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Abstract: The role of nuclear medicine in pediatric cardiology has grown rapidly over the years,
providing useful functional and prognostic information and playing a complementary role to mor-
phological imaging in the evaluation of myocardial perfusion, cardiovascular inflammation and
infections, and cardiac sympathetic innervation. The aim of this narrative review is to summarize and
highlight the most important evidence on pediatric nuclear cardiology, describing clinical applications
and the possibilities, advantages, and limitations of nuclear medicine techniques. Moreover, a special
focus will be given to the minimization of radiation exposure in pediatric nuclear cardiology imaging,
a critical topic in children.

Keywords: nuclear imaging; pediatric cardiology; scintigraphy; positron emission tomography;
congenital heart disease

1. Introduction

Significant improvements in the clinical and surgical management of pediatric pa-
tients with cardiological disease (congenital and acquired) have led to improved survival.
Advanced noninvasive cardiac imaging has played a pivotal role in this complex scenario,
supporting preoperative decision-making and life-long surveillance in an increasing num-
ber of surviving patients. Multimodality cardiac imaging significantly contributes to indi-
vidualized diagnosis and management for each patient, allowing a tailored treatment with
consequent improved prognosis and clinical outcomes. In this context, echocardiography,
computed tomography (CT), and magnetic resonance imaging (MRI) are very important
imaging diagnostic techniques [1] in pediatric patients, but nevertheless, sometimes, they
have important drawbacks. The echocardiogram is extremely operator-dependent, failing
in cases of poor echo windows [2,3]. High heart rates represent one of the most important
limitations of CT (this imaging technique also has high radiation doses of up to 13 mSv) [2,3].
For magnetic resonance, pacemakers and other implanted devices, if not compatible, are
well-known contraindications, and furthermore, the execution of the exam can take a long
time [2—4]. Advanced imaging techniques could be considered key elements for allowing
the practice of “precision medicine” before, during, and after therapy. Among cardiac non-
invasive imaging techniques, nuclear medicine provides useful functional and prognostic
information complementary to that obtained using anatomic imaging and is useful in cases
of limitations of other imaging techniques [3-5]. Nuclear imaging is playing a growing
role in the evaluation of cardiac disease in the pediatric population, especially with the
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technological evolution of detectors and hybrid machines, which have a reduced amount
of radiation exposure and improved diagnostic accuracy [4-6]. In adults, the main clinical
applications include myocardial perfusion imaging, myocardial viability, cardiovascular
infection and inflammation evaluation, and cardiac sympathetic innervation assessment.
In the pediatric field, radiation exposure is a critical issue, but new-generation scanners
use significantly decreased radiation doses, and the therapeutic clinical benefits overcome
potential radiation risks considering the complex patient condition. The aim of this nar-
rative review is to summarize and highlight the most important evidence on pediatric
nuclear cardiology, describing clinical applications and the possibilities, advantages, and
limitations of nuclear medicine techniques.

2. Myocardial Perfusion Imaging (MPI) in Pediatric Nuclear Cardiology
2.1. Indications

According to several studies, the main indications of myocardial perfusion imaging
(MPI) in pediatric nuclear cardiology are:

- Kawasaki Disease (KD): MPI with Single Photon Emission Computed Tomography
(SPECT) is used to detect myocardial ischemia and/or myocardial infarction in pe-
diatric patients with KD. In fact, coronary arteries involvement frequently occurs
without prompt treatment, with the development of coronary aneurysms in up to 25%
of untreated children. Spontaneous regression of coronary abnormalities is observed
in approximately two-thirds of patients during the first year after the acute illness,
but long-term coronary stenosis may develop in some patients, even after aneurysm
regression. Nuclear imaging is used particularly in patient follow-up. For example,
[18F]Flu0r0deoxyglucose (FDG) Positron Emission Tomography (PET) can also be
used in these children for the assessment of myocardium viability [3,6-8].

- Congenital anomalies of the coronary arteries: These findings are sometimes reported
in echocardiographic reports. For example, anomalous aortic origin of a coronary
artery from the opposite sinus of Valsalva (AAOCA), associated with intramural or
interarterial course, is increasingly diagnosed incidentally in children, but the related
clinical risks are not well defined [3,6,9,10]. A fundamental exam in the assessment
of these patients includes the evaluation of regional myocardial perfusion at rest and
during physical or pharmacological stress, such as SPECT. The use of MPI has been
reported in other rare congenital coronary diseases such as anomalous origin of the
left coronary artery from the pulmonary artery (ALCAPA), Williams syndrome with
coronary involvement, myocardial bridging, and complex CHD such as pulmonary
atresia-intact ventricular septum with right ventricular coronary sinusoids or tetralogy
of Fallot with coronary anomalies [3,10].

In particular, in anomalous origin of the left coronary artery from the pulmonary artery
(ALCAPA), MPI with SPECT is often utilized in the post-operative follow-up in order to
assess the extension of the ischemic myocardium area. Moreover, it is helpful for the
preoperative evaluation of myocardium viability; patients showing radiopharmaceutical
uptake of 50% or more in the left ventricle could benefit from any revascularization pro-
cedure [11,12]. [*®F]FDG PET is also used in children to assess myocardium viability [12].
In fact, in these patients, identifying hibernating myocardium is useful for evaluating
the chances of recovery after surgical repair. This can be detected by nuclear imaging
as a mismatch between reduced rest perfusion and enhanced glucose uptake on PET
imaging [3,12].

Transposition of Great Arteries (TGA): In the arterial switch operation for TGA, the
coronary arteries are reimplanted at the time of surgery and may be prone to abnormal
vasodilation, kinking, or failure to grow at the anastomosis level. Complications arising
early after surgery often lead to severe hypoperfusion, fixed or reversible, and a poorer
prognosis [2,13]. Several studies have demonstrated that MPI with SPECT or PET is very
useful in these patients [2,4,13].
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- Cardiomyopathies: For the assessment of the extent of myocardial damage in pediatric
patients with cardiomyopathies, myocardial perfusion SPECT offers important infor-
mation regarding cardiac pump function and myocardial function [6,14]. In particular,
in hypertrophic cardiomyopathy (HCM), myocardial ischemia has been suggested to
contribute to the pathophysiology of the disease and appears to be related to decreased
subendocardial perfusion in the hypertrophied segments, compression of intramural
small vessels, and myocardial bridging. MPI can contribute as a reliable noninvasive
method for the detection of myocardial ischemia, adding to risk stratification and
treatment [14,15].

- Heart transplantation: One of the long-term complications of heart transplantation is
the development of cardiac allograft vasculopathy. In children, this complication is
a major cause of death and retransplantation. The disease involves both distal and
proximal coronary arteries and is associated with functional anomalies such as systolic
dysfunction and increased filling pressures. Alongside cardiac catheterization, which
is the recommended method, but is invasive and uses radiation, nuclear imaging can
be used in follow-up [3,16,17].

2.2. SPECT Radiopharmaceuticals

For MPI with SPECT, the most used radiopharmaceuticals are technetium-99m (**™Tc)
labeled radiopharmaceuticals (Sestamibi and Tetrofosmin) and, less often, thallium-201
(°1T1) chloride.

9ImTe-2-methoxyisobutylisonitrile (Sestamibi) and *™Tc-1,2-bis[bis(2-ethoxyethyl)
phosphino] ethane (Tetrofosmin) are cationic complexes that diffuse passively through the
capillaries and cell membranes; subsequently, Sestamibi is retained in mitochondria, and
Tetrofosmin localizes within the cytosol instead. Myocardial uptake of Sestamibi and Tetro-
fosmin augments with an increase in perfusion and reflects myocardium viability [18,19].

2017} is a potassium analogue and consequently, its uptake in myocytes is mediated
by sodium/potassium adenosine triphosphate (ATP) transporter. In nuclear cardiology;,
201T] chloride is utilized to evaluate myocardial viability and ischemia for its differential
washout between regions of high and low blood flow (redistribution) [18,20].

Regarding MPI with SPECT in pediatric patients, *™Tc labeled radiopharmaceuticals
have better characteristics in comparison to 2°! TI chloride. The main drawbacks of 21Tl are
a higher physical half-life (! T1 half-life is about 73 h compared to *™Tc half-life, which is
about 6 h) and a higher radiation burden for children. Moreover, “™Tc presents a better
gamma energy emission (140 keV), which is more appropriate for providing Gated-SPECT
analysis and evaluating the small hearts of pediatric patients.

Typically, perfusion imaging requires a stress phase and a rest phase. SPECT with *™Tc
labeled radio compounds needs two injections of ™ Tc-Sestamibi or *™Tc-Tetrofosmin,
one for each phase (Figure 1). Instead, SPECT with 21 Tl chloride requires only one injection
of the radiopharmaceutical due to its redistribution.

Regarding the injected dose, the ALARA (“as low as reasonably achievable”) principle
must be followed in order to minimize radiation exposure. In general, a dose reduction
could be performed with algorithms (for example, “EANM dose calculator”) or with the
EANM Dosage Card [5,21,22].
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Figure 1. (A): Normal pattern of left ventricle stress and rest myocardial perfusion in a patient
affected by Kawasaki disease. (B): Reversible myocardial perfusion defect (as for ischemia) in the
antero-lateral wall of the left ventricle in a patient with Kawasaki disease. (C): Stress/rest myocardial
perfusion scintigraphy showed mild multiple regional abnormalities of myocardial perfusion in
a heart transplant patient.

2.3. Patient Preparation

When stress testing is scheduled, fasting is usually required if sedation is planned,
according to anesthesiological indications [1]. In this context, motionless acquisition is
one of the most important concerns during MPI in pediatric nuclear cardiology. Sedation
is useful, especially for younger children (up to 5-6 years of age). Furthermore, in the
case of neonates or infants, it is possible to obtain a good acquisition of images by taking
advantage of post-feeding sleep [1]. Whenever possible, the interruption of beta-blockers
(and other drugs that may interfere with heart rate) is required [1].

2.4. Stress Testing: Special Focus on Adenosine and Regadenoson
Stress testing for MPI in nuclear cardiology could be performed with the following:

e  Physical stressor (preferably, for example, cycle ergometer or treadmill);
e  Pharmacological stressor (typically dipyridamole, adenosine, or dobutamine).

Although physical stress gives more physiological information, it requires high com-
pliance from patients. In this context, in pediatric patients, it may be arduous to reach
the maximum predicted heart rate required to highlight abnormalities of coronary flow
reserve [5]. Therefore, MPI should be performed by well-trained staff with high pediatric ex-
pertise to obtain the maximum cooperation of the young patients, limiting pharmacological
stress in those children who are not able to perform an adequate physical stress test.

Adenosine is the most used pharmacological stressor in pediatric patients. This nu-
cleoside has direct actions on A2a receptors (causing coronary vasodilatation) and a short
half-life in the bloodstream (about 10 s); hence, side effects (correlated with the activation
of A1AR, A2B, and A3AR, comprise flushing, headache, chest discomfort, dyspnea, gas-
trointestinal discomfort, lightheadedness/dizziness, AV block, paresthesia, hypotension,
and arrhythmias) are usually mild and quickly disappear [5,23]. Adenosine is infused
intravenously (0.14 mg/Kg/min over 6 min). The main contraindications are a history
of reactive airway disease, second- or third-degree AV block, acute coronary syndromes,
systolic BP < 90 mmHg, especially in case of autonomic dysfunction, hypovolemia, left
main coronary stenosis, stenotic valvular heart disease, pericarditis, and cerebrovascular
insufficiency. Xanthine interferes with adenosine; therefore, medication or foods/beverages
containing xanthine should be avoided [23-25].
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To the best of our knowledge, there is no report on the utilization of regadenoson
as a pharmacological stressor for MPI in pediatric nuclear cardiology. Nevertheless, its
favorable features may lead us to suggest the utilization of regadenoson in children in
these exams. Regadenoson is a highly selective A2a receptor agonist, with a weaker affinity
for Al receptors and negligible binding to A2b receptors; hence, regadenoson has more
favorable side effects in comparison to adenosine (in particular, AV block is less frequent
with regadenoson) [23,26]. Moreover, there are studies demonstrating its feasibility in
pediatric patients concerning its utilization as a pharmacological stressor in myocardial
stress perfusion magnetic resonance [27-30].

2.5. SPECT and Technical Considerations on Image Acquisition and Processing

In general, SPECT acquisition is performed with a two-head gamma camera with
an L configuration using a 180-degree rotation from the right anterior oblique to the left
posterior oblique. In order to optimize SPECT imaging with an improved spatial resolution
(and consequently improving the diagnostic accuracy of lesions detection in small hearts),
the resolution could be improved using iterative algorithms in imaging reconstruction [31].

To date, attenuation correction (AC) of SPECT images is performed with algorithms
using computed tomography (CT) or iterative reconstruction techniques [32]; neverthe-
less, AC with CT should be avoided in children in order to avoid additional radiation
exposure [33].

For parameters deriving from Quantitative Gated SPECT (QGS), physicians should
be aware of the possible overestimation of the left ventricular ejection fractions, measured
by QGS software, which are often higher in small hearts [34]. Furthermore, Quantitative
Perfusion SPECT (QPS) analysis is critical in children due to the absence of reference polar
maps in pediatric nuclear cardiology.

It is important to underline that many pediatric patients could benefit from cardiac-
centered gamma cameras, which are increasingly used in Europe. As a matter of fact, these
gamma cameras have favorable features for MPI SPECT in children, such as increased
spatial resolution in comparison to conventional gamma cameras and enhanced myocardial
counts sensitivity that allows a reduced dose of the radiopharmaceuticals injected (and
consequently a reduction in radiation exposure) [35].

2.6. PET Radiopharmaceuticals

MPI with PET has an established role in adults due to its favorable features, such
as a higher spatial resolution in comparison to SPECT and its ability to provide accurate
quantitative data of myocardial blood flow [20,36]; however, there are few studies regarding
MPI with PET in pediatric patients.

The majority of these studies are focused on ['®N] Ammonia ([**N]NHj3), in particular
in the evaluation of pediatric patients with coronary abnormalities [37] and after arterial
switch operation for TGA. For example, Bengel et al., through the quantitative analysis
of myocardial blood flow with ['3N]NHj; PET, demonstrated a significant reduction of
coronary reserve in a group of 22 asymptomatic children who underwent the arterial switch
operation 10 =+ 1 years before, in comparison to a control group composed of 10 healthy
adults [38].

The synthesis of ['*N]NH3 needs an on-site cyclotron due to the short half-life of >N
(9.96 min). The entire mechanism of localization in the cell of this radiopharmaceutical
is not fully known; ['*N]NH; diffuses passively through the cell membrane, and then it
undergoes trapping with the conversion of NHj3 to glutamine, glutamic acid, and carbamoyl
phosphate [39-43].

82Rubidium (82Rb), a PET tracer used in MP], is a potassium analog, and its cellular
uptake depends on sodium /potassium ATP transporter. 32Rb has a short half-life (1.16 min),
which is the reason why its generator can be utilized only with the CARDIOGEN-82 ®
infusion system. Moreover, the 82Rb half-life allows a short duration of the exam (35-45 min
for both rest and pharmacological stressor phases) [44]. Regarding the application of 82Rb
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PET in children, only one study has been performed [45] with promising results concerning
the detection of coronary artery disease, demonstrating feasibility in pediatric patients

(Table 1).

Table 1. Summary of advantages and drawbacks of MPI SPECT and PET radiopharmaceuticals.

Radiopharmaceutical Advantages Drawbacks
Availability in the majority of the =~ The exam requires two injections.
99m Te-MIBI nuclear medicine centers. ™ Tc Poor spatial resolution: imaging

99MTe-Tetrofosmin

has a better gamma energy
emission in comparison to 2’1 T.

needs to be optimized in order to
improve spatial resolution.

The exam requires only

High physical half-life of 201,
High radiation burden for

201 :
Tl chloride one injection. children. 211 has a suboptimal
gamma energy emission.
PET with ['*N]NHj3 has a higher Need for an on-site cyclotron.
[>NINH; spatial resolution in comparison Reports on MPI in pediatric
to SPECT. patients are limited.
. 82 .
spzzr]iE:; Zzgt(});u tiz?r?igﬁfzi:on Need for its generator and
_ ® : .
82Rb to SPECT. Short duration of the CARDIOGEN-82 ~ infusion

system. Reports on MPI in

exam (35-45 min) due to its pediatric patients are very limited.

half-life of 1.16 min.

3. Other Applications in Pediatric Nuclear Cardiology
3.1. Myocardial Viability

The evaluation of myocardial viability has an important role in determining the efficacy
of coronary surgery in pediatric patients with Kawasaki disease, ALCAPA, and TGA.
SPECT with 2°1T1 could be performed [1,2,46-48] for this purpose, but to date, ['8F]FDG
PET is the gold standard for the assessment of myocardial viability due to its advantages,
such as better spatial resolution and faster exam protocol. [®®F]FDG is an analogue of
glucose, and its cellular uptake is mediated by glucose transporters (principally GLUT 1
and 4), thus reflecting the cardiac myocytes’ vitality [49,50]. Synthesis of '®F depends on
cyclotron, and its half-life is 110 min.

3.2. Infections and Inflammations

Valvular endocarditis is a possible complication of surgery or catheterization in pe-
diatric patients with congenital heart disease [51]. The role of ['8F]FDG PET combined
with CT (PET/CT) in the diagnosis of endocarditis is well known [52]. Hypermetabolism
of endocarditis may be detected by ['®FJFDG PET due to the ability of cells involved in
infections/inflammations to express high levels of GLUT transporters (especially neu-
trophils and monocities/macrophages) [53-55]. As regards its utilization in the pediatric
population ['®®F]JFDG PET/CT has shown promising results, detecting endocarditis and
septic embolization foci with high sensitivity [51,56,57] (Figure 2).

PET/CT imaging with ['®F]JFDG is helpful in the assessment of large vessel vasculi-
tis (such as Takayasu arteritis disease) in children [54,58,59]. In addition, this imaging
technique may have a potential role in the assessment of a possible rejection after heart
transplantation and in monitoring the evolution of rejection [17,60], detecting the inflam-
matory activity in the rejecting heart, with the most acute episodes occurring within the
first 6 months after transplantation [60,61]. In this context, Sica et al. demonstrated the
usefulness of ['®FJFDG PET/CT for the early identification of post-heart transplantation
lymphoproliferative diseases [62].
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Figure 2. (A) (MIP and fused axial ['F]FDG PET-TC images): ['®F][FDG PET images show increased
radiopharmaceutical uptake around the aortic valve prosthesis (revealing an infective process, posi-
tive for Granulicatella adiacens; green arrow) associated with a lung septic embolism (orange arrow).
An adequate preparation before PET imaging (consisting of a very low carbohydrate, high protein,
and high-fat diet the day before, followed by fasting overnight on the day before imaging) allows for
minimizing physiological 18F-FDG myocardial uptake. (B) (MIP and fused axial ['8F]FDG PET-TC
images): ['8F]FDG PET images show no pathological uptake after surgical stent removal (as after
surgical procedure) and medical treatment (with complete clinical response for lung embolism).

Somatostatin receptor imaging may be useful as well. Typically, rejection activity
presents with lymphocyte infiltration, and these cells express somatostatin receptors. In the
past, Mari Aparici et al. demonstrated the feasibility of scintigraphy with '1In-Octreotide
(a somatostatin analogue) in order to evaluate lymphocytic activity during cardiac rejec-
tion [63]. The use of ¥ Ga-DOTA-peptides PET is conceivable for this purpose, with better
hypothetical results. In comparison to scintigraphy, PET has a higher spatial resolution,
and the affinity of ®®Ga-DOTA-peptides in binding somatostatin receptors is higher than
that of M In-Octreotide [64].

3.3. Cardiac Sympathetic Innervation

Cardiac sympathetic innervation plays an important part in the regulation of my-
ocardial blood flow [65]. Impairment of cardiac sympathetic nerve function may occur in
pediatric patients:

e  Subsequent to TOF or TGA correction and after heart transplantation, due to surgical

damage [13,66,67] (Figure 3);

e  With KD, probably due to coronary arteries stenosis [68].

Metaiodobenzylguanidine (MIBG) and meta-hydroxyephedrine (mHED) are both
analogues of the neurotransmitter norepinephrine, their uptake in sympathetic neurons is
mediated by the norepinephrine transporter. 123I-MIBG scintigraphy and ['!C] mHED PET
are used for the evaluation of cardiac sympathetic innervation. Their utilization in children
for this purpose is well-documented [67,69,70].
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Figure -mIBG scintigraphy is a useful method to assess cardiac reinnervation in pediatric
patients undergoing heart transplantation, improving their clinical management. (A): Early and
delayed images in the upper panel showed a significant myocardial '?3I-mIBG uptake in a patient
without chest pain who underwent heart transplantation for dilated cardiomyopathy. (B): No
significant myocardial '2>I-mIBG uptake is evident in images displayed in the lower panel. The
patient underwent heart transplantation (9 years before) for univentricular heart, asymptomatic for

chest pain, had a sudden cardiac death 8 months after 12>I-mIBG scintigraphy.

3.4. Lung Scintigraphy

Lung scintigraphy with *™Tc-macroaggregated albumin (*™Tc-MAA) plays an im-
portant role in lung perfusion studies. The particle size of MAA is 20-100 um. After the
tracer injection, 99mTc labeled particles are entrapped during their first transit through the
pulmonary circulation in proportion to local blood flow. In children, dosing of *mTc-MAA
is weight-based to avoid a significant embolization in lung capillary vessels (more than
0.1% of total lung capillary vessels) [71] and radiation overexposure.

Branch pulmonary artery stenosis (BPAS) is a common post-operative complication
in children with TOF. Lung scintigraphy with *™Tc-MAA is commonly used to assess
lung perfusion in pediatric patients with BPAS, playing a complementary diagnostic role
with angiography (invasive and unsuitable for follow-up examinations) and transtho-
racic echocardiography (limited in some pediatric patients with obesity or post-operative
changes such as fibrosis) [72,73]. Furthermore, the association with ventilation scintigra-
phy (performed with *™Tc-Technegas) and SPECT may improve the diagnostic value of
perfusion lung scintigraphy [74].

9mTc-MAA scintigraphy may have a potential diagnostic role in the evaluation of
children with primary pulmonary vein stenosis (PVS). PVS is a rare disorder caused by an
intraluminal pulmonary vein obstruction caused by the neoproliferation of myofibroblasts.
In a retrospective study, Drubach et al. demonstrated a significant correlation between
findings in lung scintigraphy and angiography [75].
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4. Conclusions

Nuclear medicine provides a wide range of solutions for diagnosing many pediatric
cardiovascular diseases. As concerns imaging in pediatric nuclear cardiology, the best
possible spatial resolution plays a fundamental role. Therefore, the development of new
18F-labeled radiopharmaceuticals for perfusion PET will improve diagnostic accuracy
('8F has a shorter positron range in tissues in comparison to 3N and 82Rb and provides
a higher spatial resolution imaging [76]). For this reason, ['8F] Flurpiridaz and ['8F]
fluorobenzyltriphenyl-phosphonium (['®F]FBnTP) are promising tracers for MPI PET.

Hybrid system PET/magnetic resonance (MR) has a promising role, as well, with the
combination of functional imaging (PET) and tissue characterization (MR); investigations
are needed for application in pediatric cardiology.
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