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Abstract: The global prevalence of chronic kidney disease (CKD) has increased in recent years.
Adverse cardiovascular events have become the main cause of life-threatening events in patients
with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification,
especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in
patients with CKD. Some features and risk factors are unique to vascular calcification in patients with
CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation
of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin
accumulation, and other novel factors. The study on the mechanism of vascular calcification in
patients with renal insufficiency can provide a basis and new target for the prevention and treatment
of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to
discuss the recent research data on the pathogenesis and factors involved in vascular calcification,
mainly focusing on coronary artery calcification, in patients with CKD.

Keywords: vascular calcification; coronary artery calcification; chronic kidney disease; cardiovascular
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1. Introduction

Chronic kidney disease (CKD) is a major social and public health issue worldwide.
Cardiovascular diseases (CVDs) are some of the serious complications of CKD. Despite
recent advances in therapy technologies, the incidence of CVDs continues to increase
annually, seriously affecting the health of the population [1]. Vascular calcification is closely
associated with the development of CVDs, such as coronary atherosclerosis, myocardial
infarction, and malignant arrhythmias. Compared to the general population, vascular
calcification is more common and severe in patients with CKD, which is a high-risk factor
for cardiovascular complications [2] and greatly increases the incidence of death due to
CVD [3]. Cardiovascular-related lesions and adverse cardiovascular events are the main
factors that influence the life expectancy of over 50% uremia patients [4].

The most dangerous and fatal cardiovascular events are coronary-artery-related dis-
eases, in which coronary artery calcification (CAC) plays an important role. CAC is formed
because of the ectopic deposition of calcium salts in the walls of coronary vessels. Recent
studies have shown that CAC formation is not just a passive process of calcium overdepo-
sition, but an active process similar to bone and cartilage formation with multiple factors
involved, and the key link is the transformation of vascular smooth muscle cells (VSMCs)
to osteoblast-like cells and the continuous expression of related calcifying proteins [5,6].
Calcification can be divided into intimal and medium calcification. Intimal calcification is
often closely related to endothelial cell damage and dysfunction and atherosclerosis. Its
development is mainly regulated by the inflammatory response, and often distributed in a
punctate or lamellar form [7], similar to endochondral ossification, which usually occurs
during the lipogenesis phase. Medium calcification, also known as Monckeberg’s-type
sclerosis, is more closely linked to CKD, hyperparathyroidism, abnormal calcium and
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phosphorus metabolism, diabetes mellitus, and osteoporosis, and is also associated with
osteogenic-like transformation and the aging of VSMCs [8]. In the past, it was thought that
mesenteric calcification might be a benign lesion, but now it has been found that mesenteric
lesions can also lead to vascular wall sclerosis and cause adverse cardiovascular events [9].

CAC is closely associated with the development of coronary heart disease (CHD) [10].
CAC can lead to coronary artery wall stiffness, reduce compliance, and cause poor myocar-
dial perfusion and other bad effects; it can effectively reflect the presence and load level of
atherosclerotic lesions and validly indicate the risk of adverse cardiovascular events [11,12].
CAC is highly prevalent and dangerous in patients with CKD, and exploring CAC in-
terventions and related therapeutic targets of these patients have become hotspots for
research. In patients with CKD, there are some unique CAC risk factors that vary from
other underlying diseases. Unlike in the general population, the development of CAC in
CKD is largely due to their complex metabolic environment and physiological processes
similar to the ossification caused by an imbalance of calcification inhibitory and promotion
factors. Further elucidation between the relationship of CKD and CAC will contribute to
the management and treatment of CVDs, especially CHD, in patients with CKD. Thus, in
this review, we discuss vascular calcification, especially CAC, in patients with different
stages of CKD and analyze the possible risk factors and related mechanisms underlying
this process.

2. Impact of CKD on CAC

CKD is defined as renal damage, with an estimated glomerular filtration rate
(eGFR) < 60 mL/min/1.73 m2 for a period usually greater than three months [13]. As
the kidney function deteriorates, electrolyte disturbances, particularly hyperphosphatemia,
hypocalcemia, and metabolic acidosis, gradually appear. Decreased renal excretion, metabolic
dysfunction, increased uremic toxins, endocrine dysfunction (e.g., decreased erythropoietin
secretion), and decreased expression of inhibitory mineralization factors predispose to
renal osteodystrophy. Chronic renal failure (CRF) is a severe form of CKD; this group of
patients usually have an active vitamin D deficiency, which can cause secondary hyper-
parathyroidism and renal osteodystrophy. Malnutrition, microinflammation, water and
sodium retention are common in these patients.

The environment in CKD promotes the advancement of vascular calcification, espe-
cially CAC. CAC is independently and dramatically associated with the development of
CVD in patients with CKD [14]. The all-cause mortality due to coronary artery disease
was significantly higher in CKD patients with a higher CAC score (CACS) [15]. Patients
with CKD have a higher risk of all-cause mortality and hospitalization for cardiovascular
disease when CACS > 400 [16].

Many patients with CKD develop diffuse CAC prior to dialysis. A prospective study
that enrolled 117 non-dialysis CKD patients showed that the incidence of CAC was as high
as 48%, where 21% had severe CAC (≥400), and a higher CACS was linked to a higher
incidence of cardiovascular events and death [17]. In another study, high CACS was found
to be a significant predictor of the progression to the renal replacement stage in follow-up
CKD patients [18].

CAC affects the progression of renal disease in turn. A lower eGFR was closely related
to a higher CACS (≥400), and a higher CAC load was linked to poor prognosis in the
CKD population, with an increased high-sensitivity C-reactive protein (CRP) level [19].
According to Yun [20], a high CACS was associated with a significantly higher risk of sus-
tained CKD progression and progressively worsening renal outcomes. Another prospective
study reported that CAC plays a strong role as an independent predictor of end-stage renal
disease (ESRD) and mortality in patients with CKD stages 3–5. Patients who progressed
to ESRD at the fastest rate either had the highest CACS or the most severe CKD-induced
mineral and bone disorders (MBDs) [21].

CKD is a condition with the potential for negative feedback in which it induces
vascular calcification and in turn worsens the kidney function.
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2.1. Possible Mechanisms of CKD on Vascular Calcification

Vascular calcification is influenced by a variety of factors. Impaired renal function
leads to decreased excretion and metabolic disorder. The retention of various metabolites,
combined with electrolyte and endocrine disorders, inflammation and calcification pro-
moting factors, initiates and accelerates the progression of vascular calcification (Figure 1).
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Figure 1. Risk factors associated with artery calcification in CKD patients. Pi: phosphorus; Ca:
calcium; Mg: magnesium; PTH: parathyroid hormone; VitD: vitamin D; CRP: C-reactive protein; IL-6:
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CAC: coronary artery calcification.

2.2. Electrolyte Disorders

In the early stage of CKD, electrolytes can remain within a normal range due to the
compensatory renal function. As the disease deteriorates, the excretion and metabolic func-
tions of the kidneys continue to decline and an imbalance of water and various electrolytes
gradually appears, represented by the disorder of phosphorus, calcium, and magnesium,
which are closely related to the occurrence of vascular calcification (Table 1).

An elevated blood phosphorus level is the main cause and risk factor for CAC. This
phenomenon is more prominent in patients with CKD. High phosphorus levels were
associated with increased CVD and mortality in patients with renal insufficiency, whereas
levels within the normal range were related to a lower incidence of CAC in people with
normal renal function [22]. Wang et al. studied 77 patients with maintenance hemodialysis
(MHD) and discovered that blood phosphorus variability was an independent predictor
of CAC during follow-up, and maintaining stable serum phosphorus levels may lead to a
lower CACS and decreased mortality [23]. A positive correlation between elevated blood
phosphorus and CAC severity has been indicated in hemodialysis patients, which is more
common and severe in patients with ESRD and correlated with ischemic CVD [24]. Adeney
et al. found that higher serum phosphate concentrations (within the normal range) were
strongly associated with a higher incidence of CAC in stage 3 CKD patients; each 1 mg/dL
increase in blood phosphorus concentration was associated with a 21% increase in the
incidence of CAC. It remains controversial whether lowering phosphate concentration
affects the risk of calcification in patients with CKD [25].

Phosphate not only deposits in the vascular or endothelial layer, but also stimulates
the expression of VSMC-related osteogenic transcriptional cytokines and promotes the
osteogenic-like transition of VSMCs [26]. Wnt/β-catenin signaling activates the expression
of Runt-related transcription factor 2 (Runx2), a key transcription factor that induces calcifi-
cation and contributes to the phenotypic transformation of VSMCs [27,28]. By activating
Wnt/β-catenin signaling, high phosphorus concentration can regulate Pit-1 at the tran-
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scriptional level [29]. In ESRD, high phosphorus concentration, persistent inflammatory
state, and worsening uremic environment increase Pit-1 expression in VSMCs, which plays
a key role in the calcification process [30]. High phosphate levels may also activate the
TLR4/NF-κB signaling pathway and initiate the osteogenic-like phenotypic transformation
program in VMSCs [31]. Further, high phosphorus levels induce methylation of the SM22α
promoter, which has been shown to be an important event in VSMC calcification [32].

Calcium-salt-related effects also play a vital role in the calcification process in CKD
patients. Clinical studies have suggested that hypocalcemia is linked to the progression
of cardiovascular calcification and increases mortality in both dialysis and non-dialysis
CKD patients [33]. Blood calcium can be combined with phosphorus to form calcium
phosphate deposits in soft tissues, leading to ectopic calcification and lower blood calcium
levels, which may result in renal osteodystrophy and secondary hyperparathyroidism,
causing further calcification [34]. Lower blood calcium levels lead to intracellular calcium
overload, induce more intravascular plaque formation, and hasten the development of
CVD [35]. This may partly explain the association between lower blood calcium levels and
an increased risk of cardiovascular mortality. Unlike hypocalcemia, hypercalcemia impairs
VSMCs, changes the vascular tone, and increases blood pressure, which in turn induces
atherosclerosis and calcification, leading to an increased cardiovascular burden [36]. Data
from the Dialysis Prognosis and Practice Patterns Study (DOPPS) demonstrated a strong
positive correlation between serum protein-corrected blood calcium and total mortality
cardiovascular mortality rates [37].

High calcium and high phosphorus levels have synergistic effects on vascular calcifica-
tion. An experiment proved that vascular calcification was markedly higher in rats exposed
to high levels of calcium and phosphorus than to only high levels of phosphorus [38]. It is
believed that high calcium levels mediate calcification, probably by inducing apoptosis, a
process that promotes the release of stromal vesicles, together with apoptotic VSMCs, may
serve as a nidus for calcium and phosphorus deposition [39]. When hypercalcemia and
hyperphosphatemia co-occur in hemodialysis patients, the development of CAC and aortic
calcification is hastened [40]. Therefore, serum calcium and phosphorus in CKD patients
should be maintained at normal levels [41].

Some studies have pointed out that magnesium may have an inhibitory effect on vas-
cular calcification. Magnesium binds to phosphate and inhibits the conversion of calcium
and phosphorus to hydroxyapatite, passively interfering with calcium salt deposition [42].
Magnesium suppresses VSMC osteogenic differentiation by inhibiting the Wnt/β-catenin
signaling pathway and activating the calcium sensing receptor in VSMCs [43,44]. Magne-
sium is also involved in the modulation of oxidative stress and protection of endothelial cell
function, which is related to a reduced risk of CVD in patients with CKD; however, whether
this directly prevents calcification remains unclear [45]. An experimental animal model
study of CKD confirmed that increased dietary magnesium intake inhibits abdominal
vascular calcification [46]. A study reported that serum magnesium in ESRD patients was
negatively associated with CAC, and this association was more pronounced in those pa-
tients with high serum phosphorus concentrations (>1.40 mmol/L) [47]. A cross-sectional
study involving 80 peritoneal dialysis patients found that a 0.1 mmol/L increase in serum
magnesium is independently linked with a 1.1-point decrease in the abdominal aortic
calcification score, suggesting that effective suppression of calcification probably existed
with certain levels of serum magnesium [48]. Braake’s study showed that the higher the
blood magnesium concentration, the lower the risk of vascular calcification in dialysis
patients [49]. Therefore, appropriate supplementation of magnesium is hypothesized to be
a promising option for treating vascular calcification in CKD. An interim analysis of a ran-
domized double-blind placebo-controlled trial in patients with stage 3–4 CKD showed that
magnesium oxide treatment was effective in slowing the progression of CAC; however, it
did not suppress the progression of calcification in the thoracic aorta. More and larger trials
are needed to confirm this finding [50]. In addition, it is worth noting that high magnesium
levels can cause gastrointestinal discomfort and other adverse effects, including cardiac
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arrest in severe cases. It is still uncertain which range of blood magnesium concentrations
is tolerable and most ideal in CKD patients.

Table 1. Mechanisms by which electrolyte disorders affect vascular calcification.

Electrolyte Mechanisms Ref.

Phosphate

Hyperphosphatemia stimulates the expression of
VSMC-related osteogenic transcriptional cytokines

and promotes the osteogenic-like transition
of VSMCs.

[26]

Hyperphosphatemia activates Wnt/β-catenin
signaling and increases Pit-1 expression. [29,30]

Hyperphosphatemia activates the TLR4/
NF-κB signaling. [31]

Hyperphosphatemia induces methylation of the
SM22α promoter. [32]

Calcium

Hypocalcemia combines with high blood
phosphorus leading to ectopic calcification and

secondary hyperparathyroidism.
[34]

Hypocalcemia leads to intracellular calcium
overload, mediating intravascular plaque formation. [35]

Hypercalcemia impairs VSMC function, causing
changes in vascular tone. [36]

Hypercalcemia promotes apoptosis and VSMC
matrix vesicle release, providing hydroxyapatite

nucleation sites.
[39]

Magnesium

Hypomagnesemia inhibits the conversion of calcium
and phosphorus to hydroxyapatite and passively

interferes with calcium salt deposition.
[42]

Hypomagnesemia inhibits the Wnt/β-catenin
signaling pathway and activates the calcium-sensing

receptor in VSMCs.
[43,44]

Hypomagnesemia participates in the regulation of
oxidative stress and protects endothelial

cell function.
[45]

2.3. Parathyroid Hormone and Vitamin D

During the development of intermediate to advanced CKD, disturbances of phos-
phorus and calcium are usually associated with secondary metabolic disorders, such as
secondary hyperparathyroidism and vitamin D deficiency. High parathyroid hormone
(PTH) secretion influences the expression of proinflammatory cytokines and plays a passive
role in the modulation of vascular remodeling [51]. High PTH levels are potentially toxic
and contribute to the conversion of VSMCs to osteoblasts, causing atherosclerosis and
vascular and arterial valve calcification, which increase the risk of CVD and all-cause
mortality [52]. High PTH stimulates the activation of the protein kinase pathways, facili-
tates the expression of advanced glycation end products (AGEs) and interleukin-6 (IL-6),
and indirectly promotes calcification [53]. Clinical studies have shown that high PTH
levels in dialysis patients are an independent risk factor for vascular calcification [54,55].
Hartmut et al. demonstrated that nine times higher than normal PTH levels were closely
associated with CAC progression in ESRD [56]. In addition, low PTH is likewise a risk
factor for death in dialysis patients [57], and this category appears to be more susceptible
to cardiovascular calcification [54]. The reason might be related to the downregulation of
bone resorption of phosphate and calcium as a result of a low PTH-mediated reduction in
the bone conversion rate.
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Vitamin D is an essential steroid hormone in the body, which has a unique role in
the modulation of the vascular function. It can prevent endothelial cell calcification by
inhibiting cholesterol outflow and foam cell formation, regulate the renin–angiotensin
system, and improve hemodynamics [58]. Vitamin D deficiency leads to impaired cardio-
vascular function in CKD patients [59]. In animal studies, diffuse calcification involving
the aortic intima was found in uremic rats receiving relatively low doses of oral calcitriol
(0.25 mg/kg/day) [60]. In patients with glomerular disease, if vitamin D is deficient, the
activity of pro-inflammatory factors is enhanced, which mediates calcification [61].

However, a study indicated that the long-term use of cholecalciferol, the nutritional
form of vitamin D, failed to reduce the development of vascular calcification in patients
with vitamin D deficiency-induced CKD [62]. Similar results were obtained in childhood
ESRD patients and found the use of active vitamin D drugs was positively correlated with
CAC [63].

In addition, one study also found that both low and high vitamin D levels were
associated with vascular calcification (U-curve relationship) in pediatric patients treated
with dialysis [64]. In a cross-sectional study involving 80 CKD patients, no association was
found between the degree of vitamin D deficiency and CAC [65].

Thus, the association between vitamin D levels and vascular calcification needs to be
further explored.

2.4. Inflammation

Chronic inflammation significantly influences the progression of arterial calcification
and atherosclerosis. In the presence of risk factors and damage, endothelial cells and
macrophages degenerate, the permeability of low density lipoprotein (LDL) increases, and
more LDL deposits in the intima of the vessel wall, and subsequently an inflammatory
response is initiated. This process, in turn, stimulates endothelial cells and activates the
BMP/Smad signaling pathway, which causes VSMC osteogenic differentiation.

Chronic inflammatory states are prevalent in CKD patients. Inflammation can increase
alkaline phosphatase expression and decrease α-smooth muscle actin expression, stimulate
VSMC conversion to an osteogenic phenotype, and calcify vessels in CKD patients. Mech-
anistically, disruption of the LDL receptor pathway induced by inflammation is closely
related to the increased expression of BMP-2 and type I collagen, accelerating the progres-
sion of calcification, a process similar to the role of inflammation in the atherosclerotic
process [66]. A previous study has suggested that IL-6 and CRP are risk factors for the
development of vascular calcification in CKD patients [67]; their levels were significantly
higher in patients with high CACS values (>400 points) than in those with low CACS
values (<10 points) in peritoneal dialysis patients [68]. Both were positively correlated with
CACS and the common carotid artery intima-medial thickness index in MHD patients [69].
High CRP levels accelerate the development of CAC in ESRD cases [70]. A follow-up study
of uremic patients on peritoneal dialysis showed that CRP was an independent risk factor
for the occurrence of CAC [71]. High CRP levels might be one of the key mediators of vas-
cular wall calcification in uremic patients [72]. Taken together, the evidence demonstrates
that inflammation and associated factors play a significant role in vascular calcification,
particularly CAC, in CKD.

2.5. Uremic Toxins

Uremic toxins are substances that persistently accumulate in patients with CKD owing
to a decreased eGFR and cause various clinical signs and symptoms. Uremic toxins can
trigger adverse reactions, such as immune disorder and inflammatory damage. Studies
have shown that the interaction between uremic toxins and inflammatory damage can
directly increase the risk of vascular calcification in patients with ESRD [73]. Uremic
toxins can be grouped into three categories: small (molecular mass < 500 Da), medium
(500–5000 Da), and large (>5000 Da) molecules. Compared with small molecules, large
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molecules are less likely to be effectively removed using conventional dialysis, are more
difficult to treat, and have greater associations with cardiovascular lesions.

AGEs are the end-outputs of a series of catalytic processes for large molecules, such
as proteins, amino acids, and lipids. The kidneys play a key role in AGE metabolism [74].
AGEs have been shown to induce VSMC calcification by mediating oxidative stress, partly
involving Nox1 (an NADPH oxidase) [75]. Due to decreased renal function and upregula-
tion of oxidative stress in vivo, AGEs accumulate and elevate continuously in the plasma
of both diabetic and non-diabetic patients with CKD [76]. Receptor of AGEs (RAGE) is a
transmembrane cellular receptor for AGEs; the AGE–RAGE signaling pathway increases
oxidative stress and activates many intracellular pathways that leads to the production of
pro-inflammatory cytokines, including IL-6, TNF-α, and TGF-β [77]. This adversely affects
endothelial cells and VSMC function, which are closely linked to vascular stiffness and
atherosclerosis. The interaction of AGEs with RAGE also activates NF-κB and oxidative
stress, leading to the expression of atherosclerosis-related genes, such as vascular cell
adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), plasminogen
activator inhibitor-1 (PAI-1), and monocyte chemoattractant protein-1 (MCP-1), resulting in
vascular calcification [78]. AGEs and oxidative stress are discovered to be strongly associ-
ated with extensive CAC in hemodialysis patients [79], and the continued accumulation of
AGEs was found to be positively linked to CACS in peritoneal dialysis patients [80].

Indoxyl sulfate (IS) is a uremic toxin that combines with serum proteins and cannot be
effectively removed by hemodialysis. IS promotes calcification by inducing oxidative stress
in VSMCs and stimulates osteoblast-associated protein release [81]. It is involved in IL-6
expression in endothelial cells and VSMCs via the OAT3/AhR/NF-kB pathway [82], as
well as in the secretion of IL-8 by endothelial cells under conditions with high phosphorus
levels, which can promote calcification [83]. Studies have shown that the regulation of Pit-1
expression affects calcification. IS promotes VSMC calcification by partially promoting Pit-1
expression via activation of the JNK pathway [84]. It can also downregulate miR-29b activity
and activate Wnt/β-catenin signaling to promote calcification [85]. Klotho is a membrane
protein that is significantly expressed in kidney, parathyroid, and brain tissues. Previous
studies have demonstrated that the Klotho protein has a protective effect on the kidneys
of patients with CKD [86]. In rats, high levels of IS regulate the transcriptional process of
vascular Klotho and reduce the expression of Klotho. The epigenetic modification of Klotho
by IS may contribute to vascular calcification at the end-stage of CKD [87]. Barreto’s data
showed that elevated IS was correlated with a higher occurrence of aortic calcification in
patients with CKD [88] and paralleled the severity of calcified vessels in ESRD patients [89].

The possible pathways by which AGEs and IS mediate vascular calcification are shown
in Figure 2. Different uremic toxins have different mechanisms and principles of action.
Current studies have provided some evidence of a relationship between uremic toxins
and calcification, most of which are still focused on small-molecule toxins. It is expected
that additional unknown uremic toxins will be identified to reveal the pathogenesis of
cardiovascular calcification in CKD.

2.6. Fibroblast Growth Factor 23

Fibroblast growth factor-23 (FGF23) is a cytokine synthesized, secreted, and released
primarily by osteoblasts and osteoclasts [90]. It stimulates phosphorus excretion by the
kidneys and reduces phosphorus absorption from the diet by inhibiting the synthesis of
25(OH)D3 [91,92]. FGF23 is mainly metabolized by the kidneys, and its clearance reduces
as the renal function decreased. FGF23 may cause endothelial dysfunction by directly
disrupting nitric-oxide-mediated vasodilation [93]. Clinical investigations showed that
an increase in FGF23 levels is positively correlated with aortic calcification and CAC in
patients with CKD at different stages [94–96]. High FGF23 levels may be a new factor
contributing to ectopic calcification in CKD [97].



J. Cardiovasc. Dev. Dis. 2023, 10, 207 8 of 22J. Cardiovasc. Dev. Dis. 2023, 10, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 2. Involved factors associated with AGEs and IS to promote vascular calcification. AGEs: 
advanced glycation end products; RAGE: receptor for AGEs; IL-6: interleukin-6; TNF-α: tumor 
necrosis factor alpha; TGF-β: transforming growth factor beta; ROS: reactive oxygen species; NF-κB: 
nuclear factor-κB; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion 
molecule-1; PAI-1: plasminogen activator inhibitor-1; MCP-1: monocyte chemoattractant protein-1; 
IS: indoxyl sulfate. 

2.6. Fibroblast Growth Factor 23 
Fibroblast growth factor-23 (FGF23) is a cytokine synthesized, secreted, and released 

primarily by osteoblasts and osteoclasts [90]. It stimulates phosphorus excretion by the 
kidneys and reduces phosphorus absorption from the diet by inhibiting the synthesis of 
25(OH)D3 [91,92]. FGF23 is mainly metabolized by the kidneys, and its clearance reduces 
as the renal function decreased. FGF23 may cause endothelial dysfunction by directly 
disrupting nitric-oxide-mediated vasodilation [93]. Clinical investigations showed that an 
increase in FGF23 levels is positively correlated with aortic calcification and CAC in 
patients with CKD at different stages [94–96]. High FGF23 levels may be a new factor 
contributing to ectopic calcification in CKD [97]. 

FGF23 can bind to Klotho, which is required for the activation of FGF23 and its 
receptors, and further increase their affinity. The Klotho–FGF23 axis signaling pathway is 
closely related to the regulation of calcium and phosphorus metabolism, PTH 
homeostasis, and CKD-related complications [98]. α-Klotho can be used as a humoral 
agent to promote renal phosphorus excretion. Klotho in patients with CKD continues to 
decrease with declining renal function from the early stages of CKD [99], and its deficiency 
accelerates calcification [100]. Klotho suppresses the progression of vascular calcification 
by several mechanisms: (1) acts on sodium–phosphorus co-transport proteins (Pit-1 and 
Pit-2) to downregulate phosphorus uptake by VSMCs and inhibit Runx2 protein 
expression [5]; (2) inhibits oxidative stress and attenuates oxidative damage and apoptosis 
[101]; (3) prevents vascular calcification by partially inhibiting the Wnt/β-catenin 
signaling pathway [102]; (4) directly suppresses phosphorus-induced calcification and 
hinders the conversion of VSMCs to osteoblasts [103]. 

There were also different results for FGF23. A correlation between blood FGF23 levels 
and CAC was not found in more than 1000 patients with stages 2–4 CKD [104]. Lau et al. 
did not detect α-Klotho mRNA in the aorta of mice in the normal and CKD groups [105]. 

It is still questionable whether FGF23 can be used as an indicator of CAC; further 
research is also required to identify whether the anticalcification effects of Klotho act 
directly or indirectly through alterations in serum phosphate or other agents. 

2.7. Osteoprotegerin 
Osteoprotegerin (OPG) is a soluble glycoprotein that is widely expressed in various 

tissues and cells. It is an osteoclast inhibitory factor. Receptor activator of nuclear factor-

Figure 2. Involved factors associated with AGEs and IS to promote vascular calcification. AGEs:
advanced glycation end products; RAGE: receptor for AGEs; IL-6: interleukin-6; TNF-α: tumor
necrosis factor alpha; TGF-β: transforming growth factor beta; ROS: reactive oxygen species; NF-
κB: nuclear factor-κB; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular adhesion
molecule-1; PAI-1: plasminogen activator inhibitor-1; MCP-1: monocyte chemoattractant protein-1;
IS: indoxyl sulfate.

FGF23 can bind to Klotho, which is required for the activation of FGF23 and its re-
ceptors, and further increase their affinity. The Klotho–FGF23 axis signaling pathway
is closely related to the regulation of calcium and phosphorus metabolism, PTH home-
ostasis, and CKD-related complications [98]. α-Klotho can be used as a humoral agent
to promote renal phosphorus excretion. Klotho in patients with CKD continues to de-
crease with declining renal function from the early stages of CKD [99], and its deficiency
accelerates calcification [100]. Klotho suppresses the progression of vascular calcification
by several mechanisms: (1) acts on sodium–phosphorus co-transport proteins (Pit-1 and
Pit-2) to downregulate phosphorus uptake by VSMCs and inhibit Runx2 protein expres-
sion [5]; (2) inhibits oxidative stress and attenuates oxidative damage and apoptosis [101];
(3) prevents vascular calcification by partially inhibiting the Wnt/β-catenin signaling
pathway [102]; (4) directly suppresses phosphorus-induced calcification and hinders the
conversion of VSMCs to osteoblasts [103].

There were also different results for FGF23. A correlation between blood FGF23 levels
and CAC was not found in more than 1000 patients with stages 2–4 CKD [104]. Lau et al.
did not detect α-Klotho mRNA in the aorta of mice in the normal and CKD groups [105].

It is still questionable whether FGF23 can be used as an indicator of CAC; further
research is also required to identify whether the anticalcification effects of Klotho act directly
or indirectly through alterations in serum phosphate or other agents.

2.7. Osteoprotegerin

Osteoprotegerin (OPG) is a soluble glycoprotein that is widely expressed in various
tissues and cells. It is an osteoclast inhibitory factor. Receptor activator of nuclear factor-
κB ligand (RANKL) proteins are thought to be essential biomolecules in the process of
osteoclast activation and proliferation and can interact with RANK protein to promote bone
differentiation and resorption. RANKL promotes vascular calcification by upregulating
BMP4 expression to activate Wnt signaling and mediates BMP2 release from vascular
endothelial cells [106,107]. OPG, which is structurally similar to RANK, competitively
interacts with RANKL, leading to the inhibition of osteoclast differentiation from osteoclast
precursor cells and bone resorption, with reductions in bone loss [108,109]. RANKL binding
to RANK mediates VSMC osteogenic phenotypic differentiation, expression and release
of bone matrix proteins, and promotes calcification, whereas OPG can counteract the
calcifying effects by neutralizing RANKL [110]. OPG may serve as a bridge between bone
metabolism and vascular diseases.
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OPG knockdown mice show significant aortic and renal artery calcification rates [111].
In contrast to its protective effect in animal models, OPG appears to correlate with the sever-
ity of calcification in human studies. Serum OPG concentration was positively correlated
with serum creatinine level and significantly higher in dialysis patients than in the healthy
population [112]. Its level was correlated with the degree of aortic calcification in patients
undergoing hemodialysis [113]. It is an independent predictor of the calcification score,
and high serum concentration favored the development of CAC [114,115]. Mesquita et al.
showed that OPG is an independent risk factor for death in patients with CKD and an
early predictor of CAC [116]. A long-term follow-up study of 47 patients with MHD found
that patients initially free of vascular calcification remained free of calcification at the end
of the study, and the levels of OPG in these patients were consistently and significantly
lower than in patients with calcification. Additionally, significant higher levels of OPG and
more severe vascular calcification were found in dead patients [117]. OPG may serve as
an important predictor of atherosclerosis and vascular calcification in patients with ESRD.
Marques et al. reported that high serum OPG levels are strongly associated with the occur-
rence of adverse cardiovascular events in patients with CKD [118]. A prospective study of
renal transplant patients also showed that serum OPG was an independent predictor of
cardiovascular death [119]. Although studies have shown that OPG is associated with the
development of vascular calcification and the occurrence of adverse cardiovascular events,
the exact mechanism remains unclear. Further studies are required to confirm the specific
role of OPG.

2.8. Matrix Gla Protein

Matrix Gla protein (MGP) belongs to the Gla protein family and is mainly secreted
by VSMCs in the arterial walls. MGP has been shown to be effective in inhibiting vascular
calcification both in vitro and in vivo [120]. MGP requires γ-carboxyglutamylation and
phosphorylation to be activated and exert its effects. Vitamin K is a key enzyme involved
in carboxylation. In a mouse model, the administration of vitamin K antagonists for
several weeks resulted in insufficient carboxylation of MGP in vivo, which accelerated
the development of aortic calcification. This indicated that MGP requires vitamin K to
trigger biological activity [121]. BMP-2 converts VSMCs to the osteoblast phenotype. Only
through carboxylation and phosphorylation can MGP gain the capacity to combine calcium
and BMP-2, thereby suppressing calcification [122]. Early subclinical microcalcifications
in the coronary arteries are often produced if MGP carboxylation is insufficient [123].
Additionally, MGP could also inhibit calcification by binding Ca2+ and hydroxyapatite
crystals and forming fetuin-A–MGP-mineralization complexes [124,125].

A poor vitamin K status in the CKD setting has been repeatedly confirmed [126]. In
animal models, exogenous vitamin K supplementation showed promising results. Rats with
renal failure treated with vitamin K1 and K2 for 4 weeks showed a significant reduction
in renal and aortic calcification [127]. McCabe et al. treated CKD mice with high dietary
vitamin K1 was ultimately found to be effective in slowing the progression of arterial
calcification [128]. However, studies in populations have shown different results. In a
cohort of 42 patients with CKD stages 3–5, daily intake of 90 µg vitamin K2 resulted in
slower CAC progression [129]. In contrast, several other studies have shown that vitamin
K supplementation did not improve cardiovascular calcification in patients with CKD or
dialysis [130–132]. Therefore, further large datasets are needed to support the efficacy of
vitamin K treatment in these patients to delay the progression of vascular calcification.

A study in 97 ESRD patients found no correlation between MGP and vascular sclerosis
and CACS [133]. Mizuir et al. also showed that total MGP levels in MHD patients were
substantially higher than those in the control groups, but were not related to CACS [134];
this may be related to the fact that the carboxyl and non-carboxyl forms of MGP were not
distinguished in this study. However, another study showed that a high expression of MGP
in vascular tissue was linked to a higher CACS and plasma dp-ucMGP (dephosphorylated
non-carboxylated MGP) levels in CKD stage 5 patients. Additionally, a prospective study
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of more than 100 patients at different stages of CKD found that dp-ucMGP was strongly
associated with aortic calcification scores and all-cause mortality [135,136]. To summarize,
larger controlled trials ought to test the effect of vitamin K intake (via carboxylation of
dp-ucMGP) on vascular calcification and CVD in patients with CKD.

2.9. Fetuin-A

Fetuin-A is a negatively charged binding glycoprotein that is synthesized by the liver
and released into the bloodstream. It has been proven to be an effective systemic inhibitor
of calcification [137]. It inhibited VSMC calcification induced by elevated extracellular
mineral ion concentrations, which was mainly achieved by inhibiting apoptosis and cysteine
protease cleavage [138]. It may inhibit vascular calcification by blocking the BMP signal
transduction pathway, downregulating the release of inflammatory factors and inhibiting
inflammatory activity [139–141].

A multicenter cohort study found that an increased risk of cardiovascular death was
associated with decreased expression of serum fetuin-A after seven years of follow-up in
approximately 1000 CKD dialysis patients [142]. The fetuin-A levels decreased as CKD
progresses, and its deficiency was associated with an increased tendency for systemic
calcification and a poorer prognosis [143]. In MHD patients, lower fetuin-A levels were
associated with a more severe total CACS [144], and the CACS, mass, and volume of
coronary plaques were significantly correlated with fetuin-A levels [145]. However, the
fetuin-A levels are significantly higher in diabetic nephropathy patients who have not yet
undergone maintenance dialysis than in diabetic control patients, and are directly associated
with CAC. The reason for this contradictory result may be that fetuin-A upregulation is
probably a defense mechanism against early vascular calcification [146]. Fetuin-A plays a
key role in the combination and clearance of calcium-mineralized substrates accumulated
in the fetal hypoxic kidneys and acts as an inhibitor of ectopic calcification, maintaining
the integrity of the kidney tissue and averting the advancement of CKD [147]. However,
other studies have reported different results. A study showed that there was no correlation
between fetuin-A levels and vascular calcification in patients with MHD [148]; a correlation
was also not observed between fetuin-A levels and CACS in 85 patients with diabetic
nephropathy [149]. In another study, vascular calcification was not affected by the fetuin-A
and bone-bridging protein levels in hemodialysis patients [150]. Whether fetuin-A can
inhibit vascular calcification, especially CAC, in each stage of CKD, remains to be confirmed
in future prospective studies.

2.10. Pyrophosphate

Pyrophosphate (PPi) is synthesized and released by VSMCs, and its catabolism is
mainly performed by tissue-non-specific alkaline phosphatase (TNAP). TNAP is a key de-
terminant of tissue pyrophosphate levels. It controls vascular calcification by affecting the
synthesis and hydrolysis of extracellular pyrophosphate (ePPi) [151]. ePPi may be a major
inhibitor of vascular calcification, and a lack of extracellular enzymes for ePPi synthesis in-
duced the calcification of large portions of the rat aorta [152]. Daily peritoneal dialysis with
a solution containing PPi significantly inhibited calcification progression in a CKD mouse
model [153]. In patients with CKD and ESRD, decreased concentrations of PPi are closely
correlated with the development of arterial calcification [154,155]. The supplementation
of exogenous calcifying agents such as PPi during dialysis prevents dialysis-related calci-
fication in patients [156]. Targeted methods that interfere with pyrophosphate metabolic
processes to increase pyrophosphate levels in vivo and inhibit the onset of calcification are
expected to be effective in the treatment of vascular calcification.

2.11. Zinc

Zinc is an essential trace element for maintaining the normal structure and function of
human cells, mainly stored in the kidneys and liver, and involved in the synthesis of many
coenzymes in the body. In experimental models, the effects of zinc on the vasculature have
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been described in detail, with zinc deficiency exacerbating intimal atherosclerosis [157].
In patients on long-term hemodialysis, decreased serum zinc levels were also associated
with an increased carotid intima and mesothelial thickness [158]. Zinc deprivation inhibits
extracellular matrix calcification in osteoblasts by inhibiting the accumulation of calcium
and phosphorus and reducing the synthesis and activity of type I collagen, matrix proteins,
and alkaline phosphatase [159]. Voelkl et al. demonstrated that zinc sulfate upregulated
tumor necrosis factor-α-induced protein 3 (TNFAIP3) gene expression in a high phospho-
rus environment through zinc-sensitive receptor and elevated TNFAIP3 levels inhibited
the activation of NF-κB, a transcription factor and key regulator of the inflammatory re-
sponse pathway, thereby inhibiting the transdifferentiation of contractile VSMCs to the
bone/chondrocyte phenotype and reducing calcification [27]. Nagy et al. [160] showed
that hypoxia-inducible factor (HIF) promotes the loss of VSMC markers and the expression
of osteogenic genes, and exacerbates phosphorus-induced osteogenic differentiation in
VSMCs, while zinc inhibits this process in a dose-dependent manner.

Several observational studies had shown that low dietary zinc intake is associated
with cardiovascular disease mortality [161,162], and the serum zinc levels were found to
be lower in patients with MHD than in the healthy population [163]. Recently, Chen et al.
found that high dietary zinc intake was independently associated with a lower risk of
severe abdominal aortic calcification in more than 2000 US non-institutionalized adults. In
that study, 18.1% of the subjects were CKD patients [164]. In addition, some studies have
reported that diets with a given magnesium/zinc ratio are associated with an increased
risk of CAC progression, which is mediated by pro-calcification IL-6 [165].

In conclusion, correction of hypozincemia may be a simple and effective clinical
approach to reduce the progression of vascular calcification and cardiovascular disease in
patients with CKD. This deserves further investigation.

2.12. Oxidative Stress

Oxidative stress is the generation of reactive oxygen (ROS) molecules during cellular
respiration in the organism under pathological conditions that exceed the scavenging ca-
pacity of the organism, causing damage to the organism by reactive free radicals. Oxidative
stress, which is involved in vascular calcification, is present in CKD in various forms, but
ROS are considered to be the main mediators mediating vascular calcification [166], cardio-
vascular events [167] and other complications. The main ROS molecules are superoxide
anion (O2

−), hydrogen peroxide (H2O2), and hydroxyl radicals. Oxidative stress may be
involved in vascular calcification in CKD through the induction of osteogenic degener-
ation of VSMCs [168–170], alteration of calcification regulators [171], and imbalance of
antioxidant systems.

The nuclear factor erythroid-2-related factor 2 (Nrf-2), a protein encoded by cDNA, is
one of the important transcription factors regulating the adaptive antioxidant response of
the organism [172]. Nrf-2 is involved in the regulation of heme oxygenase (HO-1), NADPH
quinine oxidoreductase (NQO-1) and glutathione reductase, which plays a protective role
against oxidative stress [173]. Under physiological conditions, Nrf-2 is stored in the cyto-
plasm attached to Keap-1, degraded by the proteasome after ubiquitination; when subjected
to oxidative stress, Nrf-2 dissociates from Keap-1 and binds to antioxidant response ele-
ments through small Maf to regulate the expression of downstream genes [174]. Keap1-Nrf2
plays an important role in maintaining intracellular metabolism and adapting to oxidative
stress. It has been found that the inhibition of Nrf-2 and downstream antioxidant protein
HO-1 activity exacerbated inflammation and oxidative-stress-induced renal injury in a rat
model of adenine-diet-induced chronic renal interstitial tubular disease [175]. Recently, it
was found AGE-modified bovine serum albumin induces ROS production in bovine aortic
endothelial cells and activates two Nrf-2-dependent antioxidant genes, HO-1 and NQO1,
to counteract ROS-induced damage [176]. Liu et al. observed that leucovorin protected
human keratinocytes from oxidative stress induced by UV radiation and enhanced the
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activity of antioxidant enzymes [177]. A recent study has shown that upregulation of the
Nrf2 system can attenuate the high Pi-induced calcification levels in VSMCs [178].

More clinical and experimental studies are needed in the future to further investigate
the specific mechanisms of oxidative stress in promoting vascular calcification formation in
CKD patients and find effective therapeutic measures.

Clinical studies about the factors associated with CAC are shown in Table 2.

Table 2. Clinical studies about the factors associated with CAC.

Factors Subjects Conclusion Whether Related to CAC Ref.

Phosphorus

77 HD patients

Blood phosphorus variability was an
independent predictor of CAC, and

maintaining stable serum phosphorus levels
may lead to a lower CACS.

Yes [23]

205 HD patients
A positive correlation existed between

elevated blood phosphorus and CAC severity,
and was associated with ischemic CVD.

Yes [24]

439 CKD patients in stage
CKD 3

Higher serum phosphate concentrations
(within the normal range) were strongly

linked with a high incidence of CAC; each 1
mg/dL increase in blood phosphorus

concentration was linked with a 21% increase
in the incidence of CAC.

Yes [25]

Calcium, phosphorus 200 HD patients
When hypercalcemia and hyperphosphatemia
co-occur, the development of CAC and aortic

calcification is hastened.
Yes [40]

Magnesium

109 CKD patients

Serum magnesium in ESRD patients was
negatively associated with CAC; this

association was more pronounced in patients
with high serum phosphorus concentrations.

Yes [47]

324 CKD patients in stage
CKD 3–4

Magnesium oxide treatment was effective in
slowing the progression of CAC, but it did not
suppress the progression of calcification in the

thoracic aorta.

Yes [50]

PTH 213 patients in stage CKD-5D
Nine times higher than normal PTH levels

were closely associated with
CAC progression.

Yes [56]

Vitamin D

40 CKD patients Active vitamin D drug use was positively
associated with CAC. Yes [63]

80 CKD patients No association was found between the degree
of vitamin D deficiency and CAC. No [65]

Inflammation

43 PD patients

IL-6 and CRP levels were significantly higher
in patients with a high CACS (>400 points)

than in those with low CACS
(<10 points) values.

Yes [68]

73 PD patients
The CACS and the Common Carotid Artery

Intima-Medial Thickness Index were
positively correlated with CRP and IL-6.

Yes [69]

40 HD patients High CRP levels accelerated the development
of CAC. Yes [70]

70 PD patients CRP was an independent risk factor for the
occurrence of CAC. Yes [71]

AGEs
40 HD patients AGEs and oxidative stress were strongly

associated with extensive CAC. Yes [79]

27 PD patients Continued accumulation of AGEs was found
to be positively linked to CACS. Yes [80]

FGF23

16 HD patients FGF23 levels were independently linked to
aortic, peripheral calcification and CAC. Yes [94]

142 CKD patients
Patients with elevated FGF23 levels had

higher aortic and CACS values than patients
with lower FGF23 levels.

Yes [95]

1501 patients in CKD
stage 2–4

A correlation between blood FGF23 levels and
CAC was not found. No [104]
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Table 2. Cont.

Factors Subjects Conclusion Whether Related to CAC Ref.

OPG

185 CKD patients A high serum OPG concentration favored a
high CAC. Yes [114]

101 HD patients A higher OPG level was independently
associated with CAC. Yes [115]

77 CKD patients
OPG is an independent risk factor for death in

patients with CKD and an early predictor
of CAC.

Yes [116]

MGP

97 CKD patients MGP did not correlate with vascular sclerosis
and CACS. No [133]

112 HD patients
The MGP levels were substantially higher

than those in the control groups, but were not
related to CACS.

No [134]

141 patients in CKD stage 5
High vascular expression of MGP was
associated with higher CAC scores and

plasma dp-ucMGP levels.
Yes [135]

Fetuin-A

78 HD patients Serum fetuin-A levels were associated with
the total CACS. Yes [144]

72 HD patients
The CACS, mass, and volume of plaques in

coronary arteries correlated significantly with
the serum fetuin-A levels.

Yes [145]

88 diabetic
nephropathy patients

The fetuin-A levels were significantly higher
in diabetic nephropathy patients who had not
yet undergone maintenance dialysis than in
diabetic control patients, and were directly

associated with CAC.

Yes [146]

85 diabetic
pre-dialysis patients

There was no association between fetuin-A
and CACS. No [149]

HD: hemodialysis; PD: peritoneal dialysis; PTH: parathyroid hormone; AGEs: advanced glycation end products;
FGF23: fibroblast growth factor-23; OPG: osteoprotegerin; MGP: matrix Gla protein; CAC: coronary artery
calcification; CACS: coronary artery calcification score; ESRD: end-stage renal disease; CVD: cardiovascular
disease; dp-ucMGP: dephosphorylated non-carboxylated MGP.

3. Research Progresses

Except mentioned above, many new drugs may be effective in inhibiting the pro-
gression of CKD calcification and have a protective effect on the cardiovascular system.
Phosphorus-binding agents can control hyperphosphatemia and are currently the mainstay
of prevention and treatment of abnormalities in mineral and bone metabolism in patients
with CKD. Results from a study of patients with stage 3–4 CKD showed that their CAC
progression was significantly reduced by combining a phosphorus-restricted diet with seve-
lamer [179]. After treatment with the new phosphate-binding agent calcium–magnesium
tablets for months, hemodialysis patients showed significantly lower levels of aortic valve
calcification [180]. The types of phosphorus-binding agents currently on the market and
under development include calcium-containing phosphate-binding agents, lanthanum
carbonate, and iron-containing phosphate-binding agents, etc.

Bisphosphonates, as pyrophosphate analogues, could be taken up by osteoclasts and
inhibit the enzymes necessary for bone resorption, effectively inhibiting calcium hydroxya-
patite formation [181]. In a prospective trial in renal transplant patients, alendronate was
found to be effective in treating secondary osteoporosis and inhibiting the progression of
abdominal aortic calcification [182]. The RANKL inhibitor denosumab effectively elevates
OPG protein expression and inhibits RANKL protein expression, resulting in increased
calcium and phosphorus deposition in bone tissue and decreased deposition in blood
vessels, providing relief for both vascular calcification and osteoporosis; effectively inhibits
the progression of CAC in dialysis patients and abrogates bone calcification in severe cases
with high bone turnover rates [183]. The long-term use of denosumab has been shown to
reverse or treat the calcification of the aortic arch in hemodialysis patients [184].

Calcimmimetics can improve the calcium sensitivity of parathyroid calcium-sensitive
receptors and reduce calcium, phosphorus, and PTH levels [185], not only to control
secondary hyperparathyroidism in patients with CKD, but also to improve vascular cal-
cification and maintain normal bone metabolism. An RCT study showed that vascular
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and cardiac valve calcification progressed more slowly in patients in the cenacalcid plus
low-dose vitamin D group [186]. A new intravenous preparation, etelcalcitide, has been
reported to lower PTH more potently and for a longer duration than cenacalcid, but is
prone to hypocalcemia and prolonged ECG QT intervals [187]. Therefore, the optimal
timing of calcium mimetics, when to discontinue, the duration of treatment, and long-term
safety issues still need to be studied in depth.

Phytate is an endogenous crystallization inhibitor that is closely associated with
calcification-related diseases. Small molecular weight and water solubility make it dia-
lyzable and its loss exacerbates the development of calcification in dialysis patients [188].
An intravenous formulation of hexabenzodicarboxylate (SNF472) has been developed
to address this phenomenon and slow the progression of calcification and CAC in CKD
patients. The results of a large double-blind, placebo-controlled RCT showed that SNF472
delayed the progression of CAC and aortic valve calcification in hemodialysis patients
compared to a placebo [189].

In addition, many modulators of mineral handling and calcification in CKD, such as
odanacatif (anticathepsin K), romosozumab (antisclerostin antibody), and SGLT (sodium
glucose convertor)-2 inhibitors are under investigation.

4. Conclusions and Perspective

A high incidence of systemic vascular calcification, especially CAC, is a major risk
factor of CVDs in patients with CKD. However, there are no clearly proven methods to
effectively reverse it. More researched to further explore and elucidate the relationship
between CKD and vascular calcification may be helpful to provide effective therapeutic
targets and reduce the occurrence of vascular events. With the in-depth exploration of
the mechanism and the advancement of various drug development and clinical trials, the
future of CKD calcification treatment remains worthy of anticipation.
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