Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics
2.2. CTEPH Model
2.3. Study Design
- Healthy animals (INT)—sham surgery has been performed in these animals which received vehicle only;
- CTEPH—sham surgery has been performed in these animals with CTEPH;
- CTEPH + Sympathetic Denervation (CTEPH + SD)—the animals with CTEPH were subjected to unilateral surgical sympathetic denervation;
- CTEPH + Vagal Denervation (CTEPH + VD)—the animals with CTEPH were subjected to unilateral surgical vagal denervation;
- CTEPH + Pyridostigmine (CTEPH + PS)—the animals with CTEPH were treated with reversible cholinesterase inhibitor pyridostigmine.
2.4. Surgical Interventions: Sympathetic and Vagal Denervation
2.5. Pharmacological Stimulation of Parasympathetic Nervous System
2.6. Transthoracic Echocardiography (TTE)
2.7. Invasive Hemodynamic Measurements
2.8. Histological Examination
2.9. Enzyme-Linked Immunosorbent Assay
2.10. Gene Expression Analysis
2.11. Statistical Analysis
3. Results
3.1. Mortality and Exclusions
3.2. Hemodynamic Parameters
3.3. Histological Examination
3.4. Enzyme-Linked Immunosorbent Assay
3.5. Gene Expression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoeper, M.M.; McLaughlin, V.V. Treatment of pulmonary hypertension. Lancet Respir. Med. 2016, 4, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Torbicki, A. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017, 26, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medrek, S.; Safdar, Z. Epidemiology and Pathophysiology of Chronic Thromboembolic Pulmonary Hypertension: Risk Factors and Mechanisms. Methodist Debakey Cardiovasc. J. 2016, 12, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Pepke-Zaba, J.; Hoeper, M.M. Chronic thromboembolic pulmonary hypertension: Advances from bench to patient management. Eur. Respir. J. 2013, 41, 8–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, C.Z.; Tay, E.L.W. Chronic thromboembolic pulmonary hypertension: A review. Singapore Med. J. 2021, 62, 318–325. [Google Scholar] [CrossRef]
- Tura-Ceide, O.; Smolders, V. Derivation and characterization of endothelial cells from patients with chronic thromboembolic pulmonary hypertension. Sci. Rep. 2021, 11, 18797. [Google Scholar] [CrossRef]
- Manz, X.D.; Pan, X. Elevated Von Willebrand Factor expression in the activated pulmonary endothelium of chronic thromboembolic pulmonary hypertension patients enhances platelet adhesion. Eur. Respir. J. 2020, 56, 1551. [Google Scholar] [CrossRef]
- Manz, X.D.; Szulcek, R. Epigenetic Modification of the von Willebrand Factor Promoter Drives Platelet Aggregation on the Pulmonary Endothelium in Chronic Thromboembolic Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2022, 205, 806–818. [Google Scholar] [CrossRef]
- Hsieh, W.C.; Jansa, P. Residual pulmonary hypertension after pulmonary endarterectomy: A meta-analysis. J. Thorac. Cardiovasc. Surg. 2018, 156, 1275–1287. [Google Scholar] [CrossRef]
- Madani, M.M. Pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension: State-of-the-art 2020. Pulm. Circ. 2021, 11, 20458940211007372. [Google Scholar] [CrossRef]
- Grassi, G. The Sympathetic Nervous System in Hypertension: Roadmap Update of a Long Journey. Am. J. Hypertens. 2021, 34, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.S. A1-Adrenergic Hypothesis for Pulmonary Hypertension. Chest 1999, 115, 1708–1719. [Google Scholar] [CrossRef]
- Velez-Roa, S.; Ciarka, A. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 2004, 110, 1308–1312. [Google Scholar] [CrossRef] [Green Version]
- Vaillancourt, M.; Chia, P. Autonomic Nervous System Involvement in Pulmonary Arterial Hypertension. Respir. Res. 2017, 18, 201. [Google Scholar] [CrossRef] [Green Version]
- Kummer, W. Pulmonary vascular innervation and its role in responses to hypoxia: Size matters! Proc. Am. Thorac. Soc. 2011, 8, 471–476. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.-L. Pulmonary Artery Denervation: Update on Clinical Studies. Curr. Cardiol. Rep. 2019, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Goncharova, N.S.; Condori Leandro, H.I. Transcatheter Radiofrequency Pulmonary Artery Denervation in Swine: The Evaluation of Lesion Degree, Hemodynamics and Pulmonary Hypertension Inducibility. BMC Pulm. Med. 2021, 21, 418. [Google Scholar] [CrossRef]
- Chen, S.-L.; Zhang, H. Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients with Pulmonary Arterial Hypertension of Different Causes: Phase II Results From the Pulmonary Artery Denervation-1 Study. Circ. Cardiovasc. Interv. 2015, 8, e002837. [Google Scholar] [CrossRef]
- Constantine, A.; Dimopoulos, K. Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc. Med. 2021, 31, 252–260. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J. Pulmonary Artery Denervation Significantly Increases 6-Min Walk Distance for Patients With Combined Pre- and Post-Capillary Pulmonary Hypertension Associated With Left Heart Failure. JACC Cardiovasc. Interv. 2019, 12, 274–284. [Google Scholar] [CrossRef]
- Chen, S.-L.; Zhang, F.-F. Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension. J. Am. Coll. Cardiol. 2013, 62, 1092–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinseye, O.A.; Ralston, W.F. Renal Sympathetic Denervation: A Comprehensive Review. Curr. Probl. Cardiol. 2021, 46, 100598. [Google Scholar] [CrossRef] [PubMed]
- Guber, K.; Kirtane, A.J. Renal Sympathetic Denervation for Hypertension. Kidney Int. Rep. 2022, 7, 2129–2140. [Google Scholar] [CrossRef]
- Romanov, A.; Cherniavskiy, A. Pulmonary Artery Denervation for Patients with Residual Pulmonary Hypertension After Pulmonary Endarterectomy. J. Am. Coll. Cardiol. 2020, 76, 916–926. [Google Scholar] [CrossRef]
- Feshchenko, D.A.; Rudenko, B.A. A clinical case of radiofrequency pulmonary artery denervation for treatment of a patient with residual chronic thromboembolic pulmonary hypertension. Cardiovasc. Ther. Prev. 2019, 18, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Karpov, A.A.; Anikin, N.A. Model of Chronic Thromboembolic Pulmonary Hypertension in Rats Caused by Repeated Intravenous Administration of Partially Biodegradable Sodium Alginate Microspheres. Int. J. Mol. Sci. 2021, 22, 1149. [Google Scholar] [CrossRef]
- Karpov, A.A.; Mihailova, A.M.; Shilenko, L.A.; Vaulina, D.D.; Sidorova, E.E.; Akhmetova, A.A.; Docshin, P.M.; Krasichkov, A.S.; Sanarova, K.E.; Moiseeva, O.M.; et al. Inhibition of JAK1,2 Prevents Fibrotic Remodeling of Pulmonary Vascular Bed and Improves Outcomes in the Rat Model of Chronic Thromboembolic Pulmonary Hypertension. Int. J. Mol. Sci. 2022, 23, 15646. [Google Scholar] [CrossRef]
- da Silva Goncalves Bos, D.; Van Der Bruggen, C.E. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2018, 137, 910–924. [Google Scholar] [CrossRef]
- Na, S.; Kim, O.S. Cervical ganglion block attenuates the progression of pulmonary hypertension via nitric oxide and arginase pathways. Hypertension 2014, 63, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurakula, K.; Smolders, V.; Tura-Ceide, O.; Jukema, J.W.; Quax, P.H.A.; Goumans, M.J. Endothelial Dysfunction in Pulmonary Hypertension: Cause or Consequence? Biomedicines 2021, 9, 57. [Google Scholar] [CrossRef]
- Budhiraja, R.; Tuder, R.M.; Hassoun, P.M. Endothelial dysfunction in pulmonary hypertension. Circulation 2004, 109, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Biasin, V.; Chwalek, K.; Wilhelm, J.; Best, J.; Marsh, L.M.; Ghanim, B.; Klepetko, W.; Fink, L.; Schermuly, R.T.; Weissmann, N.; et al. Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent. Int. J. Biochem. Cell. Biol. 2014, 54, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Argentino, G.; Barbieri, A.; Beri, R.; Bason, C.; Ruzzenente, A.; Olivieri, O.; Tinazzi, E.; Puccetti, A.; Vitali, C.; Del Papa, N.; et al. Profibrotic Effects of Endothelin-1 on Fibroblasts Are Mediated by Aldosterone in Vitro: Relevance to the Pathogenesis and Therapy of Systemic Sclerosis and Pulmonary Arterial Hypertension. Biomedicines 2022, 10, 2765. [Google Scholar] [CrossRef] [PubMed]
- Bochenek, M.L.; Leidinger, C.; Rosinus, N.S.; Gogiraju, R.; Guth, S.; Hobohm, L.; Jurk, K.; Mayer, E.; Munzel, T.; Lankeit, M.; et al. Activated Endothelial TGFbeta1 Signaling Promotes Venous Thrombus Nonresolution in Mice Via Endothelin-1: Potential Role for Chronic Thromboembolic Pulmonary Hypertension. Circ. Res. 2020, 126, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Csosza, G.; Karlocai, K.; Losonczy, G.; Muller, V.; Lazar, Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol. Int. 2020, 107, 177–194. [Google Scholar] [CrossRef]
- Chelladurai, P.; Seeger, W.; Pullamsetti, S.S. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur. Respir. J. 2012, 40, 766–782. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.; Zhang, Z. Extracellular matrix collagen biomarkers levels in patients with chronic thromboembolic pulmonary hypertension. J. Thromb. 2021, 52, 48–58. [Google Scholar] [CrossRef]
- Surolia, R.; Li, F.J.; Wang, Z.; Li, H.; Dsouza, K.; Thomas, V.; Mirov, S.; Pérez-Sala, D.; Athar, M.; Thannickal, V.J.; et al. Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight 2019, 4, e123253. [Google Scholar] [CrossRef] [Green Version]
Primer | Direct Primer Sequence | Reverse Primer Sequence |
---|---|---|
Vim | TGCCAACCGGAACAACGAT | ACTGCACCTGTCTCCGGTA |
MMP2 | GGACCTGTCACTCCCGAGAT | TCCGCCAAATAAACCGATCCT |
MMP8 | ACCAATGCTGGAGATACGACA | CTGGGAACACGCTTGCTATG |
TIMP1 | AGACACGCTAGAGCAGATACC | GGTCCGAGTTGCAGAAAGC |
TGFβ | AGCGAAGCGACGAGGAGTA | ACTGGGCAGACAGTTTCGG |
GAPD | CGGTGTGAACGGATTTGGC | TTGAGGTCAATGAAGGGGTCG |
Parameter | INT | CTEPH | CTEPH + SD | CTEPH + VD | CTEPH + PS |
---|---|---|---|---|---|
PA diameter, mm | 2.91 ± 0.15 | 2.91 ± 0.14 | 3.30 ± 0.31 | 2.92 ± 0.24 | 2.96 ± 0.10 |
RVOT diameter (mm) | 3.94 ± 0.17 | 3.96 ± 0.14 | 4.07 ± 0.18 | 4.03 ± 0.35 | 4.13 ± 0.35 |
FS LV (%) | 52.0 ± 3.8 | 51.9 ± 12.1 | 44.5 ± 7.5 | 51.6 ± 9.2 | 47.2 ± 6.4 |
TAPSE (mm) | 2.50 ± 0.12 | 2.55 ± 0.23 | 2.94 ± 0.61 | 3.00 ± 0.37 | 2.51 ± 0.35 |
Parameter | INT | CTEPH | CTEPH + SD | CTEPH + VD | CTEPH + PS |
---|---|---|---|---|---|
Mean BP, mm Hg | 51.3 ± 7.6 | 56.8 ± 14.1 | 55.0 ± 22.8 | 54.4 ± 3.5 | 58.1 ± 20.9 |
CO, mL/min | 35.4 ± 7.4 | 49.4 ± 14.4 | 44.2 ± 12.6 | 41.6 ± 18.1 | 49.0 ± 23.5 |
RVSP/CO ratio | 0.48 ± 0.13 | 0.49 ± 0.15 | 0.55 ± 0.20 | 0.53 ± 0.25 | 0.50 ± 0.14 |
Heart rate | 214 ± 31 | 255 ± 39 | 302 ± 78 | 253 ± 33 | 207 ± 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpov, A.A.; Vachrushev, N.S.; Shilenko, L.A.; Smirnov, S.S.; Bunenkov, N.S.; Butskih, M.G.; Chervaev, A.-K.A.; Vaulina, D.D.; Ivkin, D.Y.; Moiseeva, O.M.; et al. Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension. J. Cardiovasc. Dev. Dis. 2023, 10, 40. https://doi.org/10.3390/jcdd10020040
Karpov AA, Vachrushev NS, Shilenko LA, Smirnov SS, Bunenkov NS, Butskih MG, Chervaev A-KA, Vaulina DD, Ivkin DY, Moiseeva OM, et al. Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension. Journal of Cardiovascular Development and Disease. 2023; 10(2):40. https://doi.org/10.3390/jcdd10020040
Chicago/Turabian StyleKarpov, Andrei A., Nikita S. Vachrushev, Leonid A. Shilenko, Sergey S. Smirnov, Nikolay S. Bunenkov, Maxim G. Butskih, Al-Khalim A. Chervaev, Dariya D. Vaulina, Dmitry Yu. Ivkin, Olga M. Moiseeva, and et al. 2023. "Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension" Journal of Cardiovascular Development and Disease 10, no. 2: 40. https://doi.org/10.3390/jcdd10020040
APA StyleKarpov, A. A., Vachrushev, N. S., Shilenko, L. A., Smirnov, S. S., Bunenkov, N. S., Butskih, M. G., Chervaev, A. -K. A., Vaulina, D. D., Ivkin, D. Y., Moiseeva, O. M., & Galagudza, M. M. (2023). Sympathetic Denervation and Pharmacological Stimulation of Parasympathetic Nervous System Prevent Pulmonary Vascular Bed Remodeling in Rat Model of Chronic Thromboembolic Pulmonary Hypertension. Journal of Cardiovascular Development and Disease, 10(2), 40. https://doi.org/10.3390/jcdd10020040