order to choose the studies for CAD wall segmentation in IVUS
scans, we adopted the PRISMA model. Consequently, this section is split into two sections:
The research selection criteria are covered in Section 2.1, and the statistical distributions are
covered in Section 2.2.

2.1. PRISMA Model

We adopted PRISMA strategy to determine the relevant studies in the domain. The
key terms exploited are deep learning (DL) and CVD. In addition, relevant terms such as
“CAD risk using DL”, “CAD risk stratification in DL framework”, “CVD risk estimation
using AI”, “CVD/stroke risk analysis in DL model “, “CAD/Stroke utilizing non-invasive
framework”, “Bias in Deep learning/Artificial intelligence for CVD risk stratification”,
“IVUS segmentation and DL”, “IVUS segmentation using UNet”, and “Modality used for
wall segmentation” were used. Science Direct, IEEE Xplore, Google Scholar, and PubMed
were the various search engines used. Figure 3 displays the PRISMA flow chart for a
few investigations. A thorough search turned up 888 studies in all. The three exclusion
requisites included (a) research that was not pertinent (I1); (b) publications that, after a
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search, were excluded and screened from the research (I2); and (c) records with insufficient
data (I3). The exclusion criteria were applied, and 303, 88, and 14 studies were identified
as meeting E1, E2, and E3 (see Figure 3). E1 implies non-relevant articles, E2 is records
excluded after screening, and E3 are the records having insufficient data. From these
concluding studies, significant scientific knowledge was acquired (I4), and a statistical
classification was developed. The architectural style of UNet techniques as well as their
traits and bias estimation were analyzed.
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2.2. Statistical Distribution Analysis

Since the focus of our study is on a UNet-based deep learning system for wall seg-
mentation in IVUS scans, it is, therefore, necessary to know what has been the trend in the
area of UNet-based solutions for wall segmentation in IVUS scans. This trend gives insight
into the contributions of UNet-based systems for wall segmentation in IVUS scans. It also
helps to elucidate the importance of UNet-based systems for IVUS applications. This is
the main context for understanding the statistical distribution analysis. Figure 4a,b discuss
such statistical distributions.

When considering the AI-based applications, data collection is important. The data
collected for AI applications play an important role in risk stratification for coronary artery
disease. These data are for humans. Therefore, where the patients come from and what kind
of disease is prevented in the data are important components for the design of the AI system
and its validation. Therefore, one needs to know the distribution of the demographics of
the data. Figure 4c presents the distribution of the demographics of the patients.

Another important attribute of an AI-based system is if the study used data from
a single medical center or if the data were collected from multiple medical centers or
institutes. Thus, it is important to know if the AI system was using data from a single
center or a group of centers. Typically, the single-center data are likely to be more biased
compared to that from a multiple-center study. Thus, the role of a single vs. multiple center
study is exhibited in Figure 4d.
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There are other statistical distributions that play an important role when designing AI
systems. These attributes are the types of parameters used for the optimization of the AI
systems, the type of the design of the AI system itself, how many studies really underwent
the performance evaluation of the AI system, and finally, what kind of variation was used
in the design of the UNet-based deep learning system. Thus, there is a clear need to know
how the trend has been when using AI-based solutions for wall segmentation in IVUS
scans. Such behavior is shown in Figure 5a–d.
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The statistical distributions and analysis of the selected studies is demonstrated in
Figures 4 and 5. The percentage reflects the number of studies used for that parameter
out of the total studies, which number 60 in this case. For example, a sensitivity of 4% is
4/100 × 60 = 2.4 or 2. This means only 2 out of 60 studies computed sensitivity. The
statistical distribution in Figure 4 illustrates the following parameters: (a) combined (both
UNet and non-UNet) publications over the year, (b) separate publication trend for UNet
and nonUNet the over year, (c) demographical attributes used in the study, and (d) clinical
evaluation. The DL-based publications showed that a lot of work was carried out in this
area from 2015–2022, as shown in Figure 4a,b. Figure 4c illustrates that the percentage
distribution of the number of studies that considered demographic attributes include
77% [24,44–62] patients, 4% [59] smoking, 15% [45,53,63,64] data collection, and 4% [58] hy-
pertension. Figure 4d shows clinical evaluation in the DL system. Two sets were considered,
namely single center 90% [24,26,28,44,46–57,59–62,64–94] and multicenter 10% [45,58,95–98].
The statistical distribution in Figure 5 details the parameters, namely (a) the attributes of
parameter optimization, (b) the architectural design followed in the DL-based paradigm,
(c) various performance metrics utilized in the CAD segmentation of IVUS scan, and (d) dif-
ferent variants of UNet adopted for CAD segmentation. In Figure 5a, the DL systems
were also analyzed by considering the percentage distribution in parameter optimization,
including 22% [24,47,48,51,53–56,58–62,64,67–69,71] learning rate, 20% [24,46–48,50,51,53–
56,58,59,61,62,67,69,71] batch size, 22% [24,45–48,50,51,53–56,58–60,62,64,67,69,71] epochs,
18% [24,54–62,66,67,71] optimization, and 18% [45,46,49–51,53,54,58,59,61,62,66–68,71,73]
augmentation.

Figure 5b displays the percentage distribution of the architecture details of the DL
system comprising 16% [24,44–47,49–62,64,66–71,97] architecture used, 15% [24,44–47,49–
62,64,66–68,71,97] layers, 15% [24,44–47,49–62,64,66–68,71,97] encoder, 15% [24,44–47,49–
62,64,66–68,71,97] decoder, 13% [24,44,46–57,59–62,64–68,70,71] skip connection, 13% [24,
44,45,47–57,59,61,62,64,67,68,70,71] loss function, and 13% [24,44–52,54,55,57–60,62,64,67–
71,99] pooling. The DL systems were also analyzed by considering their evaluation
of performance.

The Figure 5c shows the percentage contribution where the Dice similarity coefficient (DSC)
was 27% [24,44,46–53,56,58–60,62,67,68,70], validation 11% [47,55,59], recall score 4% [24,62,67],
precision 4% [24,48,62], and sensitivity 4% [24,62,67]; p-value was at 6% [57–59,62], specificity
6% [44,48,52,67], accuracy 7% [24,45,46,62,67], Hausdroff distance 11% [44,47,53–55,58,59],
and Jaccard index 19% [44–47,54–56,61,62,66,67,70,71]. These are the pillars that stabilize
the DL system, designed to prevent it from showing biased in machine learning models.
For the best results, it is necessary to investigate these ML traits.

The Figure 5d depicts the percentage contribution of the different variants of UNet in the
DL framework, with 20% comprised by 3D UNet [24,49,51,59], 27% UNet [45,52,54,62,67–69,73],
3% UNetVGG16 [46], 3% dual-path UNet [55], 3% VNetFCNN [53], 3% MFAUNet [71], 3%
BCD UNet [72], 3% UNet multiscale layer [47], 3% UNet DeepCNN [48], 3% eight-layer
UNet [61], 3% 2D UNet [60], 3% UE-NET [64], 3% T-Net [100], 3% attention UNet [57], 3%
3D-FCN [56], and 3% IVUS-Net [66].

3. Methodology

The wall of the coronary artery consists of three layers, namely, the intima-layer (the
inner-most layer), media-layer (middle layer), and the adventitia-layer (the outermost
layer). These three layers are observed in a cross-sectional view of artery in the heart, as
demonstrated by IVUS imaging (Figure 2). Segmentation of walls in IVUS scans has been
in existence for the past two decades using computer vision techniques [9,28,101]. Several
traditional image processing approaches, such as active surfaces [5], graph search [102],
and active contours [5,103], have been applied to segment IVUS images. These techniques
are based on both local as well as global attributes within a grayscale image [102]. Three-
dimensional fast-marching method under the umbrella of level sets incorporating the
texture and the grey-level contour has been used to partition the walls of the coronary
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artery using a dynamic initialization of external elastic membrane (EEM) borders [104,105].
These are conventional paradigms since they do not utilize any knowledge-based system
for segmentation. We thus categorize them as non-AI based models.

There is a shift in paradigm towards AI-based models, which is the primary focus of
this study [106]. To understand this better, these two frameworks are discussed in the form
of classification tree, having various conventional (non-UNet) and non-conventional (UNet)
methods for the segmentation of IVUS scans of arterial walls. Supplemental Material
Tables S1 and S2 tabulate the conventional/non-UNet- and UNet-based deep learning
works in CVD. Conventional methods include techniques such as Otsu thresholding [90],
fuzzy [87,89], parametric deformable model [92], geometric deformable model [91,92],
and gradient vector flow (GVF) [94]. For the segmentation of the coronary walls, vari-
ous AI-based techniques, such as ML-based or DL-based, have been applied. The ML-
based method includes XGBoost [79,107,108], k-means [43], hidden Markov random field
(HMRF) [43,109,110], support vector machine (SVM) [65,82], random forest (RF) [65,82],
fuzzy c-means (FCM) [43,89], Pix2Pix model [74], ellipse-fitting algorithm [28], Lucky–
Richardson algorithm [84], and gradient boosting [85]. The DL-based method includes
generative adversarial network (GAN) [74], convolutional neural network (CNN) [78,81,95],
bidirectional gated recurrent unit (Bi-GRU) [74], efficient net [75], DeepLabV3 [80], location-
adaptive threshold method (LATM) [111], scan-adaptive threshold method (SATM) [111],
and fully convolutional neural network (FCNN) [87]. In recent years, DL has been exten-
sively used in medical imaging analysis and achieved impressive results [73,112]. It has
been used to identify the LI and MA borders in IVUS due to its advanced features such as
automatic feature extraction [113,114]. A summary of the technique is shown in Figure 6.
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Figure 6. Classification tree of IVUS segmentation. SVM, support vector machine; RF, random
forest; HMRF, hidden Markov random field; CNN, convolutional neural networks; FCNN, fully
convolutional neural network; GAN, generative adversarial network; Bi-GRU, bidirectional gated
recurrent unit; LSTM, long short-term memory; LATM, location-adaptive threshold method; SATM,
scan-adaptive threshold method. Conventional method: (i) Otsu thresholding [90], (ii) Fuzzy
method [87,89], (iii) Parametric deformable model [92], (iv) Geometric deformable model [92], (v) Gra-
dient vector flow (GVF) [94], (vi) K-means [43], (vii) Lucky Richard algorithm [84], (viii) Ellipse fitting
algorithm [28]. Machine Learning: (i) SVM [65,82], (ii) XGBoost [79,107,108], (iii) RF [65,82], (iv) Gra-
dient boosting [85], (v) HMRF [43,109,110]. Deep Learning: (i) CNN [78,81,95], (ii) FCNN [87],
(iii) Efficient-net [75], (iv) DeepLabV3 [80], (v) GAN [74], (vi) Pix-2-pix model [74], (vii) Bi-GRU [74],
(viii) LSTM [97] (ix) LATM [111] (x) SATM [111].
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XGBoost is a machine learning method like other models such as support vector
machine (SVM), naïve Bayes (NB), k-nearest neighbor (KNN), logistic regression (LR),
random forest (RF), decision tree (DT), etc. This is a standard solution. Recently, we
used XGBoost for classification protocol [107,108]. In [107], the authors presented the
usage of XGBoost as a machine learning strategy for the classification of cardiovascular
datasets. Similarly, in [108], the authors used XGBoost as a machine learning model for
the classification of the neonatal dataset for risk stratification of premature infant deaths.
These both are classic examples of the usage of XGBoost as machine learning models for
classification or segmentation strategies. Very recently, there has been usage of XGBoost
for ischemic stroke identification in computed tomography perfusion [115]. Another
application of XGBoost has already been used in the area of diabetic retinopathy (DR)
as shown by the authors [116]. Hidden Markov random field (HMRF) is another classic
model that has been efficiently adopted for the segmentation and classification of different
applications. Recently, our group applied HMRF for coronary artery wall segmentation as
well [43,109,110]. This is a direct application of HMRF for IVUS-based coronary artery wall
segmentation and is characterized as a machine-learning model.

Still, the conventional model had dominated for a long time due to UNet’s strong
abilities, such as automatic feature extraction, the ability to add a transformer, and its
attention-enabled solutions [39,117].

Below, the three conventional methods and three UNet-based methods are further
detailed and organized as follows:

3.1. Conventional techniques
3.1.1. Fuzzy method
3.1.2. Parametric methods
3.1.3. Geometric methods
3.2. UNet-based techniques
3.2.1. MFA UNet
3.2.2. Dual-path UNet
3.2.3. Eight-layer UNet
Each of the UNet-based methods has an encoder and decoder architecture. Note that

each of the methods contains a subsection.

3.1. Architecture for Wall Segmentation Using Conventional Methods

The conventional method for coronary artery wall segmentation includes Otsu thresh-
olding [90], fuzzy method [87,89], parametric deformable model [92], geometric deformable
model [92], and gradient vector flow (GVF) [94]. Among these methods, here, we discuss
the representative work, namely the fuzzy method, parametric model, and geometric
model, for wall segmentation in IVUS scans.

3.1.1. Fuzzy Approach for Wall Segmentation

Eslamizadeh et al. [89] introduced a fuzzy approach for boundary wall segmentation
for lumens in IVUS images. Figure 7 below shows the algorithm description. In order to find
and remove catheters for assessing lumen boundaries during IVUS, the pre-processing stage
consists of reduction in speckle noise from the image. This is accomplished using spatial
filters in polar coordinates. Two integration-based fragmentation methods, such as fuzzy
c-means (FCM) and robust high-order matched filter (RHMF), as well as a tissue-based
boundary identification algorithm are used in the processing step to find a more precise
initial border estimation. Then, in the subsequent stage, improving boundary detection
while concurrently lowering fault detection is accomplished by applying approximations
based on radial basis function (RBF). The fuzzy c-means (FCM) approach is also used to
split images into two groups that represent the lumen’s interior and exterior. The largest
detected region is identified as a lumen area as a result of discovering the region in an
image using the RHMF approach, which is an algorithm to detect the object in an image.
In order to obtain the final boundary, RBF generates an estimated border. A particular
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boundary is then found using this technique after discrete wavelet transformation (DWT)
is used simultaneously to detect boundaries in images. The recommended limit of the
radiologist is contrasted with the ultimate limit, and this provides an accuracy of 86.06%,
showing better performance as compared to the other method. The main problem with this
method is the lack of accurate boundaries. It is to be emphasized that the pre-processing
processes have a major impact on how IVUS images are processed. Therefore, it was highly
suggested that more advanced algorithms be created for various parts of the image.
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The result of this FCM method is that, when compared to other methods, the median
filter performed best during the pre-processing phase in reducing noise from IVUS images.
This method provides an accuracy of 86.02%. The results of the detected boundary for six
images using the FCM technique are depicted in Figure 8.
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3.1.2. Parametric Models

In this study [15,118,119], the so-called stop-and-go snake is a new geodesic snake
formulation that is used to locate the calcification and soft plaque regions in atherosclerotic
plaques. By using probability maps to separate regularity and convergence, this snake can
better manage the function of curvature. The applied force requirement is divided into an
attracting and a repulsive vector field to ensure convergence. In a conventional pattern
recognition pipeline, researchers applied this new snake: The images were first processed
for the extraction of texture features such as co-occurrence matrices, Gabor filters, and local
binary patterns. The second step included calcium, soft and fibrous plaque treatment, and
classification using AdaBoost. A probability map for the stop-and-go snake was created
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using the confidence rate map that was obtained using the normalized version of the
likelihood map M̆ to be employed in the stop-and-go snake.

δГ
δt

=∝ KM̆·n + β
〈
∇
(
1− M̆

)
, n
〉
· n + V0

(
1− M̆

)
·n (1)

where Г represents the snake, t represents the snake evolution at time t, K is the cur-
vature of Г, the curve’s smoothness is controlled by weighting curvature’s function ∝
and β, n is its inward unit normal, < and > stand for the scalar product of two vectors,
V0 represents velocity.

The choice of soft plaque is ineffective. However, calcium detection is satisfactory. Also,
it is not easy to estimate the snake outcomes statistically. The results of this approach show
the likelihood map for soft plaque in this example was created using the categorization
confidence rates between fibrous plaque and calcium against soft plaque.

Before using the diagram as a likelihood map, only the rates that are below a pre-
defined threshold were taken into analysis, and then, the diagram was reversed. In
this study, numerous pattern recognition tools were taken into consideration to achieve
autonomous plaque tissue segmentation. Different textural features were retrieved, and
the stop-and-go snake and the AdaBoost classifier both produced promising calcium
segmentation results. Figure 9 illustrates the IVUS images showing the presence of calcium
and soft plaque in the arteries.
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Figure 9. Results of classification and snake for two IVUS images showing soft plaque and calcium.
Original photos are in column (A). (B) Pictures that the cardiologist segmented. (C) A classification
map of AdaBoost. (D) The stop-and-go snake outcome. White lines indicate soft plaque, whereas
black ones indicate calcification in column D’s legend [118].

3.1.3. Geometric Approach

By linearly projecting the inner (lumen) and outer (media) contour spaces onto a pair of
low-dimensional previous form spaces at each border, this method [93] separates the lumen
and media layers in arterial walls. The algorithm operates on the rectangular (without scan
transformation) IVUS image domain. By adjusting the template (average) shape of the
previous lumen contour region in accordance with the intensity average above the average
region, a lumen layout is initially created. The occurrence of brightness within and outside
the lumen Pin and Pout, derived from a Parzen frame that is calculated by a distribution of
brightness, is used to develop the lumen contour via a Euler–Lagrange equation:
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The highest smoothed gradients at regular intervals of the rectangular picture are used
to create the initial shape of a media contour, which is then developed at a rate proportional
to the gradient difference between two aligned windows both above and beneath the
contour ∇G.

∂αa
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where Ua
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i , a represents
the m-a data, and ∇G represents the smoothed-oriented edge gradient.

Before segmenting each IVUS pullback frame, calcifications and openings caused
by lateral branches are detected as features to be employed in separating the borders of
the lumen and media. This method exhibited slightly lower performance in the case of
bifurcations. The result of this approach is that, in the “resampled” rectangular domain,
the authors provided a statistical shape model-based method for separating artery walls as
apparent in IVUS images. They limited the lumen and m-a contours to a smooth, closed
geometry, which enhanced the segmentation quality without affecting any adaptability
for a regularized term. They used a nonparametric intensity model based on an image
probability density energy to segment the lumen contour as opposed to the point-wise ob-
servations of earlier techniques. Using edge information, the m-a was divided into sections.
They developed an aligned, smooth gradient that eliminates the noise present in IVUS
images. Additionally, they created a technique that makes use of anatomical features to find
calcifications and branch openings. This segmentation method is substantially improved
by incorporating the feature information into the m-a contour extraction. Figure 10 shows
the result of this method.
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Figure 10. Examples of LI and MA borders with the following feature extraction. (a,b) opening in the
branches, (c) calcification of the branch opening, (d) black shadow along with heavy calcification,
(e) two types of calcification, (f) calcified bright plaque region without black shadow [93].

3.2. Architectural Design for 2D Wall Segmentation Using UNet-Based DL System

Figure 11 describes the DL-based UNet architecture proposed by Ronneberger et al. [73].
Four encoders and four decoders are typically arranged in a “U” form along each side. The
specific size of the mini-batches of gray-scale images along with masked binary ground
GT is supplied as input to UNet. The size of the mini-batch is dependent on computa-
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tional and hardware specifications of the system used for training the network. In [73],
the authors used a mini-batch size of 10 images. The encoder and decoder modules are
explained below.
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Figure 11. The encoder, bridge network, decoder, and skip connection are displayed in the basic
UNet design.

The Encoder Block

The encoder blocks, the bottom levels of the UNet architecture, are used to extract the
features of the image. The feature extraction procedure is carried out via convolution and
ReLU procedures. The highest features in each filter zone are chosen in the “max-pooling”
block, the last stage of each encoder, before down-sampling the image even more. As a
result, the convolution (pink), ReLU (aqua), and max-pooling (red) operations are applied
to each of the UNet’s layers on the encoder side a second time (see Figure 11). Figure 11
depicts 64 filters, which increase in size by a factor of two at each subsequent level for a
total of 128, 256, and 512 filters, respectively. Figure 11 represents the numbers 3 × 3 × 64,
3 × 3 × 128... 3 × 3 × 1024, where 3 × 3 is the filter size, and 64...1024 is the number
of filters.

The Decoder Block

The decoder stages are shown in Figure 11 on the right. The encoder block has been
turned around. The original proportions of the training image must be retrieved. The
decoder module’s filters, on the other hand, use the numbers 512, 256, 128, and 64 to divide
each level in half. These filters are used to resize the image to its original specifications.
The decoder generates the image with improved features that are easy to extract. The
decoder stage has a number of layers, such as up-convolution-2D (light green), depth-
concatenation (light purple), 2D convolution (pink), and ReLU (aqua) (Figure 11). These
filters are followed by the softmax layer, which converts the output to a binary image with
a foreground (white) and background (black).

3.2.1. MFAUNet

This architecture was proposed by Xia et al. [71]. In this UNet variant, the multi-scale
skip connections is altered by addition of feature aggregation module (FAM) block. The
FAM uses a bi-directional convolutional long short-term memory (BConvLSTM) unit [71]
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to extract context information from a spatial–temporal perspective. Additionally, with the
use of multi-scale inputs and thorough supervision, each encoding and decoding phase
is provided significant access to the original source and result. The “multi-scale feature
aggregated UNet (MFAUNet)” is the name given to this network.

Architecture of MFAUNet
Encoding and Decoding Path

Figure 12a shows the full architecture of the MFA-UNet. The input is processed
through the encoding path’s five phases to identify both fine and coarse features. Four
stages make up the decoding path, which restores the spatial resolution to produce the final
prediction. One block made up of two successive convolutions is included in each of the
top four encoding levels. In the bottom layer of the contracting path, there are three blocks
packed tightly together. Features from the second block’s learning are mixed with features
from the first block’s learning and repeated before being transferred to the third block. The
network can learn different characteristics, backpropagate gradients effectively, and allow
for better information flow thanks to the network’s dense connections [13]. Each encoding
layer can directly extract characteristics from the source when the multi-resolution image
pyramid is input. Direct access to the source makes it possible to represent intermediate
features more effectively because successive convolutions and max-pooling contractions
have the potential to lose fine object information [14]. In order to increase the collective
learning process, we must also impose intense oversight over the decoder. The deep
supervised model maintains semantic discrimination in the hierarchical decoding layers at
all stages [6].
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Figure 12. (a) The design of the MFA-UNet. The width and height of each box represents the number
of feature channel and the spatial extent of the feature map. (b) The feature aggregation module
(FAM). The number of feature channels and the spatial extent of the feature map are represented by
the width and height of each box, respectively. (b) The feature aggregation module (FAM).

Feature Aggregation Module.

The high-resolution local information is contained in the features copied from the
appropriate encoding layer in the skip connection, whereas the global semantic infor-
mation is contained in the features retrieved from the prior up-convolutional layer [12].
Concatenating features at the feature dimension is all that the conventional UNet does.
Concatenation restores information that was lost during cascaded encoding procedures.
MFAUNet adds a non-linear FAM adopted from the BCDUNet [15] for better feature fusion
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and information preservation, as seen in Figure 12b. Recurrent neural networks (RNNs) of
the type ConvLSTM can remember previously learned information, handle complex object
distributions, and capture spatiotemporal relationships of sequential data [16]. By utilizing
two ConvLSTMs, both forward and backward input are fully taken into account by the
BConvLSTM, increasing the accuracy of predictions [15]. The BConvLSTM can be used
to combine the feature sequence from a spatiotemporal perspective and provide the FAM
with the picture context information.

The advantage of this network is that in order to achieve sufficient learning from
a limited number of detailed IVUS photos during the training phase, the MFA-UNet
integrates a FAM module, multiscale inputs, and deep supervision into the UNet model.
This allows for the simultaneous extraction of the MAB and LIB in IVUS images. In this
study, the MFAUNet is optimized using the focal Tversky loss.

3.2.2. Dual-Path UNet

Yang et al. [55] introduced dual-path UNet architecture for the delineation of arterial
walls in the IVUS scans. This design architecture is based on UNet and consists of two main
parts [73]. One part is the encoder network that generates a low-resolution deep feature
map after downsampling the input. The other part is the recovery part from a decoder
network that restores the deep features to its original resolution and size.

The decoder network has five decoding blocks compared to the encoder network’s
six encoding blocks. Each block in the network, beginning with the second block, receives
the feature map from the layer before it. Each decoder layer also includes a separate skip
link, which can be utilized to transmit information from the encoder networks. The skip
links between the encoder and decoder networks offer extra information that can be used
to enhance feature map size.

Skip connections in the network preserve spatial linkages among pixels in IVUS imaging
by integrating the corresponding encoder and decoder layers. Skip connections can also
accelerate training and avoid vanishing grading limitations of the deep network [120,121].
Figure 13 represents the dual-path UNet architecture. It can be observed that this network
is symmetrical in construction.
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Figure 14a illustrates encoding block with downsampling and refining branch. The
downsampling branch consists of a 2 × 2 max-pooling layer and 3 × 3 convolutional layer.
Max pooling is suited best for the IVUS images that are of low resolution and blurry. They
save data from the most active neuron in a small-sized kernel by discarding the irrelevant
information. To reduce the impact of information loss due to the pooling layer, a stride of 2
is applied to minimize image spatial resolution. The depth layer aggregates the input from
these two branches [122,123].
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Figure 14. (a) The main branch and the refining branch are followed by an encoding block with a
downsampling branch; (b) a typical decoding block that takes feature maps from the skip connection
as well as the preceding block. The following acronyms are used in the figure: K2S2, kernel size 2
and stride size 2; BN, batch normalization.

The main branch and refining branch receive the integrated image feature map gen-
erated by the downsampling branch. The main branch consists of a convolution layer,
activation, and batch normalization, as represented by [73,124]. Utilizing tiny kernel sizes
for feature map refinement is a recent trend [125,126], and the literature frequently makes
use of the idea of networks in networks [122]. To create a similar but more refined feature
map, we therefore propose a refining branch that contains one convolution operation with
a 3-by-3 kernel size succeeded by a convolution operation with a 1-by-1 kernel size. Since
a 1-by-1 convolution only affects one pixel and is therefore unaffected by its neighbors, it
can be used to trim or improve a feature map, although, in terms of total depth, this idea
is superior to the global average pooling with more learning potential [63]. Additionally,
since it is typically desirable to be able to capture features at different sizes, we configured
convolutional layers with a kernel size of 5 in the main branch as compared to 3 and 1 in the
refining branch. The following block and its associated decoding block receive the whole
of the outputs from the main and refining branches. Deep networks are challenging to
train because of the gradient vanishing problem, which is a serious challenge. In addition
to offering a suitable local architecture, the multi-branch and local networks-in-network
architecture also strengthen the gradient flow to quicken training.

A slightly different structure is required for decoding blocks, as depicted in Figure 14b.
The feature map is given to each decoding block from both its preceding layer and its
corresponding encoding layer. A 2 × 2 transposed convolution is used to upsample only
the feature map obtained from the preceding layer, which is then integrated with the feature
map from the matching coding block. Keep in mind that the main branch will be the only
one to handle this concatenated feature map, while the refining branch just processes the
unsampled feature map. The parametric rectified linear unit (PReLU) [121] is the activation
employed in the DPUNet.

PReLU(x) = max (0,x) − αmax (0, −x) (4)
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ReLU only conveys gradients when the neuron is active, whereas PReLU [97] permits
a portion of the gradients to pass through the neuron when it is not engaged. In several
benchmarks, PReLU improves ReLU and also has a more consistent performance, as shown
in [127,128].

The next step, which has been experimentally shown to improve performance, is to
modify the output feature diagram from the last decoding block using a 5 × 5 convolution
layer after it has been upsampled by a 2 × 2 transposed convolution layer having a 2-stride
size. The resulting final outputs are identical in size to the pictures from the training
dataset because of the additional 2-by-2 transposed convolution layer. A sigmoid function
is used as the activation function after the final convolutional layer to produce the final
binary masks.

It is also important to note that the skip connections between the respective encoding
and decoding layers provide additional gradient flow to the existing design as well as
context information for the decoder layer.

The result of using this network for the segmentation of arterial walls in IVUS scans,
i.e., DPUNet, a fully convolutional deep network, is the ability to generalize even when
there are few training samples. For the 40 MHz and 20 MHz datasets, respectively, DPUNet
improved JM accuracy by more than 4% to 5%. By contrasting it with two other general-
purpose feature extraction architectures, SegNet and UNet, that were trained over an
identical number of images for the same period without performing any augmentation,
they were able to assess the proposed DPU–generalization network’s capacity.

3.2.3. Eight-Layer UNet

In this variation of UNet, eight layers are used instead of four layers. Apart from this,
3 × 3 convolution is used in place of a max-pooling operation.

Network architectures of eight-layer UNet

The most widely used convolutional neural network design for biomedical image
segmentation is the UNet, which is one type of network that is entirely convolutional [129].
It has encoder and decoder parts that predict the segmentation results at the pixel level
as opposed to classifying pictures at the image level. The encoder component extracts
higher-level characteristics and is utilized for downsampling.

The output from the encoder portion is up-sampled by the decoder portion, which
concatenates the extracted features of the relevant layer using a skip connection. The
gradient diffusion issue related to deep layers is addressed by the skip connection. SoftMax
activates the final decoder layer to generate the class binary image and recover the segment’s
accurate predictions.

The nine blocks that make up the encoder component each contain two repetitions of
the 3 × 3 convolution, batch normalization, and leaky ReLU activation. Feature maps are
reduced by half by the downsampling procedure of 3 × 3 convolution with stride 2 × 2.
To enable deeper abstract information, the eighth block is 2 × 2. For the decoder section
to restore the image dimension, there are eight blocks. Every operation of upsampling
includes a 5 × 5 deconvolution with stride 2. The matching feature maps are concatenated
using the skip connection. The probability map of mask class prediction by SoftMax
activation is produced by the final convolution. The entire architectural structure is shown
in Figure 15. The random activation technique is used for parameter initialization across
all model levels. This UNet did not offer any significant structural innovations over other
UNet variants. The authors switched to an eight-layer network in place of the previous
four-layer network so that they could extract more in-depth image information. The actual
results confirmed the validity of this simple deepening design.

The result of this study shows an eight-layer UNet with meshgrid-flip-rotate data
augmentation, which is specifically suitable for the challenging EEM-CSA segmentation
of the coronary IVUS lumen. The outcomes of the experiment demonstrate its higher
segmentation accuracy and effectiveness. Also, it provides a solid foundation for 3D-IVUS
reconstruction when combined with X-ray projections, enabling fluid and dynamic research
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on plaques and vascular walls of coronary arteries. This is because image-based gating
may be used to gate images.
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4. Characteristics of UNet and Conventional DL Systems for CAD
4.1. A Special Note on Limitations of Conventional Models and Benefits of AI-Based Solutions

The conventional models adopted in image processing have existed for the last
50 years [130–134]. These methods were considered as generation I and II, where the
methods were considered as local in nature and never used the cohort’s knowledge for the
benefit for prediction on the test datasets. These methods had some inherent drawbacks,
such as inability to provide an automated solution towards segmentation of the organs in
complex medical images [130,135,136]. These methods were local in nature, and the noise
would overwhelming and distract the computer vision algorithms [137]. Thus, the system
was ad hoc in nature and could not be automated for every new incoming test image [138].
Due to these inherent challenges, the performance in these systems dropped considerately
and affected the accuracy, sensitivity, specificity, Mathew coefficient, recall, precision, area
under the curve, and p-value significance. Further, the statistical tests for evaluating the
reliability and stability also did not perform well, which included the t-test, paired t-test,
Bonferroni tests, Freedman test, Wilcoxon test, Poisson test, etc. [139–141]. The effect of
such challenges lacked explainability and interpretations [41,142]. As a result, time and
again, these computer vision methods started losing interest, and over time, inventions
based on knowledge derived by the cohorts started to take shape.

With the invention of fundamental neural networks [143], these fundamental draw-
backs started to disappear. The rapid rise of these methods has nearly dominated the
field of image processing, which were then characterized into machine learning and deep
learning approaches [144]. The most powerful paradigm was the addition of addition of
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intermediate layers between the input and output layers [145]. We could not only add
a layer between these input and output layers, but we could add ones large in number
and shape to these networks for superior feature extraction followed by classification or
risk stratification [39]. These deep layers are a special case of machine learning, where the
features extracted were limited and ad hoc and not like those of the deep layers, where
the features extracted were stronger compared to machine learning model features [146].
Thus, the AI-based solution was characterized with superior performance compared to
conventional models [147]. There have been over 1000 articles discussing the drawbacks of
conventional methods over AI-based solutions, and it is nearly impossible to discuss each
method, but the key challenges are thoroughly discussed above. We hope the reader will
appreciate the depth of coverage of the author’s judgement for expressing the challenges
in conventional models compared to more modern methods such as UNet-based solutions,
which are deep in nature [41,148,149]. In summary, deep learning solutions offer the fol-
lowing benefits over the conventional models: automated feature extraction, the power
of the integration of knowledge from cohorts for better segmentation and classification
solutions, the ability to adjust the depth of layers, the ability to parallelize these neural
networks to improve the performance and optimize these deep layers, and the ability to
reduce the noise present in the images using dropout layers.

4.2. A Special Note on Quality Control for AI Systems

The size of the cohort, the balancing of the class in the cohort, missing values in the
cohort, scaled values of the risk factors, normalization of the factors if any, and augmenta-
tion of the raw datasets are all factors that are part of the quality control system during AI
design. If the quality control is not conducted in a proper way, then the AI system may lack
generalization. In other words, the training system will not be generalized. The cohort size
plays a major role. If the cohort size is small, it can also cause overfitting. Thus, dropout
layers help in improving the generalization. To further improve the generalization requires
hyper-parameter tuning [145,150].

Table 1 tabulates the general characteristics of the DL system, described by using
26 attributes categorized into 5 clusters, namely demographic (rows A1–A3), architectural
details of the deep learning model (rows A4–A10), performance evaluation (rows A11–A20),
parameter optimization (rows A21–A25), and clinical evaluation (row A26). The cohort
size used in different studies was very limited. The demographic factors considered by
most of the studies were cohort size, smoking, and hypertension.

The architectural details included in the AI-based system describe whether the given
architecture is a conventional architecture or UNet architecture. The performance evalua-
tion parameters used were DSC, sensitivity, specificity, Jaccard index, Hausdorff distance,
p-value, accuracy, precision, and recall score. The parameter optimization in the DL system
included learning rate, batch size, epochs, optimization, and data augmentation. The
clinical evaluation considered single-center or multi-center data.

Standardized data augmentation was conducted on these images [40,148,151,152].
Data augmentation plays a crucial role in improving the generalization of machine learn-
ing models, including those used for coronary artery wall segmentation in intravascular
ultrasound (IVUS) scans. These techniques help increase the diversity of the training
data, making the model more robust to variations in the input data. Some specific data
augmentation techniques commonly used in coronary artery wall segmentation for IVUS
scans are as follows: (1) rotation from −50 to 100, (2) random flipping, (3) rotation to 2700,
and (4) skewing [151].
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Table 1. Characteristics of UNet and conventional systems for CAD.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

SN Studies TP SM HT AU L EC DC SC LF PL DSC PV JI

1 He et al. [44] 2 - - U 5 3 3
√ √ √ √

-
√

2 Jin et al. [95] 5 - - C - - - - - - -
√

-

3 Ibtehaz et al. [45] 1 - - U 5 5 5
√

-
√ √

- -
√

4 Balakrishna et al. [46] 1 - - U 5 5 5
√

-
√ √

-
√

5 Kim et al. [48] 1 - - U 5 5 5
√ √ √ √

-
√

6 Li et al. [47] 1 - - U 5 4 4
√ √ √ √

- -

7 Chen et al. [49] 1 - - U 5 3 3
√ √ √ √

- -

8 Tong et al. [50] 1 - - U 5 3 3
√ √ √ √

- -

9 Morris et al. [51] 1 - - U 5 4 4
√ √ √ √

- -

10 Zhou et al. [52] 1 - - U 5 5 5
√ √ √ √

- -

11 Milletari et al. [53] 1 - - U 5 5 5
√ √

-
√

- -

12 Szarski et al. [54] 1 - - U 5 5 5
√ √ √

- -
√

13 Vercio et al. [65] 0 - - C - - - - - - - -
√

14 Yang et al. [55] 1 - - U 5 4 4
√

-
√ √

- -
√

15 Shen et al. [56] 5 - - U 5 4 4
√ √

-
√

-
√

16 Javorszky et al. [57] 5 - - U 5 4 4
√ √ √

-
√

-

17 Momin et al. [58] 5 - - U 5 3 3 - -
√ √ √

-

18 Guo et al. [99] 5
√ √

U 5 4 4
√ √ √ √ √

-

19 Huang et al. [67] 5 - - U 5 5 5
√ √ √ √

-
√

20 Jun et al. [100] 0 - - U 5 5 5 -
√ √ √

- -

21 Shi et al. [64] 0 - - U 5 5 5
√ √ √

- - -

22 Thuy et al. [68] 0 - - U 5 4 4
√ √ √ √

- -

23 Hwang et al. [69] 0 - - U 5 5 5 - - - - - -

24 Cheung et al. [60] 5 - - U 5 5 5
√

-
√ √

- -

25 Dong et al. [61] 3 - - U 5 8 8
√ √

- - -
√

26 Pan et al. [70] 0 - - U 5 4 4
√ √ √ √

-
√

27 Song et al. [24] 5 - - U 5 4 4
√ √ √ √

- -

28 Shinohara et al. [62] 3 - - U 5 5 5
√

-
√ √ √ √

29 Yang et al. [55] 0 - - U 5 5 5
√ √ √

- -
√

30 Xia et al. [71] 0 - - U 5 5 5
√ √ √

- -
√

31 Azad et al. [72] 4 - - U 5 4 4
√

-
√

- - -

32 Ronneberger et al. [73] 0 - - U 5 4 4
√ √ √

- - -

33 Bajaj et al. [74] 1 -
√

C - - - -
√

- -
√

-

34 Cho et al. [75] 5 - - C - - - -
√

- -
√

-

35 Araki et al. [26] 2 - - C - - - - - -
√ √ √

36 Bajaj et al. [76] 2 - - C - - - -
√

- - - -

37 Fedewa et al. [77] 0 - - C - - - - - - - - -

38 Masuda et al. [78] 5 - - C - - - -
√

- - - -

39 Min et al. [79] 1 -
√

C - - - -
√

- -
√

-

40 Nishi et al. [80] 2 - - C - - - -
√ √ √ √

-

41 Shin et al. [111] 2 - - C - - - - - - -
√

-

42 Olender et al. [81] 1 - - C - - - -
√

- -
√

-

43 Zhao et al. [82] 2 - - C - - - - - - -
√

-

44 Bargsten et al. [83] 1 - - C - - - -
√

-
√

- -
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Table 1. Cont.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

SN Studies TP SM HT AU L EC DC SC LF PL DSC PV JI

45 Samuel et al. [96] 3 -
√

C - - - -
√ √

- - -

46 Faraji et al. [28] 1 - - C - - - - - - - -
√

47 Tayel et al. [84] 1 - - C - - - - - - - - -

48 Cui et al. [85] 1 - - C - - - - - - - -
√

49 Harms et al. [86] 5 - - C - - - - - -
√ √

-

50 Mishra et al. [87] 0 - - C - - - -
√ √ √

- -

51 Lin et al. [97] 5 - - C - - - - - -
√ √

-

52 Du et al. [98] 0 - - C - - - -
√

-
√

-
√

53 Hwang et al. [69] 2 - - C - - - - - - - - -

54 Jodas et al. [88] 0 - - C - - - - - -
√

-
√

55 Eslamizadeh et al. [89] 0 - - C - - - - - - - - -

56 Sofian et al. [90] 1 - - C - - - - - - - -
√

57 Cao et al. [91] 3 - - C - - - - - -
√ √ √

58 Taki et al. [92] 1 - - C - - - - - - - - -

59 Unal et al. [93] 0 - - C - - - - - - - - -

60 Zhu et al. [94] 0 - - C - - - - - - - - -

A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26

SN Studies HD Val LR BS EPO OPT DA Acc. Pres. RS SN SP CE

1 He et al. [44]
√

- - - - - - - - -
√ √

S

2 Jin et al. [95] - - - - - - -
√ √ √ √ √

M

3 Ibtehaz et al. [45] - - - -
√

-
√ √

- - - - M

4 Balakrishna et al. [46] - -
√ √ √

-
√ √

- - - - S

5 Kim et al. [48]
√ √ √ √ √

- - - - - - - S

6 Li et al. [47] - -
√ √ √ √

- -
√

-
√ √

S

7 Chen et al. [49] - - - - - -
√

- - - - - S

8 Tong et al. [50] - - -
√ √

-
√

- - - - - S

9 Morris et al. [51] - -
√ √ √

-
√

- - - - - S

10 Zhou et al. [52] - - - - - - - - - -
√ √

S

11 Milletari et al. [53]
√

-
√ √ √

-
√

- - - - - S

12 Szarski et al. [54]
√

-
√ √ √ √ √

- - - - - S

13 Vercio et al. [65]
√

- - - - - - - - - - - S

14 Yang et al. [55]
√

-
√ √ √ √ √

- - - - - S

15 Shen et al. [56] - -
√ √ √ √

- - - - - - S

16 Javorszky et al. [57] - - - - -
√

- - - - - - S

17 Momin et al. [58]
√

-
√ √ √ √ √

- - - - - M

18 Guo et al. [99]
√ √

- - - -
√

- - - - - S

19 Huang et al. [67] - -
√ √ √ √ √

- - - -
√

S

20 Jun et al. [100] - -
√ √ √ √ √

- - - - - S

21 Shi et al. [64] - -
√

-
√

- - - - - - - S

22 Thuy et al. [68] - -
√

- - -
√

- - - - - S

23 Hwang et al. [69] - -
√ √ √

- - - - - - - S

24 Cheung et al. [60] - -
√

-
√ √

- - - - - - S

25 Dong et al. [61] - -
√ √

-
√ √

- - - - - S

26 Pan et al. [70] - - - - - - - - - - - - S
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Table 1. Cont.

A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26

SN Studies HD Val LR BS EPO OPT DA Acc. Pres. RS SN SP CE

27 Song et al. [24] - -
√ √ √ √

- -
√ √

- - S

28 Shinohara et al. [62] - -
√ √

-
√ √ √ √ √

- - S

29 Yang et al. [55]
√ √ √ √ √ √ √

- - - - - S

30 Xia et al. [71] - -
√ √ √ √ √

- - - - - S

31 Azad et al. [72] - - - -
√

- -
√

- -
√ √

S

32 Ronneberger et al. [73] - - -
√

- -
√

- - - - - S

33 Bajaj et al. [74] - -
√ √ √

- -
√ √

- - - S

34 Cho et al. [75] -
√ √

-
√ √ √ √

- -
√ √

S

35 Araki et al. [26] - - - - - - - - -
√

- - S

36 Bajaj et al. [76] - -
√ √ √

-
√

- - - - - S

37 Fedewa et al. [77] - - - - - - - - - - - - S

38 Masuda et al. [78] - -
√

- - -
√ √

- - - - S

39 Min et al. [79] -
√ √

- - -
√ √ √

-
√ √

S

40 Nishi et al. [80] - -
√ √ √ √

- - - - - - S

41 Shin et al. [111] - - - - - - - - - - - - S

42 Olender et al. [81] - -
√ √ √

- -
√ √

- - - S

43 Zhao et al. [82] -
√

- - - -
√ √ √ √

- - S

44 Bargsten et al. [83] -
√ √ √ √ √

- - - - - - S

45 Samuel et al. [96] - -
√ √ √

-
√ √

- -
√ √

M

46 Faraji et al. [28]
√

- - - - - - - - - - - S

47 Tayel et al. [84] - - - - - - -
√

- - - - S

48 Cui et al. [85] - - - - - - - - - - - - S

49 Harms et al. [86]
√ √ √ √ √ √

- - - - - - S

50 Mishra et al. [87] -
√ √ √ √

-
√

- - - - - S

51 Lin et al. [97] - - - - - - - - - -
√ √

M

52 Du et al. [98]
√

- -
√ √ √ √

- - - - - M

53 Hwang et al. [69] -
√

- - - - - - - -
√ √

S

54 Jodas et al. [88]
√

- - - - - - - - - - - S

55 Eslamizadeh et al. [89] - - - - - - -
√

- - - - S

56 Sofian et al. [90]
√

- - - - - - - - - - - S

57 Cao et al. [91] - - - - - - - - - - - - S

58 Taki et al. [92] - - - - - - - - - - - - S

59 Unal et al. [93] - - - - - - - - - - - - S

60 Zhu et al. [94]
√

- - - - - - - - - - - S

TP, total patients; SM, smoking; HT, hypertension; AU, architecture used; L, layers; EC, encoder; DC, decoder; SC,
skip connection; LF, loss function; Pool, pooling; DSC, Dice similarity coefficient; SN, sensitivity; SP, specificity; JI,
Jaccard index; HD, Hausdorff distance; Acc, accuracy; PV, p-value; Pres, precision; RS, recall score; Val, validation;
LR, learning rate; BS, batch size; Epo, epochs; OPT, optimization; DA, data augmentation; CE, clinical evaluation;
U, UNet; C, conventional; S, single center; M, multicenter;

√
implies that a particular attribute (column) was

implemented in that study (row).

5. Risk of Bias in Deep-Learning-Based Technologies for Coronary Artery Disease

Due to the difference in the strength of the attributes (strong or weak), the AI system
introduces a glitch, so-called bias. When AI algorithms are designed for solving wall
segmentation in IVUS scans, they only cover the engineering component along with some
part of performance evaluation. There are no elaborate protocols for clinical validation
or engineering validation. The algorithms are purely focused on raising the accuracy of
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wall segmentation. There is no consideration of the clinical delivery of AI solutions. There
are no inter- and intra-observer variability analyses. The system design lacks solutions
for issues related to (i) handling large datasets (big data) and (ii) the reduction of the
training model size (so-called pruning). Last but not the least, these AI systems are not
generalized either, which means they are not tested on cohorts that are not part of the
training cohorts. Such analysis is called “unseen analysis”, where the training is conducted
on cohort A (data taken from hospital A) and tested on cohort B (data taken from hospital
B). Such cross-validation schemes help improve the robustness of the AI system. Due to the
above reasons, AI designs are not ideally suited for clinical applications. The AI systems
are thus considered to be biased. These are the key motivations for conducting AI bias
analysis [29–35,106].

Engineering Validation: Even though artificial intelligence (AI) has shown promising
signs toward higher accuracy and learning strategies, it can be observed that these AI-based
black boxes lack clinical validation and the ability to perform well in clinical settings, and
they are unable to explain the outcomes [29–35]. The clinical validation requires that the
outcome from the AI system must have a behavior leading to correct coronary artery disease
risk assessment. For example, should an AI system perform accurately on a test patient,
then the syntax score of this patient can be considered high [36]. Other ways to show the
clinical validation is by estimating the relationships or correlations between two quantities
such as coronary artery score vs. AI outcome of the risk [37]. Such consistent behavior
needs to be exhibited by AI systems. Other than the clinical validation, there are attributes
such as imbalanced classes in the datasets that can introduce AI bias [38]. Such causes can
lead to bias in AI modules or system designs.

Clinical Delivery: By clinical delivery, we mean the evaluation of the AI design
architecture in clinical settings. In other words, we evaluate the architecture on new test
patients in clinical evaluation such as hospitals [33,140,153,154].

Inter/Intra-observer variability: Inter-observer variability is computed when different
observers are used to evaluate the AI-based architecture design. The evaluation is based
on the gold standard supplied by the expert observer. Different observers may have
different judgements on the risk of the wall plaque in the IVUS scans. Thus, the output AI
performance, once evaluated, can have variations between the results if different observers
are considered. In intra-observer variability, the same observer evaluates the AI system
at different times. Thus, under different sets of conditions, the same observer can give
slightly different results, leading to intra-observer variability. The influencing factors
include change in fatigue, lightening condition, and software upgrades [155–159].

In order to segment the artery wall in an IVUS scan, which is still in its early stages, par-
ticularly in the CAD area, DL approaches are increasingly adopting UNet-based techniques
instead of traditional ones. Because of their automatic extraction-of-features paradigm,
UNet-based systems perform better than conventional-based techniques, but RoB is still a
problem. For bias estimation, two techniques—the ranking method and the region-based
map—were applied, as discussed in Sections 5.1 and 5.2.

5.1. Risk of Bias via Ranking Method

The ranking approach, which is based on the means and cumulative means of the studies,
was used to estimate the RoB for the DL-based systems (see Appendix A Tables A1 and A2).
These were determined by utilizing a grading method to score the respective properties.
A total of 29 variables, including those related to demographics, architectural details,
performance evaluation, parameter optimization, and clinical evaluation, were used to
evaluate the DL-based systems. A cumulative distribution plot was computed (red line)
creating MH-Cutoff = 2.3. Based on the two cut-offs—low-moderate (LM) and moderate-
high (MH)—all sixty DL-based investigations were divided into three categories: low bias
(7 studies), moderate bias (18 studies), and high bias (35 studies). As seen in Figure 16, the
LM cut-off value was 2.8 and the MH cut-off values 2.3. High bias was caused by a lack of



J. Cardiovasc. Dev. Dis. 2023, 10, 485 24 of 54

information regarding in family histories, smoking, ethnicity, and clinical settings as well
as by precision and recall issues.
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5.2. Radial Bias Map Method

To analyze the bias in these DL systems, it was necessary to ascertain the importance
of the AI characteristics (A1 to A34) that were utilized to create the UNet paradigm of
wall segmentation in the IVUS scan. Different clusters, including those for demographics,
architectural characteristics, performance assessment, and parameter optimization, were
employed to describe these AI properties. In these four clusters, the distribution of AI traits
is 6, 7, 11, and 10, respectively. The “spokes and wheel model”, which was visualized, was
used to measure the strength of these AI traits in 360 degrees. Each spoke in this model
represents the weights times the spoke radius as a product. The weights of the AI traits
are represented in the weight matrix, which was built by knowledgeable AI experts based
on their judgment. Every study contains 34 attributes in total, one for every 10.5 (360/34)
degrees. The smooth curve was created by fitting the Bezier spline curve across each
spoke’s termination. In a 4 × 15 grid for 60 DL experiments, the four sectors of the curve in
the radial bias map are like the wings of a butterfly (which represent four clusters), as seen
in Figure 17. The order of these investigations is from low to high bias, with each study’s
bias shown in the map’s corner. (The bias map’s name is given as “Sn-Name: BiasValue”,
for instance, “S9Zhou:13”, where 9 is the study’s number, and Zhou is its first author). The
order determined by these weights is displayed in the ranking table (see Appendix A).
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5.3. Radial Bias Area Method

To estimate the regional bias area (RBA), the difference between the regions with the
best and worst DL attribute performance was used [153]. Figure 18 shows the RBA by
increasing order of bias area for each of the 60 DL-based IVUS wall segmentation tests
(white region). Each study’s bias is shown as “Sn-Name: Bias Value”, for instance, “S18-
Cheung et al.: 620”, where “18” stands for the study’s number, “Cheung” for the study’s
first author, and “620” for the bias’s normalized value. The amount of area that correlates
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to bias increases with the height of the white shaded region. In Appendix A, the ranking
table is displayed.
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5.4. Comparative study of Three Bias Strategies Based on Venn Diagram

This section uses a Venn diagram (VD) to assess the relationship between the three
approaches for RoB: ranking (RBS), radial bias map (RBM), and radial bias area (RBA)
model. The three types of bias employed in the VD process are shown in Figure 19a,c,
including low bias (Figure 19a), moderate bias (Figure 19b), and high bias (Figure 19c).The
number of studies in low bias (out of 28 studies) for RBM, RBA, and RBS was three
(10%) [48,58,62], eight (28%) [45,49,50,57,60,61,64,69], and four (14%) [24,48,65,67] respec-
tively, whereas the number of studies under low bias (out of 60 studies) for RBM, RBA,
and RBS was seven (12%) [58,75,79,81,82,86,87], twelve (20%) [28,65,77,84,85,89–94,111],
and seven (12%) [24,48,55,58,59,62,67], respectively. Out of 28 and 60 studies, respectively,
2 [48,62] and 1 [58] studies fell within the intersection of RBS and RBM, whereas no shared
studies were discovered under the intersection of (RBA, RBM, RBS), (RBA, RBM), and
(RBA, RBS) in either study.

The number of studies in moderate bias (out of 28 studies) for RBM, RBA, and RBS was
three (10%) [53–55], nine (32%) [47,51,53,54,56,62,68,71,72], and eleven (39%) [44,46,47,53–
58,71,99], respectively. The number of studies that fell under the intersection of (RBA,
RBM, RBS), (RBA, RBS), and (RBM, RBS) was two, three, and one, respectively, whereas
no common studies were found under intersection of (RBA, RBM). On the other hand, the
number of studies under moderate bias (out of 60 studies) for RBM, RBA, and RBS was
9 (15%) [43,69,74,78,80,83,95,96,98], 20 (33%) [43,49,57,61,64,69,73,74,78,80,82,83,86–88,95,
98,120,160,161], and 18 (30%) [44–47,50–55,59–61,71,72,75,76,96], respectively. The number
of studies that fell under the intersection of (RBA, RBS), (RB, MRBS), and (RBA, RBM)
was two, one, and eight, respectively, whereas no common studies were found under the
intersection of (RBA, RBM, RBS).

The number of studies in high bias (out of 28 studies) for RBM, RBA, and RBS was
22 (78%) [24,44–47,49–51,56,57,59–61,63,64,66–72], 11 (39%) [24,44,46,48,52,55,58,59,62,67,99],
and 13 (46%) [45,49–52,57,60,61,64,68–70,100], respectively. The studies that fell under the
intersection of (RBA, RBM, RBS), (RBA, RBM), and (RBM, RBS) was two, five, and six,
respectively, whereas no common studies were found under the intersection of (RBA, RBS).
Moreover, the number of studies under high bias (out of 60 studies) for RBM, RBA, and RBS
was 44 (73%) [24,28,44–57,59–62,64–74,77,84,85,88–94,97,100,111], 28 (46%) [24,43,45–48,50–
56,58,60,66–68,70–72,75,79,81,96,99,100,162], and 35 (58%) [28,43,49,56,57,64,65,68–70,73,76–
95,97,98,111,120], respectively. The number of studies categorized under the intersection
of (RBA, RBM RBS), (RBA, RBM), (RBA, RBS), and (RBM, RBS) was 3, 20, 1, and 18,
respectively.

The cut-off for the bias can be stratified into three categories: low bias, moderate bias,
and high bias. With the change in the cut-off values, the studies can be categorized into
generalized studies. Generalized studies are more reliable studies because here, the AI
system yields higher accuracy on the unseen datasets. Unseen datasets are the datasets that
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are not part of the training protocol. In unseen analysis, the system is trained using data
from hospital A, and prediction is carried out on the test data from hospital B. A higher
accuracy of the unseen analysis proves that the system is more reliable. For the low-bias
systems, the generalizability is better than that of the high-bias systems.

In summary, Table 2 below shows the characteristics of how the generalizability and
the reliability strengths are depicted with the type of bias.
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Table 2. Types of Bias.

Bias Type Generalizability Reliability

High bias Low Low
Moderate bias Moderate Moderate

Low bias High High

Generally, bias can be integrated into AI-model at various stages of development
and deployment. The various phases of development at which bias can be into model
is pre-processing stage, in-processing stage and post-processing stage [163–166]. Bias in
data collection and gathering are primarily reason for pre-processing bias, algorithmic
design causes the bias during in-processing stage and the training and model deployment
leads to bias during post-processing stage. In order to mitigate bias at various stages of
AI-model, critical AI-parameters are chosen which not only enhance the model discrim-
inability but also improve the learning process during model training [167–172]. Model
outcomes should be explainable and interpretable to ensure its interoperability and gen-
eralizability. The model design is black box to the end user. However, the model should
be explainable to identify the reasons for AI-bias in the system. The explainable model is
helpful in identifying the possible solutions to mitigate bias and generate sophisticated
model architecture [169,173,174].

6. Explainability in AI

Because of the fact that DL programmers routinely outperform humans at tasks like
recommendation systems, voice, and image recognition, among many others, they have
gained considerable attention. However, these applications are neither dependable nor un-
derstandable. The fact that DL models are intangible and challenging-to-comprehend black
boxes with complicated underlying mechanisms is a serious issue. They lack justification
for their decisions and predictions, which makes it impossible for people to believe them.
These problems are resolved with explainable AI (XAI) [175–180]. Models for machine
learning operate in a “black box”, which means they can only forecast the outcomes and
cannot answer “why family” questions like “Why do you act that way?”, “Why should I
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believe you?”, “Why is there nothing else?”, “When do you achieve success?” “Why are
you failing?”, and many others.

Explainability in AI can help with (i) the AI model’s debugging, (ii) the outcome’s
validation, and (iii) providing a visual justification for the AI model’s classification of the
image. Although several studies have recently been published on XAI, the IVUS scan of
coronary arteries applications for wall segmentation using UNet has been the subject of
only a few investigations.

When establishing a relationship, correlation, or links between the CVD risk stratifi-
cation of various clinical outcomes, XAI is even more crucial. This is due to two factors:
(a) the fact that XAI was first introduced to the computer vision market in 2015—less than
seven years ago—and (b) the lack of integration between some tools, such Shapley additive
explanations (SHAP) and UMAP, and DL packages. For location-based data, LIME [181]
and SHAPLEY [182] have served the purpose, whereas heatmaps were employed for the
image data.

When we need to validate the outcome, the necessity for XAI is increasingly critical.
For instance, in an IVUS scan, we might need to spot any lesions or other IVUS scan artifacts
in the plaque-cut regions that are sick. Here is the XAI requirement that yields the desired
outcome. We thus employ a heatmap visualization method for an explainable AI model to
achieve this.

There are many characteristics of the lesions namely texture, contrast, intensity varia-
tion, and density alteration [183]. Gradient-weighted class activation map (or “Grad-CAM”)
was recently designed to reconstruct the color map of the lesion area. Grad-CAM utilizes
as the name says the gradient of the target to predict a coarse localization that displays
the color heatmap in the form of images of lesions and control region. Whether they
entail vascular or non-vascular applications, medical imaging applications must all be
understandable and easy to interpret. Thus, UNet with explainability (XAI) offers fresh
opportunities in the fields of vascular and non-vascular medicine.

As shown in Figure 20, Malching et al. [184] proposed a model parallel net. At the
point of contention in the parallel net design, the original UNet and fully connected neural
network (FCNN) were joined. UNet was used for crack tip segmentation, while an FCNN
regressor was used for crack tip position. To examine interpretability, the authors used the
Grad-CAM interpretability approach. The forward input data pass of the neural network
was used to acquire internal features, which were then weighted to aggregate the backward
pass’s average pooled gradients.
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7. Pruning in Wall Segmentation of IVUS Scan

In general, by chopping or deleting any of its weights that are redundant, have little
training value, or do not contribute to the design of the loss function, a deep neural network
(DNN) can minimize its size using the optimization technique of pruning. Pruning the
network [162,185–187] can assist in preventing the DNN from overfitting during training.
Further, if pruning of channels that share the same features of the image is conducted, then
the storage required drastically decreases.

The pruning methods can be either weight pruning, channel pruning, or hybrid prun-
ing. The weight pruning approach removes the redundant weight and only keeps weights
that contribute to the result [188–192], whereas in channel pruning, unnecessary channels
are removed from the feature images [193–200]. A pre-trained teacher network architecture
is given, and the objective of hybrid pruning [99,201,202] is to seek and identify the short-
est network model from that architecture while preserving the best level of accuracy. In
comparison to the teacher network, the student network is streamlined and decreased [203].

Neural network pruning can be applied to the IVUS scan of coronary artery wall
segmentation using the UNet-based deep learning approach in order to optimize the seg-
mentation architecture design. We can improve the UNet-based IVUS segmentation by
cutting the parameter size (total number of training parameters during the supervised
training system design). Sometimes, some techniques prune the layers of UNet (by truncat-
ing the standardized five layers of Ranneberger), and such pruning is called automated
mini UNet (AM-UNet) [204], where the UNet size is decreased by cutting some layers of
the UNet, and in this way, the computational complexity of the architecture decreases and
also provides good accuracy. There is another pruning method called half-UNet, where the
UNet is chopped into half by removing all the decoders and making sure only one decoder
remains so that all the skip connections add up using ADDER to make the output; such a
system is called half-UNet [205].

Because it primarily streamlines the feature fusion portion, we here advise using
a half-UNet (Figure 21) for pruning-based coronary wall segmentation in IVUS images.
Half-UNet decreases network complexity by combining channel numbers, utilizing full
scale feature fusion, and implementing ghost module [205].
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Evolutionary techniques are now employed to enhance training by reducing the
number of parameters, including (i) the whale optimization (WO) algorithm, genetic
algorithms (GA) [206,207], particle swarm optimization (PSO) algorithm, and differential
evolution algorithm (DEA).

The deep learning networks can be optimized using the four evolutionary algorithm
(EA) methods. These are as follows:

Differential evaluation algorithm (DEA): DE is a reproduction method that makes use
of unit vectors to convey distance and orientation data and enhances solutions through
evolutionary processes [208,209]. To create new vectors, the procedure involves mutation
recombination [210,211]. These algorithms swiftly explore huge design areas while making
few assumptions about the underlying optimization problem.

Genetic algorithm (GA): A population of individuals who differ from one another
is maintained via the second EA approach, which is known as GA and was inspired by
Darwin’s theory of evolution [212]. Survival of the fittest refers to the idea that those
who are more adapted to their surroundings have a better chance of living, reproducing,
and passing on their traits to subsequent generations. GA produces optimized solutions
through the processes of selection, crossover, and mutation [213,214].

Particle swarm optimization (PSO): The third EA approach, known as PSO, was first
presented by Kennedy and Eberhart [215] in 1995. It is based on the idea that a flock of
birds or fish learns from one another to determine the optimal location to eat [216,217]. In
this instance, a random 0 and 1 are used to create the location vector. It is assumed that the
place of food corresponds to the vector with the maximum fitness. It has a collection of
equations for determining fresh location vectors in subsequent iterations.

Whale optimization (WO): Lastly, inspired by the meta-heuristic optimization algo-
rithm [218] such as WO, was used as an Evolutionary Approach. Due to humpback whale
behavior of chasing and encircling its prey in a spiral loop, this algorithm was named as
WO [219,220]. The position of the prey was located when the best vector with the high-
est fitness, as a result, the algorithm converges to that location. The algorithm provided
the flexibility to create a new set of equations as new position vectors which represented
next iteration.

8. Critical Discussion
8.1. Principal Findings

The proposed investigation concentrated mostly on UNet methods for wall segmen-
tation in IVUS scans. The distinctive features of the UNet-based systems were addressed
together with their architectures. When segmenting the walls of the IVUS imaging using the
UNet model for statistical analysis, 30 studies were taken into account. It was determined
that the main purpose of the UNet is to automatically segment the walls of IVUS images
for coronary artery disease based on input risk variables.

Furthermore, UNet-based systems handled the variation among the risk factors and
what was actually happening better than conventional-based systems overall. The UNet
model was more widely used, but as the AI methodology improved, a different form of
UNet was introduced that exhibited superior segmentation results than the UNet because
of the combination of several models. The different UNet variations techniques utilized in
the DL framework were UNet VGG16, dual-path UNet, MFAUNet, BCDUNet, UNet deep
CNN, 3D-dense UNet, eight-layer UNet, UE-Net, retina UNet, attention UNet, IVUS-Net,
and T-Net. The risk-of-bias (RoB) assessment was presented in the DL framework for wall
segmentation of IVUS pictures. Out of the 60 publications taken into account for UNet and
the traditional technique, the bias classifications included low bias (7 papers), moderate
bias (18 papers), and high bias (35 papers). The factors that contributed to the bias were
also determined.

The major research contributions of our study are as follows:
In-depth analysis of UNet-based deep learning models for wall segmentation in

IVUS scans: This covers the state-of-the-art methods used for the characterization of
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the walls of the IVUS scans. Comparison of conventional vs. UNet-based deep learning
methods for wall segmentation in IVUS scans: This comparative table consists of 26 columns
corresponding to the attributes used in the comparison. Sixty studies were used when
analyzing these 60 studies. The PRISMA method was used for selection of the references
and classifying them into correct bins. Statistical analysis was adopted after analyzing all
the studies. Three kinds of bias techniques for AI methods were used for analyzing the
IVUS-based wall segmentation. Explainability of AI methods was used for IVUS-based
segmentation. Pruning techniques for large AI models were used for IVUS segmentation.
We benchmarked our study against the previous studies used for IVUS segmentation. We
discussed the unsupervised solutions for IVUS segmentation. Possible new UNet-based
methods for IVUS wall segmentation were detailed.

8.2. Benchmarking

The benchmarking table for IVUS picture segmentation using AI (ML or DL), which
consists of fourteen review papers [160,161,221–231], is shown in Table 3. Each relevant
study from row R1 to row R14 has eleven attributes (columns C1 to C11) listed in the table.
The studies (C1), year of the study (C2), AI specification of the study (C3), objective of
the study (C4), use of the PRISMA model (C5), statistical classification role (C6), field of
application (C7), architectural classifications of the study (C8), performance or not of bias
analysis in the study (C9), number of studies used (C10), and finally, the total number
of citations used in the study (C11) were the eleven attributes that were addressed. Row
R1, rows R3 to row R5, row R7, and rows R9 to row R11 show the studies that applied
both ML and DL methods, whereas rows R2, R6, R12, and R14 show the research that
used DL techniques. Segmenting the plaque, risk assessment or classification, detection,
and comparison of ML or DL approaches were the goals. Six studies used the PRISMA
model as a framework. Six research performed the statistical categorization; other studies
did not demonstrate the classification based on statistics. Heart failure, stroke, CKD, RA,
myocardial infarction (MI), myocardial perfusion (MP), and CAD were the applications.

Table 3. Benchmarking Table.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

SN Studies Year AI
Spec. Obj. PRISMA Stat.

Classn Application Arch.
Classn RoB # of

Studies
T.

Citations

1 Jamthikar et al. [222] 2021 ML/DL Risk
assessment P P CVD,

CKD P O 120 120

2 Lin et al. [160] 2021 DL Risk
assessment O O CAD P O 18 58

3 Faizal et al. [223] 2021 ML/DL Risk
prediction O O CVD P O 139 139

4 Biswas et al. [224] 2021 ML/DL Segmentation O P CVD P O O 163

5 Saba et al. [225] 2021 ML/DL Comparison P P CVD P O 229 229

6 Hinai et al. [226] 2021 DL Detection P P MI P O 12 48

7 Yasmin et al. [227] 2021 ML/DL Detection O O Heart
failure P O 22 128

8 Jamthikar et al. [228] 2020 ML Risk
assessment P P CVD P O 120 120

9 Monti et al. [229] 2020 ML/DL Detection O O CAD, MP P O O 40

10 Saba et al. [230] 2019 ML/DL Risk
assessment P O CVD,

stroke P O 111 111

11 Khanna et al. [221] 2019 ML/DL Risk
assessment O O RA, CVD P O 150 150

12 Krittanawong et al. [231] 2019 DL Comparison O O CVD P O 20 105
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Table 3. Cont.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

SN Studies Year AI
Spec. Obj. PRISMA Stat.

Classn Application Arch.
Classn RoB # of

Studies
T.

Citations

13 Banchhor et al. [161] 2018 ML Stratification O O CVD P O 153 153

14 Proposed study 2022 DL Segmentation P P CAD P P 105 105

SN, serial number; AI Spec., AI specialization; Obj., objective; Stat Classn, statistical classification; Arch. Classn,
architectural classification; #, number; T. Citations, total citations; CVD, cardiovascular diseases; CKD, chronic
kidney diseases; MI, myocardial Infraction; MP, myocardial perfusion; CAD, coronary artery diseases; and RA,
rheumatoid arthritis.

8.3. A Special Note on Comparison of the Latest Deep Learning Solution vs. UNet-Based Models

For the partition of lumen, vessel, and plaque volume in IVUS, Bass et al. [232] used
the ML model. The authors compared the ML-based strategy with the laboratory core (LC)
reading-based method for measuring percent atheroma volume (PAV). By taking the 10 mm
segments, the gold standard of PAV was at baseline 52.31% and was at follow-up 49.42%.
Using the ML solution, the PAV at baseline was 51.55%, while during the follow-up, it was
47.81%. The authors showed the change was <4% with a p-value < 0.001.

In a different study by Arora et al. [233], the authors offered a reference cohort with
a larger sample size that was obtained utilizing different transducer frequencies while
taking into account complicated and variable lesions. Further, the study showed the gold-
standard tracings that are vital for benchmarking the automated methods and during the
supervised learning.

The authors of a more recent study by Blanco et al. [234] created a two-stage paradigm
for vessel contours (MA borders) and lumen (LI borders), where stage I involved prelimi-
nary segmentation using deep neural network (DNN), and stage II involved a Gaussian
process-based (GP) model, similar to the method in [235,236]. The cohort consisted of
160 patients, out of which 100 patients (8427 frames) were used for training, 30 (2583 frames)
were used for validation, and 30 (2425 frames) were used for testing (prediction). The
authors computed standardized metrics for performance evaluation, namely Dice similarity
and Jaccard index, yielding a value of 0.913 [CI: 0.882,0.935] and 0.940 [CI: 0.917,0.957],
respectively.

In study [237], bilateral collaboration learning (BCL) is suggested for vessel contour
detection (VCD) in intracoronary pictures. By explicitly splitting the label space and
modelling transferable features from both the inter- and intra-domain, it obtained domain-
invariant features for bilateral knowledge transfer. Additionally, the BCL instantiated
it. For each modality, the BCL extracted domain-invariant features as auxiliary data to
enhance contour detection performance. Additionally, it improved the encoder’s capacity
to encode high-level semantics data by using transformer architecture. Numerous trials
showed that the BCL is more efficient than and superior to the most recent single-modality
and cross-modality VCD techniques.

In the study [238], by combining active learning and assisted annotation, the authors
presented a unique framework for evaluating segmentation quality that can significantly
lessen the annotation effort required for both image selection and annotation. With the
help of the probability attention module (PAM), their two-branch network can concurrently
learn the parameters for segmenting images and spot segmentation mistakes. Their method
successfully reduced the required size of the training set by choosing only the image data
that the segmentation quality assessment (SQA) module identified as potentially having
larger regions of incorrect segmentation.

A general post-processing segmentation system for IVUS images was developed that
computed lumen and EEM borders [239]. For extracting the lumen boundaries in temporal
framework an exclusive set of context-based feature encoder was used. Further, for high
resolution segmentation, the authors used a selective transformer recurrent UNet. For
difficult areas of segmentation, the authors used inference-based segmentation. Finally, for
the effective framework, temporal constraint and fusion model was adopted.
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8.4. A Short Note on UNet and Its Ability

UNet architecture, which was first released in 2015, has completely revolutionized the
field of deep learning. The convolutional neural network UNet’s function is to segment
biological pictures. The network architecture was extended and modified from a fully
convolutional network’s initial design to handle fewer training images and deliver more
accurate segmentation. Utilizing this UNet architecture, segmenting images in sizes of
512 × 512 can be accomplished rapidly on a modern GPU.

There have been many variants and modifications of this architecture due to its phe-
nomenal success. These variants are UNet VGG16, dual-path UNet, MFAUNet, BCDUNet,
UNet deep CNN, 3D-dense UNet, eight-layer UNet, UE-Net, retina UNet, attention UNet,
IVUS-Net, and T-Net. The purpose of UNet is to gather both the localization and context
features. This process is successfully completed by the type of architecture that is built.
The main objective of the procedure is to produce outputs with higher resolution on the
inputs made by using successive contracting layers that are immediately followed by
upsampling operators.

8.5. A Special Note on Machine Learning

The ML algorithms can learn and accurately become smarter over time due to the
larger (augmented) and variable data sizes. This is because the supervised training model
uses the observation data along with the labelled (gold standard or ground truth) datasets.
The gold standard act is supervision to the training model, which can be linear or non-linear
in nature. When the ML learning model over-learns, then it is under the memorization
phase, and the model should be more generalized. Thus, there is always a challenge for the
ML system to generalize vs. memorize. While the ML system can learn, the ability of the
ML system to perform well also depends upon the feature extracted and the feature selected
for training the ML system. Thus, the power of ML can be used for the characterization of
the problem [240].

8.6. A Special Note on the Differences between Machine Learning (ML) and Deep Learning
(DL) Features

ML features: ML features are the features that are computed manually. They are
typically statistical in nature but for the specific regions of the image. The region of interest
(ROI) is also computed either manually or semi-automatically in the image. Once the
ROI is computed, the statistical feature is extracted for these regions. These regions have
different characteristics that can distinguish different types of classes, namely control, mild,
moderate, or high risk (or high severity regions). These ML-derived features are typically
statistical in nature, such as contrast, moments, frequency domain analysis, signal-based
analysis [241–243], and local binary patterns (LBP) [244]; texture features based on first-
order statistics, gray level co-occurrence matrix, and run length matrix [245]; gray-scale
features based on stationary wavelet transform [246]; and higher-order spectra (HoS) [247].

Note that these features have different strengths for different kinds of disease classifica-
tion paradigms. The magnitude of these features is thus the driving force for the ML model
classifiers to learn about the characteristics of the classification process. The challenge in
ML-based classification is the process by which the features are computed, trained, and
applied to transform the test feature for the prediction of the test label. Due to the ad hoc
nature of the feature extraction process, the manual application of these features for the
generation of the training-based model puts an extra burden on the classifiers. Further,
note that these features are sorted out for the best training model generation. In summary,
the (i) feature generation, (ii) feature reduction, (iii) feature application for generation of
the training-based model, and (iv) application of the trained model to the test features to
predict the test labels are almost entirely done manually.

Deep learning features: On the contrary, the power-automated iterative process of
convolution followed by max pooling allows for automated feature extraction [117,139].
Following the feature extraction, the weight transformation takes place in forward and
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backward propagation using neural networks (NN), allowing a powerful and effective
paradigm for classification [248]. Since NN provides the flexibility of increasing the number
of layers, the refinement of the features is all automated.

Note that deep learning systems are complex to design due to the number of layers in
the AI system [145]. The feature extraction process causes a more complex design of DL
systems compared to conventional systems. The number of operations that AI systems
must undergo is large. This is due to the large number of neurons in the neural network
(NN) design [40]. Further, the forward and backward runs in the NN make the number-
crunching process complex. This can even become more challenging if the batch size is
large. Typical batch sizes can range from 8 to 16 to 24, based on the hardware’s ability, such
as the RAM and clock speed of the system. Although this is challenging in DL systems,
conventional systems can also face challenges if the number of iterations is large. This can
be said of the “level set functions”, which require a greater number of iterations to for the
boundary curves to settle at the correct edge of the interfaces. One of the challenges in the
DL system is the hardware constraint. The complexity of DL architectures derives from
the large number of layers that make up the DL architecture; it is therefore important to
use a GPU cluster, which has the capacity to process a large number of instructions per
second. This increases the cost of the AI system design. One of the biggest challenges in
the DL system is the need for the optimization of DL algorithms, and this requires the
fine tuning of the hyper-parameters. The items included in this are as following: learning
rate, batch size, epoch per iteration, iteration count, optimizer scheme (such as adaptive
moment estimation (ADAM), stochastic gradient descent (SGD), and interaction with the
quality control system), and learning rate. The decision of the necessary amount of samples
is one of the main issues and challenges in deep learning models. The data sample not
only needs to be large in size, but it needs to consist of quality datasets. Thus, one needs
a strong quality control system through actions such as augmentation, balancing, filling
values, scaling of the values, normalizations, etc.

8.7. Pros and Cons of Conventional and AI Systems

While conventional systems have poor performance and are ad hoc in nature [130,224],
AI systems also offer several challenges, such as complex design due to large number of NN
layers [249,250], increased number crunching due to forward and backward propagation,
and restrictions of limited batch sizes [251]. The other challenges include the hardware
and its cost requirements due to the GPU cluster need [252], the need for optimization and
hyper-parameter tuning [41], and finally, the need for data size requirements [151,253–255].

8.8. Advantage of the UNet Architecture

UNet has been extensively utilized in the computer vision industry for image-based
segmentation tasks. UNet consists of multiple parts, including the bottleneck layer, skip-
connection, encoder, and decoder. These parts can be combined in a number of ways to
create a strong UNet system that can be used for both vascular and non-vascular tasks [39].

8.9. A Short Note on Unsupervised Paradigms

Unsupervised learning refers to a machine learning method that uses training datasets
without constantly checking the models. Instead, the model analyzes the incoming data
to extract patterns and insights that were previously concealed. The branch of machine
learning where training of the model does not utilize the gold standard can be categorized
into unsupervised learning. Sometimes, in unsupervised learning the training model uses
ad hoc labels as gold standard which can therefore be used as training. These ad hoc labels
can be derived from the unsupervised architecture itself and therefore, can be reused as
gold standard. Thus, unsupervised learning is a kind of supervised learning in nature.
In the unsupervised learning protocol, three sets of operation typically happen, namely,
revealing of the structure, arranging and presenting in the concise form of the dataset. Even
though unsupervised learning sounds challenging, it tries to mimic the human learning
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based on their experiences, thereby, cloning typical AI. Since, the unsupervised learning
involves both unlabeled and uncategorical paradigms, therefore becomes more important
during their design. There are several popular unsupervised learning techniques includes
principal component analysis, neural networks, k-means clustering, KNN, hierarchical
clustering, and independent component analysis.

8.10. Strengths, Weakness, and Extensions

The major advantage of this study was the selection and collection of the repository
of studies which led us to better understanding of IVUS-based wall segmentation using
UNet-based paradigm. The current research offered insight into the structural variances
of the UNet-based paradigm on 29 different types of AI features. This study offers a
ranking-based method for categorizing ML experiments into three groups (LB, MB, and
HB). Also, we analytically showed that studies using UNet had less bias than studies that
did not use UNet. Overall, our research established the connection between the LB, MB,
and HB distributions and described the AI-attributed behavior throughout 30 UNet and
30 non-UNet investigations.

Even though the outcomes of previous studies were positive and promising, it lacks
clarity and evidence of the missing data. Numerous advanced-AI groups have not par-
ticipated due to lack of resources and funding and ability to share proprietary datasets.
Not every study included all of the attributes listed in the benchmarking table. By evaluating
in-depth a greater number of attributes, the study can be improved for more accurate bias
estimations. Further, fusion techniques can be incorporated to improve the wall segmentation.

Recent research suggests CAD risk stratification using surrogate biomarkers such as
carotid artery disease [256–260]. In the future, there is a need to understand the vascular
implications of COVID-19 on CAD [20,261,262]. Other applications include understanding
erectile dysfunction using CAD [221,263]. Implementing attention mechanisms (such as
self-attention) can help the model focus on relevant parts of the IVUS images, improving
accuracy. Generative adversarial networks (GANs) can be used to generate synthetic
IVUS images, which can augment the training dataset and enhance the segmentation
model’s performance. Fusion of IVUS data with other imaging modalities like optical
coherence tomography (OCT) or angiography can provide complementary information,
leading to more accurate segmentation results. Future developments will focus on creating
efficient algorithms that can segment coronary artery walls in real-time, enabling immediate
feedback to clinicians during procedures.

9. Conclusions

This study focused on an in-depth analysis of UNet-based deep learning models for
wall segmentation in IVUS scans. The comparative table consists of 26 columns corre-
sponding to the attributes used in the comparison of conventional vs. UNet-based deep
learning methods for wall segmentation in IVUS scans and is based on 60 studies. The
PRISMA model was adopted for the selection of references and their classification into
correct sections. After analyzing all the research, statistical analysis was used. UNet-based
architecture is the most powerful paradigm for coronary wall segmentation because of
its capacity for automatically obtaining contextual and semantic characteristics despite
numerous variations in IVUS scans. The versatility of a UNet-based architecture allows
for the provision of UNet variations with different designs for encoders, decoders, skip
connections, bottleneck layers, and loss functions. Due to the lack of clinical interface in the
studies, there exists a bias in DL models. We demonstrated three kinds of RoB methods,
namely ranking, regional, and radial methods. We further showed that these bias methods
are potent frameworks for bias estimation in UNet models for CAD wall segmentation
in IVUS scans. The low-moderate (LM) and moderate-high (MH) cut-offs, which were
found to be 2.9 and 2.5, respectively, divided the 28 DL-based research into three categories:
low bias (4 studies), moderate bias (11 studies), and high bias (13 studies). We provided a
set of five points as recommendations for reducing the RoB, which include the following:
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(i) larger cohort size, (ii) superior gold-standard collection, (iii) usage of the tools in clinical
settings, (iv) adaptation of different variations of UNet to ensure the superior segmentation
outcome, and (v) consistent data collection using multicenter cohorts. The deep learning
networks can be optimized using the four evolutionary methods: whale optimization,
genetic algorithm, particle swarm algorithm, and differential evaluation algorithm.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcdd10120485/s1, Table S1: Non-UNet/conventional method of DL systems;
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Appendix A. Ranking Tables

Table A1. Ranking of IVUS-based studies that uses UNet architectures, utilizing the scores obtained
from the bias model.

Studies Mean Cumulative Mean Rank

Shinohara et al. [62] 3.6 3.6 1
Huang et al. [67] 3.3 6.9 2
Song et al. [24] 3.1 10 3

Li et al. [47] 3.0 13 4
Momin et al. [58] 2.9 15.9 5

Yang et al. [55] 2.9 18.8 6
Guo et al. [99] 2.9 21.7 7
Kim et al. [48] 2.8 24.5 8

Szarski et al. [54] 2.8 27.3 9
Balakrishna et al. [46] 2.7 30 10

Milletari et al. [53] 2.7 32.7 11
Yang et al. [66] 2.7 35.4 12
Shen et al. [56] 2.6 38 13
Xia et al. [71] 2.6 40.6 14
He et al. [44] 2.6 43.2 15

Morris et al. [51] 2.5 45.7 16
Jun et al. [59] 2.4 48.1 17

Dong et al. [61] 2.4 50.5 18
Tong et al. [50] 2.3 52.8 19

Ibtehaz et al. [45] 2.3 55.1 20
Zhou et al. [52] 2.3 57.4 21

Cheung et al. [60] 2.3 59.7 22
Thuy et al. [68] 2.1 61.8 23

Jávorszky et al. [57] 2.1 63.9 24
Chen et al. [49] 2.0 65.9 25
Shi et al. [64] 2.0 67.9 26
Pan et al. [70] 2.0 69.9 27

Hwang et al. [69] 1.6 71.5 28

https://www.mdpi.com/article/10.3390/jcdd10120485/s1
https://www.mdpi.com/article/10.3390/jcdd10120485/s1
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Table A2. Ranking of IVUS-based studies that uses non-UNet architectures, utilizing the scores
obtained from the bias model.

Studies Mean Cumulative Mean Rank

Cho et al. [75] 2.10 2.10 1
Samuel et al. [96] 2.10 4.20 2
Olender et al. [81] 2.07 6.27 3

Min et al. [79] 1.97 8.24 4
Harms et al. [86] 1.83 10.07 5
Bajaj et al. [74] 1.72 11.79 6
Bajaj et al. [76] 1.69 13.48 7
Jin et al. [95] 1.69 15.17 8

Nishi et al. [80] 1.69 16.86 9
Mishra et al. [87] 1.62 18.48 10
Masuda et al. [78] 1.59 20.07 11

Du et al. [98] 1.52 21.59 12
Zhao et al. [82] 1.38 22.97 13

Bargsten et al. [83] 1.34 24.31 14
Lin et al. [97] 1.24 25.55 15

Araki et al. [43] 1.17 26.72 16
Cao et al. [91] 0.97 27.69 17

Fedewa et al. [77] 0.97 28.66 18
Hwang et al. [120] 0.93 29.59 19

Vercio et al. [65] 0.79 30.38 20
Taki et al. [92] 0.76 31.14 21

Jodas et al. [88] 0.72 31.86 22
Cui et al. [85] 0.66 32.52 23

Tayel et al. [84] 0.66 33.18 24
Faraji et al. [28] 0.66 33.84 25
Shin et al. [111] 0.66 34.50 26
Sofian et al. [90] 0.62 35.12 27

Eslamizadeh et al. [89] 0.59 35.71 28
Zhu et al. [94] 0.45 36.16 29
Unal et al. [93] 0.41 36.57 30

Appendix B

Table A3. Acronym table.

SN Acronym Definition SN Acronym Definition

1 AGs Attention gates 33 LATM Location-adaptive threshold method
2 AI Artificial intelligence 34 LI Lumen-intima
3 Bi-GRU Bidirectional gated recurrent unit 35 LSTM Long short-term memory
4 BN Batch normalization 36 MA Media-adventitia
5 CAD Coronary artery disease 37 MFAUNet Multi-scale feature aggregated UNet
6 CCTA Coronary CT angiography 38 MI Myocardial infarction
7 CKD Chronic kidney diseases 39 ML Machine learning
8 CNN Convolutional neural network 40 MRI Magnetic resonance imaging
9 CSA Cross-sectional area 41 NB Naïve Bayes

10 CT Computed tomography 42 NIRS Near-infrared spectroscopy
11 CVD Cardiovascular disease 43 PCA Principle component analysis
12 DCNN Deep convolutional neural network 44 PCI Percutaneous coronary intervention
13 DL Deep learning 45 PReLU Parametric rectified linear unit
14 DPUNet Dual-path UNet 46 PSO Particle swarm optimization
15 EAT Epicardial adipose tissue 47 RA Rheumatoid arthritis
16 EEM External elastic membrane 48 RF Random forest
17 EREL Extremal area of extremum level 49 RNN Recurrent neural network
18 FAM Feature aggregated module 50 RoB Risk of bias
19 FCM Fuzzy c-means 51 RPN Regional proposal network
20 FCNN Fully convolutional neural network 52 RRS Random radius symmetry
21 FNs False negatives 53 RUS Random undersampling
22 FPs False positives 54 SATM Scan-adaptive threshold method
23 GA Genetic algorithm 55 SDL Solo deep learning
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Table A3. Cont.

SN Acronym Definition SN Acronym Definition

24 GAN Generative adversarial network 56 SVM Support vector machine
25 GT Ground truth 57 TL Transfer learning
26 GVF Gradient vector flow 58 US Ultrasound
27 HDL Hybrid deep learning 59 VGG Visual geometric group
28 HMRF Hidden Markov random field 60 VH Virtual histology
29 IMTV Intima-media thickness variability 61 VSSC-Net Vessel-specific skip chain network
30 IVOCT Intravascular optical CT 62 WO Whale optimization
31 IVUS Intravascular ultrasound 63 XAI Explainable AI
32 KNN K-nearest neighbors 64 XCA X-ray coronary angiography

Fuzzy approach

The fuzzy method works incredibly well for image segmentation. The most significant
benefit of fuzzy c-means clustering is its high identification rate and low false-location rate.
However, noise affects the fuzzy c-means method. The FCM algorithm does not segment
images with complex textures, but it works well for images with simple backgrounds and
textures and retains more original image information. This ignores spatial knowledge and
only detects information on a grey scale. The primary challenge with this approach is the
absence of a precise border.

Parametric approach

The snake model for IVUS scan arterial wall segmentation has been covered here.
Identification and outlines of the target item for segmentation are the main tasks performed
by the model. The snake model is employed in the field of medical imaging to segment a
specific area of an image that differs from other areas of the image in a particular manner. A
number of difficulties with the snake model technique are addressed in advanced contour
approaches, including noise sensitivity and incorrect contour identification in objects with
high levels of complexity.

Geometric approach

One type of contour model called geometric active contour (GAC) moves the curve’s
points perpendicularly to modify the smooth curve created in the Euclidean design. The
points travel at a speed determined by the region’s curvature in the image. Contours
are defined by the geometric flow of the curve and the identification of objects in the
image. Both internal and external geometric measures in the area of interest are included in
geometric flow. Instead of using snakes, a geometric solution is used to identify objects
in an image. The level-set functions, which identify the distinct sections of the image for
segmentation, play a crucial role in these contour models. The issue with this strategy is
that, for the most part, it lacks these inefficiencies; but, because of their complexity, they are
challenging to apply.

Appendix C

GradCAM
XAI is a novel method of presenting attributes that emphasizes the salient features

of an image have the greatest influence on the model, as opposed to exhibiting individual
pixels. The effect of XAI shows the regions with different colors, namely, red, yellow,
blue, which are reflected by the AI model identification in the image. According to the
colour scheme, XAI uses red to represent the most influential regions, yellow to represent
the medium influential region, and blue to represent the least significant aspects. The
main advantage of GradCAM is its ability to validate whether the predicted classification
or forecasted value are correct. Further it helps in troubleshooting the output of the
classification. Explainability has three benefits: it may be used to (i) validate the results,
(ii) debug the AI model, and (iii) give a visual explanation of the factors that led the AI
model to classify the image in a particular way [40–42]. During the explainabilty, GradCAM
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helps in the visualization of AI prediction and its validation, given the color palette. Grad-
CAM helps in getting a localization color map which indicates the lesions of a particular
color (preferably red). This is because it utilizes gradients of the target label or class settling
into the last convolution layer. To highlight the IVUS lesions, using explainable AI, the
Grad-CAM (Equations (A1) and (A2)) depicts the color combination on the input image,
given the AI model. Note that, the color maps are generated based on the class probability
score. Further note that the process of model loss computation is accordance with the
standard prediction cycle. Based on the output from the desired model layer, one can
calculate the gradient in terms of model loss.

Lastly, pre-processing (Equation (A3)) is applied to the gradient areas that aid in the
prediction, superimposing the heatmap over the initial gray-scale scans. The original image
is then superimposed on top of this map.
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Here, the final score of class c is represented by Yc, while the global average pool of the
large convolution layer is denoted by the symbol, Ak. Note that the wc

k represents estimated
weights for the last convolutional layer for the class c, while Lc

ij represents a class-specific
saliency map for each spatial location (i, j).

Appendix D

Pruning Training Models

It is crucial to talk about the key characteristics of the three kinds of PAI networks
before analysing their similarities and differences. Model pruning in weight pruning is
accomplished by QLP [264] architecture using a single sequential pass from the first to
the last. To achieve more significant granular pruning, it gradually prunes each layer in
multiple rounds. We found that weight pruning produces four robust DNN architectures:
ResNet-32, -56, -50, and MobileNet-v1. CIFAR-10 and ImageNet are the two genuine
datasets that show sparsity levels ranging from 50% to 98%. The drawback of this model is
that it can only be used for unstructured pruning and needs a DNN model that has already
been trained. Alternatively, CLIP-Q [265] is a DNN compression algorithm that carries out
weight pruning and quantization concurrently with fine tuning. Pruning rate and bit budget
are the two hyper-parameters that are used.The authors showed that the compression rates
of AlexNet (51×) had improved by 35%, VGG-16 (72×) by 48%, GoogleNet (10×) by 57%,
and ResNet-50 (15×) by 139%, in that order. The algorithms’ accuracy and compression rate
were examined in the study, but no information was provided on FLOPs (floating-point
operations per second), compilation time, or energy usage.

The DeepCompNet [266,267] algorithm demonstrated quantization utilising the density-
based clustering algorithm (DBSCAN), compressing neural networks with Z-score in weight
pruning, and Huffman encoding. For devices with limited resources, the Z-score method
provides a straightforward and useful architecture. Weight distribution can be easily
implemented with Z-score to produce a sparse weight matrix for weight pruning. The raw
score’s location, or the deviation from the mean, is represented by the Z-score. Z-score
can be calculated using the following formula: Zi =

(W i−β)
α , where Wi is the ith weight of

the current layer, and β and α are the mean and the standard deviation of weight vector,
respectively. However, the algorithm has limited functionality for the LeNet architecture.
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Filter or channel pruning [268] involves pruning redundant and irrelevant filters
at the same time in the same iteration. Several pruning algorithms, including VGG-16,
ResNet, and MobleNet, were created to trim the CNN models’ filters. In MobileNetv1, the
pruning algorithm’s implications resulted in a 67.03% reduction in computing costs and
a 45.45% reduction in memory requirements. To improve compression performance and
lessen accuracy loss, this technique can also be utilized with KD. On the other hand, the
hybrid pruning paradigm RFC-HyPGCN [202] makes use of a sparse feature compressing
architecture. The primary advantage of sparse feature compactness was enhancing network
efficiency by eliminating zero storage in between layers. Since this kind of pruning increases
the computational load, it is useful for action recognition networks that demand high
power consumption. In addition to increasing the model’s throughput, this will speeds
up processing.

Applications-wise, the hybrid pruning algorithms are employed for action recognition
applications, while the weight and channel pruning algorithms are mostly used for picture
classification, segmentation, and detection. While hybrid pruning is used to both CNN and
GCNs, weight pruning and channel pruning are mostly applied to CNN models alone. We
need to provide more pruning approaches that are utilised to condense the DNN model in
addition to weight, filter, and hybrid pruning.

Appendix E. Half-UNet Concepts

Lu et al. [205] introduced Half-UNet, unlike conventional UNet, where the ideas was
lower the complexity without trading off the feature extraction process. This process led
into three types of innovations. The three concepts were named as follows: (i) unification of
channels, meaning that each layer should have the same number of channels; (ii) Using the
fundamental “addition operation”, post upsampling, Lu et al. [205] utilized scaled feature
maps derived from the encoders (contractual path) leading to full-scale feature fusion,
(iii) the bottleneck convolution complexity reduction using a ghost model. After examining
the complex nature of the UNet and UNet3+ models, the essence of the channel’s unification
was demonstrated. Every downsampling step in these models resulted in a doubling of the
channel count. For the uneven number of channels, Lu et al. [205] added a fundamental
3 × 3 convolution operation for every max-pool operation in UNet3+. As the result of
unification of the channel numbers, increment of the parameters posed a need for floating-
point operation per second (FLOPs). The key advantage of half-UNet is the reduction of
number of filters during convolution process. As a result of this, during decoder feature
fusion, there is a unification in the number of channels in all the feature maps. This is
because 3 × 3 convolution is not required by the decoder. This can be seen in the Figure 21,
where all the decoder layers are eradicated after receiving input from bottleneck utilizing
the input via skip-connection. This is a unique example of a single-stack decoder. As a
result, half-UNet becomes a simpler structure. Full-scale feature fusion is the second key
component of half-UNet. Keep in mind that concatenation operations are used by both the
original UNet and UNet3+ to fuse features.

Although concatenation operation is a fantastic option because it gives better results,
its complexity grows because it requires more memory and time. He et al. [269] introduced
a ResNet that use addition operation as a feature fusion technique. The authors incor-
porated their outputs to the stacked layer’s outputs and carried out identity mapping in
this procedure. Although more information was added to each dimension, the image’s
dimensions were not enlarged by this process. The complexity of the system was not
increased by this procedure because there were fewer parameters.

As depicted in Figure 21, this concept is applied in half-UNet. The ⊕ symbol appears,
indicating that the skip connections have been fused together to form a single decoder.
Reducing convolution complexity is the main principle behind this. As we aware of, the
largest computational expense in deep convolutional neural network (DCNN) [269–271] is
due to convolution operation. There is still significant amount of memory and floating
point operations (FLOPS) due to remaining 1 × 1 convolution layer, despite recent works
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like MobileNet [272,273] and ShuffleNet [274] introducing depth-wise convolution or
shuffle operation to build efficient CNNs using smaller convolution filters (floating number
operations). The main advantage of the ghost module is to reduce the computational
complexity and ability to provide more features via feature maps. The model facilitates in
calculation of the parameters and FLOPs during the convolution operation:

parameters =
(

k2 ∗Din + 1
)
∗Dout (A4)

FLOPS = 2 ∗ k2 ∗Din ∗Dout ∗HEout ∗WIout (A5)

Note that Din and Dout represents input and output sizes, while HEout and WIout
represents the height and width of the output maps. Note that * represents the arithmetic
products, where the kernel size is represented by k. A ghost module was suggested by Han
et al. [275] as a way to produce additional feature maps with inexpensive operations.

In the ghost module, one half of the feature map is generated by the fundamental
convolution operation while the second half of the feature map is generated by depth wise
separable convolution. These both are then concatenated to form the final output whose
dimension is same as the input dimension.

params =
(

k2 ∗ (Din + 1) + 2
)
∗ Dout

2
(A6)

FLOPS = 2 ∗ k2 ∗ (Din + 1) ∗ Dout
2
∗HEout ∗WIout (A7)

In the event that the image size is 128 × 128 with 3 × 3 convolution where the number
of input and output channels are 64. Using these dimensions, we achieve the number of
parameters and FLOPS are 36.92 K and 12.08 G, respectively. However, if the ghost module
is used, many parameters are needed, there would only be 18.78 K and 0.61 G FLOPs. As
such, Half-UNet makes use of the ghost module.

Advantage and Application of Half-UNet: As we already aware that UNet variants
enhanced model performance without changing the design of the U-shaped model. Half-
UNet simplifies both the encoder and the decoder. Half-UNet makes use of the ghost
module, full-scale feature fusion, and unification of channel numbers. The authors obtained
identical segmentation accuracy results when comparing the half-UNet findings with
UNet and its variants. Yet the parameters and FLOPs were decreased by 98.6% and
81.8%, respectively, in contrast to UNet. The authors conducted a comparison between
the outcomes of half-UNet and UNet, along with its variations, in various medical picture
segmentations, such as non-vascular mammography segmentation, non-vascular computed
tomography image segmentation of lung nodules, and non-vascular left ventricle MRI
image segmentation.

Appendix F. Bias Assessment

The foundation of the RBM theory is the notion that, in any unbalanced system, a leak
will always occur. This leak will always bleed and propagate in a specific direction, leading
to a protrusion. When comparing the leak’s strength to the area that hasn’t leaked, it is
apparent. The suggested system is made up of AI and its properties, which, when extended
in all directions, form a map. A dent, or so-called bias, is created in the system when certain
features are excessively strong while others are weak. Because the AI traits span 360 radial
directions, This system is what we refer to as a “radial bias” map (RBM). Furthermore, it is
possible to represent the regional bias area (RBA), an indirect measure of bias, as the map
area that is between the maximum strengths of the AI attributes that the system (study) can
contains and the least strengths of the AI traits. To get a cumulative score for each study, we
modify the scores for each attribute and each study in the third bias category. After ranking
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these scores, an estimate of the bias cut-off is made. The “rank-bias” score (RBS) approach
is a process for identifying bias that makes use of this kind of ranking paradigm [34].

It has previously been standardized that the role of clusters of attributes plays a
vital role in bias estimation. Recently in [34], hybrid deep learning (HDL) technology
was demonstrated for COVID diagnosis. These cluster attributes were a representation
of the design, optimization strategies for the AI algorithms, performance evaluation of
the diagnosis system, and clinical evaluation. In [34], these clusters were 14, 7, 8, and
10 attributes respectively.

We adopt the “spokes and wheel model (SWM)”, for pictorial representation of the
strength of the AI traits. The SWM model represents in 360 direction spanning all the spokes
of the attributes of the clusters. For a better understanding of the bias estimation algorithm,
we follow the same symbols as depicted in [34]. The algorithm can be summarized as
follows. As usual first we divide the traits into four prominent clusters, namely, design,
optimization, performance evaluation, and clinical validation. The second step consists of
spoke length computation of each AI attributes which is mathematically given as a product
of attribute weight times the 80% of half of the image size (256). In step three, we compute
the sum of the spoke length for each cluster, which is represented as ΣC1, ΣC2, ΣC3, and
ΣC4. The fourth step consists of computing the sum of top two and bottom two cluster
ΣA and ΣB. In fifth step, we compute the βradial = |ΣA − ΣB| as the absolute difference
between ΣA and ΣB, “−” represents subtraction. Finally, we compute the normalized bias
value (βnorm

radial) =
(
βradial

α

)
, where α represents the total number of AI traits. An important

depiction is the angle between the spokes which is represented as 360/34 = ~10.5 degrees.
Finally, to obtain the smooth curve, we use Bezier spline curve to fit to the end point of each
spoke. When the spline fits the end of the spokes for the four cluster, the shape represents
like a butterfly having four wings as depicted in Figure 17, expended in a 4 × 15 grid,
representing 60 experiments.
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1.0 Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed
Tomography Scans. Diagnostics 2022, 12, 1283. [CrossRef] [PubMed]

142. Sharma, N.; Saba, L.; Khanna, N.N.; Kalra, M.K.; Fouda, M.M.; Suri, J.S. Segmentation-Based Classification Deep Learning Model
Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics 2022, 12, 2132.

143. El-Baz, A.S.; Suri, J.S. State of the Art in Neural Networks and Their Applications; Volume 1: Imaging and Signal Analysis; Academic
Press: Cambridge, MA, USA, 2021.

144. Kumar, K.; Saeed, U.; Rai, A.; Islam, N.; Shaikh, G.M.; Qayoom, A. Idc breast cancer detection using deep learning schemes. Adv.
Data Sci. Adapt. Anal. 2020, 12, 2041002. [CrossRef]

145. Saba, L.; Biswas, M.; Kuppili, V.; Godia, E.C.; Suri, H.S.; Edla, D.R.; Omerzu, T.; Laird, J.R.; Khanna, N.N.; Mavrogeni, S. The
present and future of deep learning in radiology. Eur. J. Radiol. 2019, 114, 14–24. [CrossRef] [PubMed]

146. Jain, P.K.; Sharma, N.; Saba, L.; Paraskevas, K.I.; Kalra, M.K.; Johri, A.; Nicolaides, A.N.; Suri, J.S. Automated deep learning-based
paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: An asymptomatic Japanese cohort study.
Int. Angiol 2021, 41, 9–23. [CrossRef] [PubMed]

147. Saxena, S.; Jena, B.; Mohapatra, B.; Gupta, N.; Kalra, M.; Scartozzi, M.; Saba, L.; Suri, J.S. Fused deep learning paradigm for the
prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation.
Comput. Biol. Med. 2023, 153, 106492. [CrossRef] [PubMed]

148. Jain, P.K.; Sharma, N.; Giannopoulos, A.A.; Saba, L.; Nicolaides, A.; Suri, J.S. Hybrid deep learning segmentation models for
atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput. Biol. Med. 2021, 136, 104721. [CrossRef] [PubMed]

149. Jain, P.K.; Dubey, A.; Saba, L.; Khanna, N.N.; Laird, J.R.; Nicolaides, A.; Fouda, M.M.; Suri, J.S.; Sharma, N. Attention-based
UNet Deep Learning model for Plaque segmentation in carotid ultrasound for stroke risk stratification: An artificial Intelligence
paradigm. J. Cardiovasc. Dev. Dis. 2022, 9, 326. [CrossRef]

150. Dubey, A.K.; Chabert, G.L.; Carriero, A.; Pasche, A.; Danna, P.S.; Agarwal, S.; Mohanty, L.; Nillmani; Sharma, N.; Yadav, S.
Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based
Lung Segmentation: A Data Augmentation and Balancing Framework. Diagnostics 2023, 13, 1954. [CrossRef]

151. Skandha, S.S.; Gupta, S.K.; Saba, L.; Koppula, V.K.; Johri, A.M.; Khanna, N.N.; Mavrogeni, S.; Laird, J.R.; Pareek, G.; Miner, M.
3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification
using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0. Comput. Biol. Med. 2020, 125, 103958. [CrossRef]

152. Agarwal, M.; Saba, L.; Gupta, S.K.; Johri, A.M.; Khanna, N.N.; Mavrogeni, S.; Laird, J.R.; Pareek, G.; Miner, M.; Sfikakis, P.P.
Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization
paradigm on a weak training brain magnetic resonance imaging datasets: A supercomputer application. Med. Biol. Eng. Comput.
2021, 59, 511–533. [CrossRef] [PubMed]

153. Suri, J.S.; Bhagawati, M.; Paul, S.; Protogeron, A.; Sfikakis, P.P.; Kitas, G.D.; Khanna, N.N.; Ruzsa, Z.; Sharma, A.M.; Saxena,
S. Understanding the bias in machine learning systems for cardiovascular disease risk assessment: The first of its kind review.
Comput. Biol. Med. 2022, 142, 105204. [CrossRef] [PubMed]

https://doi.org/10.1007/s100440070008
https://doi.org/10.1007/s10916-015-0214-6
https://doi.org/10.3390/diagnostics11122257
https://doi.org/10.3390/diagnostics12010166
https://doi.org/10.3390/diagnostics12051283
https://www.ncbi.nlm.nih.gov/pubmed/35626438
https://doi.org/10.1142/S2424922X20410028
https://doi.org/10.1016/j.ejrad.2019.02.038
https://www.ncbi.nlm.nih.gov/pubmed/31005165
https://doi.org/10.23736/S0392-9590.21.04771-4
https://www.ncbi.nlm.nih.gov/pubmed/34825801
https://doi.org/10.1016/j.compbiomed.2022.106492
https://www.ncbi.nlm.nih.gov/pubmed/36621191
https://doi.org/10.1016/j.compbiomed.2021.104721
https://www.ncbi.nlm.nih.gov/pubmed/34371320
https://doi.org/10.3390/jcdd9100326
https://doi.org/10.3390/diagnostics13111954
https://doi.org/10.1016/j.compbiomed.2020.103958
https://doi.org/10.1007/s11517-021-02322-0
https://www.ncbi.nlm.nih.gov/pubmed/33547549
https://doi.org/10.1016/j.compbiomed.2021.105204
https://www.ncbi.nlm.nih.gov/pubmed/35033879


J. Cardiovasc. Dev. Dis. 2023, 10, 485 49 of 54

154. Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Puvvula, A.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.;
Kolluri, R. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial
Intelligence: An Investigative Study. J. Clin. Med. 2022, 11, 6844. [CrossRef] [PubMed]

155. Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput.
2006, 44, 1031–1051. [CrossRef]

156. Saba, L.; Than, J.C.; Noor, N.M.; Rijal, O.M.; Kassim, R.M.; Yunus, A.; Ng, C.R.; Suri, J.S. Inter-observer variability analysis of
automatic lung delineation in normal and disease patients. J. Med. Syst. 2016, 40, 1–18. [CrossRef] [PubMed]

157. Zhang, S.; Suri, J.S.; Salvado, O.; Chen, Y.; Wacker, F.K.; Wilson, D.L.; Duerk, J.L.; Lewin, J.S. Inter-and Intra-Observer Variability
Assessment of in Vivo Carotid Plaque Burden Quantification Using Multi-Contrast Dark Blood MR Images. Stud. Health Technol.
Inform. 2005, 113, 384–393. [PubMed]

158. Saba, L.; Molinari, F.; Meiburger, K.M.; Acharya, U.R.; Nicolaides, A.; Suri, J.S. Inter-and intra-observer variability analysis
of completely automated cIMT measurement software (AtheroEdge™) and its benchmarking against commercial ultrasound
scanner and expert Readers. Comput. Biol. Med. 2013, 43, 1261–1272. [CrossRef]

159. Saba, L.; Banchhor, S.K.; Araki, T.; Viskovic, K.; Londhe, N.D.; Laird, J.R.; Suri, H.S.; Suri, J.S. Intra-and inter-operator re-
producibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart J. 2018, 70, 649–664.
[CrossRef]

160. Lin, A.; Kolossváry, M.; Motwani, M.; Išgum, I.; Maurovich-Horvat, P.; Slomka, P.J.; Dey, D. Artificial intelligence in cardiovascular
imaging for risk stratification in coronary artery disease. Radiol. Cardiothorac. Imaging 2021, 3, e200512. [CrossRef]

161. Banchhor, S.K.; Londhe, N.D.; Araki, T.; Saba, L.; Radeva, P.; Khanna, N.N.; Suri, J.S. Calcium detection, its quantification, and
grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A
review. Comput. Biol. Med. 2018, 101, 184–198. [CrossRef]

162. He, Q.; Banerjee, S.; Schwiebert, L.; Dong, M. AgileGCN: Accelerating Deep GCN with Residual Connections using Structured
Pruning. In Proceedings of the 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval
(MIPR), Online, 2–4 August 2022; pp. 20–26.
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