A Vector Theory of Assessing Clinical Trials: An Application to Bioequivalence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background Aspects: Endpoints and Statistical Assessment
2.2. The Vector-Based Comparison (VBC)
2.2.1. Elements of Vector Algebra
2.2.2. Elements of Principal Component Analysis
2.2.3. The VBC Concept Applied to Endpoints
- Two endpoints
- More than two endpoints
2.3. Application of VBC: The Case of Bioequivalence Studies
- i
- Estimation of the Euclidean norm of each vector (AUC, Cmax, and AS);
- ii
- Calculation of the two inner products with respect to AUC (since it is considered the most important endpoint: and ;
- iii
- Estimation of the angles: ∠(AUC·0·Cmax) and ∠(AUC·0·AS). Estimation of the angles is necessary since in a subsequent step the projections of Cmax and AS will be calculated using this angle;
- iv
- Repeat steps “i–iii” for each Period and Treatment of the 2 × 2 study. Since our example refers to the typical case of bioequivalence studies, we use a 2 × 2 two period, two sequence, crossover clinical design;
- v
- Perform vector decomposition onto the axes perpendicular to AUC. These perpendicular axes refer to Y and Z for AS and Cmax, respectively. In this step, we need the angles calculated in step “iii”. The decomposed endpoints are calculated in accordance with Equation (5), namely: ASy = AS·sin(θ) and Cmaxz = Cmax·sin(φ), where θ and φ refer to the angles ∠(AUC·0·AS) and ∠(AUC·0·Cmax), respectively;
- vi
- Proceed to the appropriate statistical analysis. In the case of bioequivalence assessment for three endpoints we need to compare: AUCT vs. AUCR, ASyT vs. ASyR, and CmaxzT vs. CmaxzR, where T and R refer to the test and reference treatment, respectively.
2.4. Simulation Framework
2.5. Principal Component Analysis
3. Results
3.1. Dimension Reduction Analysis
3.2. Simulated Bioequivalence Studies
3.2.1. Individual Statistical Power
3.2.2. Joint Statistical Power
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
KaT/KaR | A. Amlodipine | ||||
AUC | Cmax | AS | Cmaxz | ASy | |
1.0 | 100.0 | 100.0 | 73.2 | 100.0 | 99.4 |
1.1 | 100.0 | 100.0 | 65.4 | 100.0 | 99.4 |
1.2 | 100.0 | 100.0 | 46.4 | 100.0 | 98.6 |
1.3 | 100.0 | 100.0 | 26.6 | 100.0 | 98.4 |
1.4 | 100.0 | 99.8 | 16.8 | 100.0 | 98.0 |
1.5 | 100.0 | 99.8 | 6.6 | 100.0 | 98.0 |
1.6 | 100.0 | 99.6 | 3.0 | 100.0 | 97.8 |
1.7 | 100.0 | 99.6 | 0.8 | 100.0 | 97.8 |
1.8 | 100.0 | 99.4 | 0.2 | 100.0 | 97.4 |
1.9 | 100.0 | 98.6 | 0.0 | 100.0 | 96.8 |
2.0 | 100.0 | 98.2 | 0.0 | 100.0 | 96.8 |
KaT/KaR | B. Irbesartan | ||||
AUC | Cmax | AS | Cmaxz | ASy | |
1.0 | 100.0 | 100.0 | 92.6 | 100.0 | 100.0 |
1.1 | 100.0 | 99.8 | 54.8 | 100.0 | 100.0 |
1.2 | 99.9 | 81.1 | 9.6 | 100.0 | 100.0 |
1.3 | 99.0 | 20.1 | 0.1 | 100.0 | 100.0 |
1.4 | 96.6 | 0.9 | 0.0 | 100.0 | 100.0 |
1.5 | 92.4 | 0.0 | 0.0 | 100.0 | 100.0 |
1.6 | 83.8 | 0.0 | 0.0 | 100.0 | 100.0 |
1.7 | 78.4 | 0.0 | 0.0 | 100.0 | 100.0 |
1.8 | 69.0 | 0.0 | 0.0 | 100.0 | 100.0 |
1.9 | 57.0 | 0.0 | 0.0 | 100.0 | 100.0 |
2.0 | 50.8 | 0.0 | 0.0 | 100.0 | 99.9 |
KaT/KaR | C. Hydrochlorothiazide | ||||
AUC | Cmax | AS | Cmaxz | ASy | |
1.0 | 100.0 | 100.0 | 99.3 | 100.0 | 100.0 |
1.1 | 100.0 | 100.0 | 84.8 | 100.0 | 100.0 |
1.2 | 100.0 | 100.0 | 31.3 | 100.0 | 100.0 |
1.3 | 100.0 | 99.9 | 3.8 | 100.0 | 100.0 |
1.4 | 100.0 | 98.0 | 0.1 | 100.0 | 100.0 |
1.5 | 100.0 | 90.9 | 0.0 | 100.0 | 100.0 |
1.6 | 100.0 | 68.5 | 0.0 | 100.0 | 100.0 |
1.7 | 100.0 | 45.0 | 0.0 | 100.0 | 100.0 |
1.8 | 100.0 | 22.0 | 0.0 | 100.0 | 100.0 |
1.9 | 100.0 | 8.3 | 0.0 | 100.0 | 100.0 |
2.0 | 100.0 | 2.3 | 0.0 | 100.0 | 99.9 |
KaT/KaR | A. Amlodipine | |||
(AUC, Cmax) | (AUC, AS) | (AUC, Cmaxz) | (AUC, ASy) | |
1.0 | 100.0 | 73.2 | 100.0 | 99.4 |
1.1 | 100.0 | 65.4 | 100.0 | 99.4 |
1.2 | 100.0 | 46.4 | 100.0 | 98.6 |
1.3 | 100.0 | 26.6 | 100.0 | 98.4 |
1.4 | 99.8 | 16.8 | 100.0 | 97.8 |
1.5 | 99.8 | 6.6 | 100.0 | 97.8 |
1.6 | 99.8 | 3.0 | 100.0 | 98.0 |
1.7 | 99.4 | 0.8 | 100.0 | 98.0 |
1.8 | 99.4 | 0.2 | 100.0 | 97.8 |
1.9 | 98.6 | 0.0 | 100.0 | 96.8 |
2.0 | 98.2 | 0.0 | 100.0 | 98.0 |
KaT/KaR | B. Irbesartan | |||
(AUC, Cmax) | (AUC, AS) | (AUC, Cmaxz) | (AUC, ASy) | |
1.0 | 100.0 | 92.6 | 100.0 | 100.0 |
1.1 | 99.8 | 54.8 | 100.0 | 100.0 |
1.2 | 81.1 | 9.6 | 99.9 | 99.9 |
1.3 | 20.1 | 0.1 | 99.0 | 98.9 |
1.4 | 0.9 | 0.0 | 96.6 | 96.6 |
1.5 | 0.0 | 0.0 | 92.4 | 92.4 |
1.6 | 0.0 | 0.0 | 83.8 | 83.6 |
1.7 | 0.0 | 0.0 | 78.4 | 78.4 |
1.8 | 0.0 | 0.0 | 69.0 | 69.0 |
1.9 | 0.0 | 0.0 | 57.0 | 57.0 |
2.0 | 0.0 | 0.0 | 50.8 | 50.6 |
KaT/KaR | C. Hydrochlorothiazide | |||
(AUC, Cmax) | (AUC, AS) | (AUC, Cmaxz) | (AUC, ASy) | |
1.0 | 100.0 | 99.3 | 100.0 | 100.0 |
1.1 | 100.0 | 84.8 | 100.0 | 100.0 |
1.2 | 100.0 | 31.3 | 100.0 | 100.0 |
1.3 | 99.9 | 3.8 | 100.0 | 100.0 |
1.4 | 98.0 | 0.1 | 100.0 | 100.0 |
1.5 | 90.9 | 0.0 | 100.0 | 100.0 |
1.6 | 68.5 | 0.0 | 100.0 | 100.0 |
1.7 | 45.0 | 0.0 | 100.0 | 100.0 |
1.8 | 22.0 | 0.0 | 100.0 | 100.0 |
1.9 | 8.3 | 0.0 | 100.0 | 100.0 |
2.0 | 2.3 | 0.0 | 100.0 | 100.0 |
References
- Friedman, L.M.; Furberg, C.D.; DeMets, D.L.; Reboussin, D.M.; Granger, C.B. Fundamentals of Clinical Trials; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Matthews, J.N.S. Introduction to Randomized Controlled Clinical Trials, 2nd ed.; Chapman & Hall/CRC: Philadelphia, PA, USA, 2006. [Google Scholar]
- Brody, T. Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines, 2nd ed.; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Kieser, M. Methods and Applications of Sample Size Calculation and Recalculation in Clinical Trials, 1st ed.; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- ICH Harmonised Guideline. General Considerations for Clinical Studies. E8(R1) 2021. Available online: https://database.ich.org/sites/default/files/ICH_E8-R1_Guideline_Step4_2021_1006.pdf (accessed on 14 April 2024).
- ICH Harmonised Guideline. Addendum on Estimands and Sensitivity Analysis in Clinical Trials. To the Guideline on Statistical Principles for Clinical Trials. E9(R1). Available online: https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf (accessed on 14 April 2024).
- ICH Harmonised Tripartite Guideline. Statistical Principles for Clinical Trials E9. 1998. Available online: https://database.ich.org/sites/default/files/E9_Guideline.pdf (accessed on 14 April 2024).
- Hollis, S.; Fletcher, C.; Lynn, F.; Urban, H.-J.; Branson, J.; Burger, H.-U.; Tudur Smith, C.; Sydes, M.R.; Gerlinger, C. Best Practice for Analysis of Shared Clinical Trial Data. BMC Med. Res. Methodol. 2016, 16, 76. [Google Scholar] [CrossRef]
- Hamasaki, T.; Evans, S.R.; Asakura, K. Design, Data Monitoring, and Analysis of Clinical Trials with Co-Primary Endpoints: A Review. J. Biopharm. Stat. 2018, 28, 28–51. [Google Scholar] [CrossRef] [PubMed]
- Homma, G.; Yoshida, T. Sample Size Calculation in Clinical Trials with Two Co-primary Endpoints Including Overdispersed Count and Continuous Outcomes. Pharm. Stat. 2024, 23, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Sakamaki, K.; Yoshida, S.; Morita, Y.; Kamiura, T.; Iba, K.; Ogawa, N.; Suganami, H.; Tsuchiya, S.; Fukimbara, S. Challenges on Multiple Endpoints in Clinical Trials: An Industry Survey in Japan. Ther. Innov. Regul. Sci. 2020, 54, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Sakamaki, K.; Morita, Y.; Iba, K.; Kamiura, T.; Yoshida, S.; Ogawa, N.; Suganami, H.; Tsuchiya, S.; Fukimbara, S. Multiplicity Adjustment and Sample Size Calculation in Clinical Trials with Multiple Endpoints: An Industry Survey of Current Practices in Japan. Ther. Innov. Regul. Sci. 2020, 54, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y.; Wang, X.; Liu, X.; Fu, B.; Lin, Y.; Larsen, L.; Offen, W. Overview of Multiple Testing Methodology and Recent Development in Clinical Trials. Contemp. Clin. Trials 2015, 45, 13–20. [Google Scholar]
- Neuhäuser, M. How to Deal with Multiple Endpoints in Clinical Trials. Fundam. Clin. Pharmacol. 2006, 20, 515–523. [Google Scholar] [CrossRef]
- FDA. Multiple Endpoints in Clinical Trials Guidance for Industry. U.S. Department of Health and Human Services Food and Drug Administration. Center for Drug Evaluation and Research (CDER). 2022. Available online: https://www.fda.gov/media/162416/download (accessed on 14 April 2024).
- EMA. Guideline on Multiplicity Issues in Clinical Trials. Committee for Human Medicinal Products (CHMP). EMA/CHMP/44762/2017. 2017. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-multiplicity-issues-clinical-trials_en.pdf (accessed on 14 April 2024).
- EMA. Points to Consider on Multiplicity Issues in Clinical Trials. Committee for Proprietary Medicinal Products (CPMP). 2002 CPMP/EWP/908/99. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-multiplicity-issues-clinical-trials_en.pdf (accessed on 14 April 2024).
- Dmitrienko, A.; D’Agostino, R.B., Sr.; Huque, M.F. Key Multiplicity Issues in Clinical Drug Development. Stat. Med. 2013, 32, 1079–1111. [Google Scholar] [CrossRef] [PubMed]
- Paux, G.; Dmitrienko, A. Penalty-Based Approaches to Evaluating Multiplicity Adjustments in Clinical Trials: Traditional Multiplicity Problems. J. Biopharm. Stat. 2018, 28, 146–168. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, A. Special Issue: Multiplicity Issues in Clinical Trials. J. Biopharm. Stat. 2018, 28, 1–2. [Google Scholar] [CrossRef]
- Benda, N.; Bender, R. Multiplicity Issues in Clinical Trials. Biom. J. 2011, 53, 873–874. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.T.; Baker, M. Overhauling Clinical Trials. Nat. Biotechnol. 2007, 25, 287–292. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency 2010. Committee for Medicinal Products for Human Use (CHMP). Guideline on the Investigation of Bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **. London, 20 January 2010. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (accessed on 14 April 2024).
- Food and Drug Administration (FDA) 2014. Guidance for Industry. Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs—General Considerations. Draft Guidance. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). December 2013. Available online: https://www.fda.gov/media/88254/download (accessed on 14 April 2024).
- Schall, R.; Luus, H. Comparison of absorption rates in bioequivalence studies of immediate release drug formulations. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 153–159. [Google Scholar] [PubMed]
- Chen, M. An alternative approach for assessment of rate of absorption in bioequivalence studies. Pharm. Res. 1992, 9, 1380–1385. [Google Scholar] [CrossRef]
- Schall, R.; Luus, H.G.; Steinijans, V.W.; Hauschke, D. Choice of characteristics and their bioequivalence ranges for the compar-ison of absorption rates of immediate-release drug formulations. Int. J. Clin. Pharmacol. Ther. 1994, 32, 323–328. [Google Scholar] [PubMed]
- Rostami-Hodjegan, A.; Jackson, P.; Tucker, G. Sensitivity of indirect metrics for assessing “rate” in bioequivalence studies: Moving the “goalposts” or changing the “game”. J. Pharm. Sci. 1994, 83, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Bois, F.; Tozer, T.; Hauck, W.; Chen, M.; Patnaik, R.; Williams, R. Bioequivalence: Performance of several measures of extent of absorption. Pharm. Res. 1994, 11, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.; Keene, O.; Duquesnoy, C.; Bye, A. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies. J. Pharm. Sci. 1994, 83, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Endrenyi, L.; Al-Shaikh, P. Sensitive and specific determination of the equivalence of absorption rates. Pharm. Res. 1995, 12, 1856–1864. [Google Scholar] [CrossRef]
- Tothfalusi, L.; Endrenyi, L. Without extrapolation, Cmax/AUC is an effective metric in investigations of bioequivalence. Pharm. Res. 1995, 12, 937–942. [Google Scholar] [CrossRef]
- Basson, R.; Cerimele, B.; DeSante, K.; Howey, D. Tmax: An unconfounded metric for rate of absorption in single dose bioequiv-alence studies. Pharm. Res. 1996, 13, 324–328. [Google Scholar] [CrossRef]
- Basson, R.P.; Ghosh, A.; Cerimele, B.J.; DeSante, K.A.; Howey, D.C. Why rate of absorption inferences in single dose bioequivalence studies are often inappropriate. Pharm Res. 1998, 15, 276–279. [Google Scholar] [CrossRef]
- Chen, M.; Lesko, L.; Williams, R. Measures of exposure versus measures of rate and extent of absorption. Clin. Pharmacokinet. 2001, 40, 565–572. [Google Scholar] [CrossRef]
- Niazi, S. Handbook of Bioequivalence Testing (Drugs and the Pharmaceutical Sciences), 2nd ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Karalis, V. Machine Learning in Bioequivalence: Towards Identifying an Appropriate Measure of Absorption Rate. Appl. Sci. 2023, 13, 418. [Google Scholar] [CrossRef]
- Karalis, V. On the Interplay between Machine Learning, Population Pharmacokinetics, and Bioequivalence to Introduce Aver-age Slope as a New Measure for Absorption Rate. Appl. Sci. 2023, 13, 2257. [Google Scholar] [CrossRef]
- Karalis, V. An In-Silico Approach Toward the Appropriate Absorption Rate Metric in Bioequivalence. Pharmaceuticals 2023, 16, 725. [Google Scholar] [CrossRef] [PubMed]
- Shafarevich, I.R.; Remizov, A. Linear Algebra and Geometry, 2013rd ed.; Kramer, D.P.; Nekludova, L., Translators; Springer: Berlin, Germany, 2012. [Google Scholar]
- Lepetic, V. Classical Vector Algebra, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 2011, 53, 217–288. [Google Scholar] [CrossRef]
- James, G.; Hastie, T.; Tibshirani, R.; Witten, D. An Introduction to Statistical Learning with Applications in R, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Shamout, F.; Zhu, T.; Clifton, D.A. Machine Learning for Clinical Outcome Prediction. IEEE Rev. Biomed. Eng. 2021, 14, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Gniazdowski, Z. Geometric Interpretation of a Correlation. 2013, pp. 27–35. Available online: https://web.archive.org/web/20180422002411id_/http://zeszyty-naukowe.wwsi.edu.pl/zeszyty/zeszyt9/Geometric_interpretation_of_a_correlation.pdf (accessed on 14 April 2024).
- Flynn, J.T.; Nahata, M.C.; Mahan, J.D.; Portman, R.J.; PATH-2 Investigators. Population pharmacokinetics of amlodipine in hypertensive children and adolescents. J. Clin. Pharmacol. 2006, 46, 905–916. [Google Scholar]
- US Food and Drug Administration. Approval Package for: Application Number NDA 19-787/S30. Clinical Pharmacology and Biopharmaceutics Review, Norvasc®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/019787_S30_NORVASC_BIOPHARMR.pdf (accessed on 14 April 2024).
- Amlodipine 5 mg Tablets. Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/4717/smpc/print (accessed on 14 April 2024).
- Ruilope, L. Human Pharmacokinetic/Pharmacodynamic Profile of Irbesartan: A New Potent Angiotensin II Receptor Antagonist. J. Hypertens. 1997, 15, S15–S20. [Google Scholar]
- Marino, M.R.; Vachharajani, N.N. Pharmacokinetics of irbesartan are not altered in special populations. J. Cardiovasc. Pharmacol. 2002, 40, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Irbesartan 300 mg Film-Coated Tablets—Summary of Product Characteristics (SmPC). Available online: https://www.medicines.org.uk/emc/product/14518/smpc (accessed on 14 April 2024).
- Neves, R.; Almeida, S.; Filipe, A.; Spínola, A.C.; Abolfathi, Z.; Yritia, M.; Ortuño, J. Bioequivalence study of two different film-coated tablet formulations of losartan-hydrochlorothiazide in healthy volunteers. Arzneimittelforschung 2008, 58, 369–375. [Google Scholar] [PubMed]
- Van Wart, S.A.; Shoaf, S.E.; Mallikaarjun, S.; Mager, D.E. Population-based meta-analysis of hydrochlorothiazide pharmacokinetics. Biopharm. Drug Dispos. 2013, 34, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Enalapril Maleate and Hydrochlorothiazide 20 mg/12.5 mg Tablets. Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/9862/smpc/print (accessed on 14 April 2024).
- FDA Approved Drug Products: Hydrochlorothiazide Oral Tablets. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/040735s004,040770s003lbl.pdf (accessed on 14 April 2024).
- Vlachou, M.; Karalis, V. An In Vitro–In Vivo Simulation Approach for the Prediction of Bioequivalence. Materials 2021, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- Karalis, V. Modeling and Simulation in Bioequivalence. In Modeling in Biopharmaceutics, Pharmacokinetics and Pharma-co-Dynamics. Homogeneous and Heterogeneous Approaches, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 227–255. [Google Scholar]
- Offen, W.; Chuang-Stein, C.; Dmitrienko, A.; Littman, G.; Maca, J.; Meyerson, L.; Muirhead, R.; Stryszak, P.; Baddy, A.; Chen, K.; et al. Multiple Co-Primary Endpoints: Medical and Statistical Solutions: A Report from the Multiple Endpoints Expert Team of the Pharmaceutical Research and Manufacturers of America. Drug Inf. J. 2007, 41, 31–46. [Google Scholar] [CrossRef]
- Dmitrienko, A.; D’Agostino, R.B., Sr. Editorial: Multiplicity Issues in Clinical Trials. Stat. Med. 2017, 36, 4423–4426. [Google Scholar] [CrossRef]
- Chuang-Stein, C.; Li, J. Changes Are Still Needed on Multiple Co-primary Endpoints. Stat. Med. 2017, 36, 4427–4436. [Google Scholar] [CrossRef]
- Dmitrienko, A.; D’Agostino, R.B., Sr. Multiplicity Considerations in Clinical Trials. N. Engl. J. Med. 2018, 378, 2115–2122. [Google Scholar] [CrossRef]
- Lauzon, C.; Caffo, B. Easy Multiplicity Control in Equivalence Testing Using Two One-Sided Tests. Am. Stat. 2009, 63, 147–154. [Google Scholar] [CrossRef]
- Hua, S.Y.; Xu, S.; D’Agostino, R.B., Sr. Multiplicity Adjustments in Testing for Bioequivalence. Stat. Med. 2015, 34, 215–231. [Google Scholar] [CrossRef]
- Boulaguiem, Y.; Quartier, J.; Lapteva, M.; Kalia, Y.N.; Victoria-Feser, M.-P.; Guerrier, S.; Couturier, D.-L. Finite Sample Corrections for Average Equivalence Testing. Stat. Med. 2024, 43, 833–854. [Google Scholar] [CrossRef] [PubMed]
- Blokdyk, G. Data Normalization a Complete Guide, 2020th ed.; Barnes & Noble, 9780655959960, 5starcooks: Toronto, ON, Canada, 2019. [Google Scholar]
- Lu, Y.; Zhou, J.; Xing, L.; Zhang, X. The Optimal Design of Clinical Trials with Potential Biomarker Effects: A Novel Computational Approach. Stat. Med. 2021, 40, 1752–1766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jia, H.; Xing, L.; Chen, C. Application of Group Sequential Methods to the 2-in-1 Design and Its Extensions for Interim Monitoring. Stat. Biopharm. Res. 2024, 16, 130–139. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X. From Bench to Bedside, 2-in-1 Design Expedites Phase 2/3 Oncology Drug Development. Front. Oncol. 2023, 13, 1251672. [Google Scholar] [CrossRef] [PubMed]
Factors | Description |
---|---|
Medicines | Amlodipine Irbesartan Hydrochlorothiazide |
PCA | |
Sample size | 200 |
Software | Python 3.12.2 |
Settings | Z-score standardization |
Monte Carlo simulations | |
Sample size | 24 |
Between-subject variability | 15% |
Within-subject variability | 20% |
Software | MATLAB 2024a |
Pharmacokinetic information | References |
Amlodipine | [46,47,48] |
Irbesartan | [49,50,51] |
Hydrochlorothiazide | [52,53,54,55] |
Simulations methodology | [56,57] |
Issue | Action Taken in This Study/Description |
---|---|
Multiple endpoints: - Related endpoints - Multiplicity - Decrease in statistical power | Introduce Vector Based Comparison (VBC) |
Description of the VBC approach | Section 2.2 (general) Section 2.3 (specifically for bioequivalence studies) |
Application of the VBC in this study | Bioequivalence studies of amlodipine, irbesartan, hydrochlorothiazide |
Bioequivalence data to apply the VBC | Monte Carlo simulated bioequivalence studies |
Endpoints used | AUC, AUCinf, Cmax, Tmax, AS |
Identify relationships among the endpoints | Principal Component Analysis was applied to separate datasets of the three drugs |
Fields of VBC application |
|
Prerequisites of VBC | Any variables being on numerical or Likert scale |
Advantages of VBC | Physical rationale Avoid using unnecessary (related) endpoints Avoid multiplicity issues Increase statistical power Reduce sample size Simple Reproducible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalis, V.D. A Vector Theory of Assessing Clinical Trials: An Application to Bioequivalence. J. Cardiovasc. Dev. Dis. 2024, 11, 185. https://doi.org/10.3390/jcdd11070185
Karalis VD. A Vector Theory of Assessing Clinical Trials: An Application to Bioequivalence. Journal of Cardiovascular Development and Disease. 2024; 11(7):185. https://doi.org/10.3390/jcdd11070185
Chicago/Turabian StyleKaralis, Vangelis D. 2024. "A Vector Theory of Assessing Clinical Trials: An Application to Bioequivalence" Journal of Cardiovascular Development and Disease 11, no. 7: 185. https://doi.org/10.3390/jcdd11070185
APA StyleKaralis, V. D. (2024). A Vector Theory of Assessing Clinical Trials: An Application to Bioequivalence. Journal of Cardiovascular Development and Disease, 11(7), 185. https://doi.org/10.3390/jcdd11070185