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Abstract: Cardiac magnetic resonance (CMR) is commonly employed to confirm the diagnosis of
acute myocarditis (AM). However, the impact of atrial and ventricular function in AM patients with
preserved ejection fraction (EF) deserves further investigation. Therefore, the aim of this study was
to explore the incremental diagnostic value of combining atrial and strain functions using CMR in
patients with AM and preserved EF. This retrospective study collected CMR scans of 126 consecutive
patients with AM (meeting the Lake Louise criteria) and with preserved EF, as well as 52 age- and
sex-matched control subjects. Left atrial (LA) and left ventricular (LV) strain functions were assessed
using conventional cine-SSFP sequences. In patients with AM and preserved EF, impaired ventricular
and atrial strain functions were observed compared to control subjects. These impairments remained
significant even in multivariable analysis. The combined model of atrial and ventricular functions
proved to be the most effective in distinguishing AM patients with preserved ejection fraction from
control subjects, achieving an area under the curve of 0.77 and showing a significant improvement in
the likelihood ratio. These findings suggest that a combined analysis of both atrial and ventricular
functions may improve the diagnostic accuracy for patients with AM and preserved EF.

Keywords: myocarditis; atrial strain; ventricular strain; preserved ejection fraction

1. Introduction

Acute myocarditis (AM) is an inflammatory disease of the myocardium with different
clinical presentations and outcomes [1–4]. The heterogeneous clinical presentation makes
the diagnosis challenging, mainly in patients with preserved ejection fraction (EF), in which
the disease may go undetected (EF) [5,6]. However, the ITAMY study demonstrated that
even patients with myocarditis and preserved EF developed major adverse cardiac events
with an incidence of about 8% [6]. In this scenario, cardiovascular magnetic resonance
(CMR) is the diagnostic tool of choice for patients with suspected myocarditis, allowing for
an accurate morphological and functional cardiac assessment [2,7–10]. CMR has shown
to be useful for the evaluation of myocardial strain, enabling the assessment of subclini-
cal systolic and diastolic impairment [9,11]. Among strain acquisition techniques, CMR
feature tracking (CMR-FT) is an emerging non-contrast quantitative method to evaluate
both atrial and ventricular myocardial deformation using routinely acquired cine-CMR
images [8,9,11–14]. This method utilizes optical flow to identify features within the image
and subsequently tracks them through successive images in the sequences [11]. Myocardial
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strain measures the rate of myocardial deformation between relaxed and contracted states
during a cardiac cycle [11,15–17]. The myocardium is composed of different layers with
varied orientations of myofibers in each layer. Longitudinal strain indicates the shortening
of the subendocardial fibers along the longitudinal axis from the base to the apex, and it is
denoted by negative values. Circumferential strain measures the concentric myocardial
shortening of subepicardial fibers on a short axis-view, and it is expressed by a negative
value. Radial strain evaluates myocardial thickening and thinning of both subepicardial
and subendocardial in the radial direction towards the center of the LV, and it is represented
by a positive value [11,15,16]. Due to the distinctive orientations and thinness of the atrial
wall, typically only the longitudinal strain is measured at the atrial level. Left atrial (LA)
function can be divided into three consecutive phases, namely (1) reservoir, reflecting atrial
filling during systole; (2) conduit, a measurement of the passive left atrium emptying dur-
ing ventricular diastole; and (3) booster, representing atrial contractility [9]. Several studies
investigated the impact of atrial and ventricular functions in patients with AM, reporting
atrial and ventricular dysfunction during the acute phase of AM [18–20]. Conversely, there
is a paucity of data with controversial results on CMR-FT in patients with AM patients and
preserved EF. Gatti et al. demonstrated no differences in global longitudinal (GLS), global
circumferential strain (GCS), and global radial strain (GRS) of the LV between AM patients
with preserved EF and healthy subjects [21]. On the other hand, Meindl et al. reported a
significant reduction in LV myocardial strain function compared to control subjects [22]. An
echocardiography study of 30 patients with acute myocarditis and preserved EF, confirmed
by CMR according to the Lake Louise criteria, demonstrated atrial impairment over LV
dysfunction [23]. The aim of this study was to evaluate the impact of atrial and ventricular
strain dysfunction and the benefit of multi-chamber investigation over the course of acute
myocarditis with preserved EF.

2. Materials and Methods
2.1. Study Population

In this retrospective, longitudinal, observational, single-center study, all consecutive
patients with acute myocarditis who underwent CMR and fulfilled the modified Lake
Louise Criteria between 3 March 2019 and 7 August 2022 were included. Clinically sus-
pected AM was defined based on the recent European Society of Cardiology position
paper [2]. In particular, symptomatic patients with chest pain who fulfilled at least one
diagnostic criterion (new electrocardiogram modification, elevated troponin, wall motion
abnormalities with preserved LVEF on echocardiography) were considered to have sus-
pected AM. A definitive diagnosis of AM was established using the current Lake Louise
Criteria via CMR [7]. Endomyocardial biopsy (EMB) was not performed in our hospital
in this low-risk population according to international statement [2]. Ejection fraction was
assessed via CMR in each subject. In total, 52 healthy age- and gender-matched subjects
were recruited to serve as a control group.

Exclusion criteria included subjects <18 years old; patients with reduced LVEF; previ-
ous myocardial infarction; pre-existing cardiomyopathy; and suspected or known prior
irreversible myocardial damage.

The Institutional Review Board’s approval for this retrospective, cross-sectional study
was obtained, and patients’ consent was waived because of the retrospective nature of this
study.

A flowchart demonstrating the application of inclusion and exclusion criteria is pro-
vided in Figure 1.
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Healthcare, Best, The Netherlands). Anterior coil arrays were used. All cine-images were 
acquired using a balanced steady-state free precession and retrospective gating during 
expiratory breath-hold maneuvers (TE: 1.7 ms; TR: 3.4 ms/flip-angle: 45°, section thickness 
= 8 mm) in both long-axis (two-, three- and four-chamber view) as well as short-axis planes 
with whole ventricular coverage from base to apex.  

T2 mapping was acquired before the administration of contrast-media on three 
representative short-axis slices (at the base, mid-ventricular, and apex, respectively) using 
a single-breath-hold, black-blood prepared ECG-triggered, spin-echo multiecho sequence. 

Late gadolinium enhancement (LGE) imaging was performed in both long- and 
short-axis slices 10–12 min minutes after contrast media injection (Gadovist, Bayer 
Healthcare, Berlin, Germany) with a dose of 0.15 mL per kg body weight using phase-
sensitive inversion recovery sequences (PSIR) (TE: 2.0 ms; TR: 3.4 ms; flip-angle: 20°, 
section thickness = 8 mm) with an inversion time determined using the Look–Locker 
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We used the commercially available software system Circle CVI42 (CV42 6.0, CVI42, 

Circle Cardiovascular Imaging Inc., Calgary, AB, Canada) for CMR-FT data analysis. 
Offline CMR feature tracking analyses were conducted for evaluation of peak global 
longitudinal strain, global radial strain, and global circumferential strain in a 16-segment 

Figure 1. Flowchart of this study.

2.2. CMR Acquisition

CMR scans were performed at 4.1 ± 2.6 days (median = 1 day, range = 1–10 days)
after admission to the hospital by using a Philips Achieva dStream 1.5 T scanner system
(Philips Healthcare, Best, The Netherlands). Anterior coil arrays were used. All cine-
images were acquired using a balanced steady-state free precession and retrospective
gating during expiratory breath-hold maneuvers (TE: 1.7 ms; TR: 3.4 ms/flip-angle: 45◦,
section thickness = 8 mm) in both long-axis (two-, three- and four-chamber view) as well
as short-axis planes with whole ventricular coverage from base to apex.

T2 mapping was acquired before the administration of contrast-media on three rep-
resentative short-axis slices (at the base, mid-ventricular, and apex, respectively) using a
single-breath-hold, black-blood prepared ECG-triggered, spin-echo multiecho sequence.

Late gadolinium enhancement (LGE) imaging was performed in both long- and short-
axis slices 10–12 min minutes after contrast media injection (Gadovist, Bayer Healthcare,
Berlin, Germany) with a dose of 0.15 mL per kg body weight using phase-sensitive inversion
recovery sequences (PSIR) (TE: 2.0 ms; TR: 3.4 ms; flip-angle: 20◦, section thickness = 8 mm)
with an inversion time determined using the Look–Locker technique.

2.3. CMR Image Post-Processing

We used the commercially available software system Circle CVI42 (CV42 6.0, CVI42,
Circle Cardiovascular Imaging Inc., Calgary, AB, Canada) for CMR-FT data analysis. Offline
CMR feature tracking analyses were conducted for evaluation of peak global longitudinal
strain, global radial strain, and global circumferential strain in a 16-segment software-
generated 2D model. Concerning longitudinal strain, data on myocardial strain were
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derived from two-, three-, and four-chamber long-axis views. Regarding radial strain and
circumferential strain, data on myocardial strain were derived from apical, mid-ventricular,
and basal short-axis views in all patients. On all images, the epi- and endocardial borders
were traced in end-diastole. After that, an automatic computation was triggered, by which
the applied software algorithm automatically outlined the border throughout the cardiac
cycle.

Similarly, CMR-FT analyses of atrial deformation were conducted offline. On all
the acquired images, LA endocardial borders were manually traced in long view of the
cine-images when the atrium was at its minimum volume. In particular, the four-, three-,
and two-chamber views were used to derive LA longitudinal strain. LA appendage and
pulmonary veins were excluded from segmentation.

After that, with an automatic computation, the software algorithm automatically
tracked the myocardial borders throughout the cardiac cycle. The quality of the tracking
and contouring was visually validated and manually corrected when needed. There are
three peaks in the strain curve, including reservoir, conduit, and booster strain, as shown
in Figure 2.
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Figure 2. Examples of LA strain parameters in patient with AM. The endo- and epicardial borders
of the LA were manually depicted, and the curves of the LA function were automatically obtained.
Corresponding LA reservoir, conduit, and booster strain curves are shown.

Accordingly, their corresponding strain rate parameters were included. The quality of
the tracking and contouring of atrial and ventricular function was visually validated and
manually corrected by a radiologist with 4 years of experience in cardiac imaging.

The extent and location of LGE were assessed using both qualitative and quantitative
methods. Qualitatively, the evaluation involved counting and determining the location of
affected myocardial segments. Quantitatively, the extent of LGE was measured by tracing
the epicardial and endocardial contours in each short-axis image. A region of interest (ROI)
was manually placed in the myocardium without LGE to serve as a reference. LGE was
defined as myocardium with a mean signal intensity exceeding the reference ROI by more
than 5 standard deviations.

2.4. Statistical Analysis

Continuous variables are presented as mean ± standard deviation. Comparisons of
continuous data were performed using the independent samples t-test or Mann–Whitney U
test; Kolmogorov–Smirnov tests were used to assess the normality of residuals. Categorical
variables were compared by using the chi-squared test or Fisher’s exact test, as appropriate.

The association of LA and LV function parameters with the presence of AM with
preserved EF was assessed by using univariable and multivariable logistic regression
analysis. The univariable regression models included the presence of AM as the dependent
variable and each LA and LV strain parameter as an independent variable. A subset of
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CMR parameters that showed a p value < 0.05 in univariable analysis was further examined
in multivariable analysis. All multivariable models were adjusted for age, sex, and LVEF.

To investigate the incremental value of considering both atrial and ventricular in-
volvement, we compared multivariable models using the log-likelihood ratio (LR) test.
Concretely, we compared models of ventricular or atrial parameters considered alone (base
models) with models that included both parameters (complex models). The diagnostic ac-
curacy of statistically significant parameters was further evaluated using receiver operating
characteristics analysis. Confidence intervals (CIs) around the median area under the curve
(AUC) were computed with 5000 bootstrap iterations.

A p value < 0.05 was considered statistically significant. All statistical analyses were
performed using IBM SPSS Statistics version 22 (SPSS Inc., Chicago, IL, USA) and R (R
Foundation for Statistical Computing, Vienna, Austria, version 4.1.0).

3. Results
3.1. Patient Demographics, Clinical Data, and CMR Data

Table 1 shows the characteristics of this study population. A total of 126 patients with
AM and preserved EF, consisting of males (99, 78%) and females (27, 21%) with a mean age
of 44.72 ± 18.22 years, as well as 52 age- and sex-matched control subjects, were included.
There was no difference in the cardiovascular risk profile between the groups under study,
except for some participants having a family history of coronary artery diseases (p = 0.001).

Table 1. Baseline characteristics and CMR parameters of included patients. The data are presented as
mean ± standard deviation (SD) for quantitative variables and n (%) for qualitative variables.

AM Subjects with Preserved EF
(n = 126)

Control Subjects
(n = 52) p Value

Age, y 44.72 ± 18.22 46.73 ± 15.38 0.490

Male, n (%) 99 (78%) 43 (82%) 0.536

Weight, kg 71.53 ± 12.53 70.38 ± 17.31 0.778

Height, cm 170.70 ± 6.73 165.07 ± 10.57 0.136

BSA, m2 1.82 ± 0.17 1.83 ± 0.16 0.187

Hypertension, n (%) 22 (17%) 11 (21%) 0.567

Dyslipidemia, n (%) 13 (10%) 6 (11%) 0.727

Obesity, n (%) 15 (12%) 3 (6%) 0.255

Smoke, n (%) 19 (15%) 8 (16%) 0.857

Diabetes, n (%) 5 (4%) 3 (6%) 0.559

Family history of CAD, n (%) 22 (17%) 1 (2%) 0.001

Elevated troponin, n (%) 126 (100%) / /

LVEF, % 56.48 ± 5.99 60.52 ± 5.54 0.008

LVEDV/BSA, mL/m2 83.07 ± 15.15 80.37 ± 17.25 0.322

LVESV/BSA, mL/m2 34.59 ± 13.23 32.22 ± 9.06 0.119

LVSV/BSA, mL/m2 50.27 ± 10.15 48.18 ± 9.47 0.226

LV mass/BSA, g/m2 62.87 ± 15.57 60.10 ± 10.70 0.216

LGE presence, n (%) 121 (96%) / /

LGE extent, % 7.81 ± 4.23 / /

Reservoir, % 31.21 ± 11.88 36.09 ± 7.68 0.001

Reservoir rate, s−1 1.42 ± 0,58 1.46 ± 0.42 0.597
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Table 1. Cont.

AM Subjects with Preserved EF
(n = 126)

Control Subjects
(n = 52) p Value

Conduit, % 17.87 ± 9.77 21.61 ± 6.52 0.004

Conduit rate, s−1 −1.91 ± 1.00 −1.73 ± 0.60 0.214

Booster, % 13.22 ± 4.99 13.52 ± 4.17 0.711

Booster rate, s−1 −1.69 ± 0.60 −1.82 ± 0.62 0.218

GLS, % −13.60 ± 3.25 −16.03 ± 2.35 0.001

GCS, % −14,60 ± 3.91 −17.69 ± 3.27 0.001

GRS, % 22.48 ± 9.00 30.23 ± 8.08 0.001

Abbreviations: AM, acute myocarditis; CAD, coronary artery disease, EDV, end-diastolic volume; ESV, end-
systolic volume; SV, stroke volume; EF, ejection fraction; BSA, body surface area; GLS, global longitudinal strain;
GCS, global circumferential strain; GRS, global radial strain. Bold indicates statistical significance.

The median time from symptom onset to CMR was 5 days (interquartile range
2–7 days). Ejection fraction was preserved in the myocarditis group as well as in the
control group (56.48% ± 5.99 vs. ± 60.52% ± 5.54, p = 0.008, Table 1). No differences were
found in LV volumes and sizes quantified according to CMR imaging between the AM and
control subjects.

Regarding LV myocardial strain parameters, GLS (−13.60% ± 3.25 vs. −16.03 ± 2.35,
p = 0.001), GCS (−14.60% ± 3.91 vs. −17.69 ± 3.27, p = 0.001), and GRS (22.48% ± 9.00
vs. ± 30.23 ± 8.08, p = 0.001) demonstrated impaired function between the AM group and
control subjects.

The LA reservoir mechanism was reduced in patients with myocarditis compared to
control subjects (31.21 ± 11.88 vs. 36.09 ± 7.68, p = 0.001). Also, the LA conduit function was
impaired in the myocardium compared to the control group (17.87 ± 9.77 vs. 21.61 ± 6.52,
p = 0.004). In contrast, there was no difference in the LA reservoir strain rate, LA conduit
strain rate, and contractile booster pump function between the groups under analysis.

3.2. Association of LA and LV Strain Mechanism with AM

Table 2 summarizes the findings of univariable and multivariable logistic regression
analyses, which were conducted to examine the association between the AM, LA, and
LV strain parameters. There was a significant association between the reservoir phase,
conduit phase, and the presence of AM (odds ratio [OR] = 1.043, 95% CI 1.010–1.076,
p = 0.009 and OR = 1.048, 95% CI 1.009–1.089, p = 0.001; respectively). In the model adjusted
for traditional cardiovascular risk factors and LVEF, the association remained significant
(OR = 1.044, 95% CI 1.006–1.083, p = 0.021 and OR = 1.069, 95% CI 1.016–1.125, p = 0.010;
respectively).

Moreover, there was a significant association between GLS (OR = 0.738, 95% CI
0.642–0.849, p = 0.001), GCS (OR = 0.776, 95% CI 0.692–0.869, p = 0.001), GRS (OR = 1.117,
95% CI 1.065–1.171, p = 0.001), and the presence of AM. In the fully adjusted model, the
association remained significant (GLS, OR = 0.726, 95% CI 0.611–0.842, p = 0.001; GCS
OR = 0. 801, 95% CI 0.699–0.917, p = 0.001; GRS OR = 1.104, 95% CI 1.042–1.170, p = 0.001;
respectively). Association of LVEF as a primary factor with AM was also statistically
significant.
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Table 2. Univariable and multivariable logistic regression analysis of CMR variables for discrimina-
tion between AM patients and controls. Each multivariable model was adjusted for age, sex, and left
ventricle ejection fraction. Multivariable model for LVEF was adjusted for age and sex. Abbreviations
are the same as in Table 1.

Univariable Analysis Multivariable Analysis

OR (95% CI) p Value OR (95% CI) p Value

Reservoir, % 1.043 (1.010–1.076) 0.009 1.044 (1.006–1.083) 0.021

Conduit, % 1.048 (1.009–1.089) 0.001 1.069 (1.016–1.125) 0.010

GLS 0.738 (0.642–0.849) 0.001 0.726 (0.611–0.842) 0.001

GCS 0.776 (0.692–0.869) 0.001 0. 801 (0.699–0.917) 0.001

GRS 1.117 (1.065–1.171) 0.001 1.104 (1.042–1.170) 0.001

LVEF 0.918 (0.870–0.966) 0.001 0.921 (0.872–0.968) 0.002

3.3. Added Value of LA and LV Strain Parameters in Combination for Diagnosing AM

The diagnostic performance of LA and LV strain parameters alone versus their inte-
grated models were evaluated using the LR test. The results showed that integrating LV
and LA strain parameters resulted in a systematically better diagnostic accuracy than either
parameter alone (Table 3). The integration of GLS, GCS, and GRS with the conduit resulted
in a better discrimination ability (LR 31.73, 34.42 and 35.91, respectively) than the conduit
(LR 23.37) diagnosing AM alone (p = 0.004, p < 0.001 and p < 0.001, respectively). Including
GLS, GCS, and GRS in addition to the reservoir significantly improved the discrimination
ability for diagnosing AM (LR 30.95, 32.70 and 34.73, respectively, vs. LR 21.96 for reservoir
alone; p = 0.003, p = 0.001 and p < 0.001, respectively). The diagnostic performance of
LVEF alone compared to the integrated models of LVEF and atrial and ventricular strain
parameters is shown in Supplementary Table S1.

Table 3. Incremental value of combining ventricular and atrial strain measurements to identifying
AM patients with preserved ejection fraction. All multivariable logistic regression models include
age, sex, and left ventricle ejection fraction. Base models of conduit and reservoir strain are updated
with one atrial strain measurement at a time, and these updated models are compared with the
corresponding base model using a Likelihood ratio test. LR indicates log-likelihood ratio; Df, degrees
of freedom. Other abbreviations are the same as in Table 1.

Adjusted R2 a LR ∆ LR Df p Value b

Conduit c 0.175 23.37 5 <0.001

+GLS 0.233 31.73 8.36 6 0.004

+GCS 0.251 34.42 11.05 6 <0.001

+GRS 0.261 35.91 12.54 6 <0.001

Reservoir c 0.166 21.96 5 <0.001

+GLS 0.228 30.95 8.99 6 0.003

+GCS 0.239 32.70 10.74 6 0.001

+GRS 0.252 34.73 12.77 6 <0.001
a McFadden pseudo R2. b p value by Likelihood ratio test. c base models of conduit and reservoir strains are
compared with the null model.

In ROC analysis, the model that integrated GLS with the conduit strain outperformed
both the LA and LV strain parameters in diagnosing AM, as indicated by the higher AUC
(0.77, 95% CI 0.68–0.84, Figure 3). All other combined models are reported in Supplementary
Figures S1 and S2. The ROC analysis for LVEF models is presented in Supplementary
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Figure S3. LVEF models have lower AUCs compared to models of conduit and global
ventricular strains.

J. Cardiovasc. Dev. Dis. 2024, 11, x FOR PEER REVIEW 8 of 13 
 

 

+GRS 0.261 35.91 12.54 6 <0.001 
Reservoir c 0.166 21.96  5 <0.001 

+GLS 0.228 30.95 8.99 6 0.003 
+GCS 0.239 32.70 10.74 6 0.001 
+GRS 0.252 34.73 12.77 6 <0.001 

a McFadden pseudo R2. b p value by Likelihood ratio test. c base models of conduit and reservoir 
strains are compared with the null model. 

 
Figure 3. Receiver operating characteristics analysis reporting diagnostic performance of logistic 
regression models using atrial and ventricular strain measurements. The best performing model is 
reported with a violet, dashed line. The median area under curve and 95% confidence interval are 
reported for each model. Abbreviations are the same as in Table 1. 

4. Discussion 
Our data support the hypothesis that atrial and ventricular strain impairment is 

present in AM patients despite a preserved EF, suggesting subtle systolic and diastolic 
impairment. The main results of the current study can be summarized as follows: (1) a 
subtle ventricular impairment of all three myocardial layers was present despite normal 
EF, (2) besides ventricular dysfunction, the LA reservoir and conduit are significantly 
reduced, and (3) a multi-chamber approach improves the diagnostic accuracy, providing 
insights into the physiological communication between LV cardiac chambers in AM. 

Previous studies evaluated the ventricular mechanism in AM patients with preserved 
EF with controversial results [20,21,24]. We found alterations of longitudinal, 
circumferential, and radial strain parameters in comparison with previous studies that 

Figure 3. Receiver operating characteristics analysis reporting diagnostic performance of logistic
regression models using atrial and ventricular strain measurements. The best performing model is
reported with a violet, dashed line. The median area under curve and 95% confidence interval are
reported for each model. Abbreviations are the same as in Table 1.

4. Discussion

Our data support the hypothesis that atrial and ventricular strain impairment is
present in AM patients despite a preserved EF, suggesting subtle systolic and diastolic
impairment. The main results of the current study can be summarized as follows: (1) a
subtle ventricular impairment of all three myocardial layers was present despite normal EF,
(2) besides ventricular dysfunction, the LA reservoir and conduit are significantly reduced,
and (3) a multi-chamber approach improves the diagnostic accuracy, providing insights
into the physiological communication between LV cardiac chambers in AM.

Previous studies evaluated the ventricular mechanism in AM patients with preserved
EF with controversial results [20,21,24]. We found alterations of longitudinal, circumfer-
ential, and radial strain parameters in comparison with previous studies that reported no
significant differences or involvement of longitudinal myocardial fiber alone during the
acute stage of AM with preserved EF. These differences may be explained by the cut-off
values used for normal EF. In particular, we decided to use a cut-off value for normal EF
of 50% according to the 2022 AHA/ACC/HFSA Guideline for the Management of Heart
Failure [25]. In addition, we included only a selected group of AM patients who fulfilled
the modified Lake Louise Criteria [7].

Studies comparing left atrial mechanisms in patients with myocarditis have demon-
strated reservoir and conduit impairment with preserved booster pump mechanisms in
AM patients [19,20]. LA is an active cardiac chamber that plays a central role in cardiac
output through an interaction with LV across the entire cardiac cycle [9,13].

However, little is known about the impact of the LA mechanism in AM patients with
preserved EF. Given the relationship between LA dysfunction and adverse outcomes in



J. Cardiovasc. Dev. Dis. 2024, 11, 191 9 of 12

various cardiovascular diseases [9,26,27], identifying atrial impairment in patients with
preserved EF may aid in risk stratification. Meindl et al. investigated the diagnostic value
of LV and LA myocardial strains in AM patients with preserved EF using speckle tracking
echocardiography, demonstrating reservoir and conduit dysfunction in patients with acute
myocarditis compared to healthy controls [23]. Similarly, Lee et al. showed impaired
reservoir and conduit mechanisms in AM patients using CMR [28]. Our data confirmed
these results, supporting the hypothesis of abnormalities in atrial compliance and diastolic
impairment throughout the course of AM, despite preserved EF.

Overall, our results suggest abnormalities in both atrial and ventricular mechanisms
in AM patients, emphasizing the physiological “communication” between left cardiac
chambers during the course of the disease. Indeed, LA strain parameters depend on LV
systolic function, especially subendocardial fibers, which can be evaluated by LV GLS [29].

Inoue et al. investigated LA strains as markers of LV diastolic impairment in a multi-
center cohort of 322 patients with cardiovascular disease of different etiologies, reporting
that the strongest determinant of LA strain parameters was LV GLS [30]. In addition, the
authors demonstrated that the correlation between LA strain and LV diastolic dysfunction
was more limited in patients with preserved EF (AUC of 0.67) or preserved GLS (AUC of
0.58) compared to those with impaired EF (AUC of 0.80) [30]. Similar results were also
reported by Carluccio et al., supporting the significant contribution of LV impairment to
LA dysfunction in patients with impaired EF [31].

Given this intrinsic relationship between LA and LV chambers, the LA strain may
be a sub-optimal stand-alone marker of LV diastolic dysfunction in patients with normal
EF [29], highlighting the importance of a comprehensive approach that includes both atrial
and ventricular strain parameters. In particular, combining GLS and conduit mechanisms
enhanced the diagnostic performance of CMR in AM patients compared to using atrial and
ventricular strain parameters alone.

4.1. Clinical Implications

Our data emphasize the importance of evaluating multi-chamber strain parameters as
a supportive non-contrast CMR diagnostic feature in AM patients, even with preserved
EF. The integration of these parameters does not require additional CMR sequences and
can be routinely acquired in standard CMR protocols, requiring only short post-processing
examinations. This approach may be particularly helpful for patients who would benefit
from abbreviated CMR protocols due to the inability to undergo lengthy CMR examinations
or contrast media administrations. Confirming these results in a larger cohort of AM
patients may facilitate a more in-depth understanding of multi-chamber involvement in
AM patients with preserved EF. Indeed, the assessment of atrial and ventricular strains
could potentially carry significant clinical implications, indicating that AM patients with
preserved EF and impaired atrial and ventricular strains may constitute a distinct subgroup
with subtle systolic and diastolic dysfunction. This finding ideally encourages therapeutic
approaches to be applied earlier, potentially leading to improved outcomes for these
patients.

4.2. Limitations

The current study’s limitations should be acknowledged. Firstly, the relatively small
sample size and the retrospective nature of this study are limitations. However, we exclu-
sively enrolled very homogenous AM patients with preserved EF. The promising results of
our study could prompt further prospective trials, including a larger number of patients, to
confirm our findings.

Second, AM is more common in men. This prevalence of AM may influence the
analysis of myocardial strain. To avoid bias, we matched the two groups under analysis
for age and sex and used a multivariable regression model that included age and sex
to account for their potential confounding effects. Although we observed significant
differences in LVEF between these groups in both univariable and multivariable analyses,
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LVEF demonstrated lower AUC values compared to models incorporating conduit and
global ventricular strains. This highlights the need for future studies to incorporate a wider
range of variables to account for potential confounding factors and to provide a more robust
understanding of the relationship between myocardial strain and LVEF in AM patients.
Third, there was no systematic endomyocardial biopsy to detect acute myocarditis. Finally,
this study was cross-sectional in design, and we did not assess the predictive value of
myocardial strain parameters for adverse cardiovascular events in AM patients, nor did we
examine the data on patients’ treatments during follow-up.

In our single-center study, we evaluated AM patients with the same CMR scanner and
protocol, which may limit the reproducibility of our results. Externally validated multi-
center longitudinal studies are needed to assess the association of these CMR parameters
with patient outcomes.

5. Conclusions

Besides the dysfunction of ventricular strain parameters, patients with AM and pre-
served EF demonstrated impaired reservoir and conduit mechanisms. By combining atrial
and ventricular mechanisms, CMR-FT can serve as a useful tool for assessing cardiac
function and for gaining insights into multi-chamber dysfunction in the context of AM.
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characteristics analysis reporting diagnostic performance of logistic regression models using conduit
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istics analysis reporting diagnostic performance of logistic regression models using reservoir and
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fraction and atrial and global ventricular strain measurements. The best performing model is re-
ported with a dark blue, dashed line. The median area under curve and 95% confidence interval
are reported for each model. Supplementary Table S1. Incremental value of combining left ventricle
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acute myocarditis patients with preserved ejection fraction. All multivariable logistic regression
models include age and sex as adjustment factors. Base models of LVEF are updated with one atrial
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