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Although cardiac resynchronization therapy (CRT) is an evidence-based effective
therapy of symptomatic heart failure with reduced ejection fraction (HFrEF), refractory to
optimal medical treatment and associated with intraventricular conduction disturbance,
the non-response rate to CRT is still around 30%. In patients with HFrEF, intraventricu-
lar conduction disturbance results in electrical ventricular dyssynchrony, which further
deteriorates systolic ventricular function. The main determinant of CRT outcome is the
presence or absence of significant ventricular electrical dyssynchrony (which results in
ventricular mechanical dyssynchrony) and the ability of the applied CRT technique to elim-
inate it [1,2]. CRT is not effective in mechanical ventricular dyssynchrony without electrical
dyssynchrony (e.g., that occurs in the presence of myocardial scar or myocarditis); it can
only eliminate mechanical dyssynchrony due to underlying primary electrical ventricular
dyssynchrony [3]. Therefore, theoretically, electrocardiological and electrophysiological
criteria are probably more important in patient selection for CRT than imaging criteria.
The current guidelines [4] recommending only QRS duration and morphology for patient
selection for CRT and not recommending imaging modality criteria after the disappointing
results of the PROSPECT trial [5], investigating the role of echocardiographic mechanical
dyssynchrony criteria for patient selection for CRT, comply with this principle. However,
there may be two main reasons for the still non-negligible non-response rate to CRT. The
first reason is that QRS duration and morphology are not optimal criteria to assess the
presence or absence of ventricular electrical dyssynchrony. The second reason is that the
current biventricular pacing CRT (BIVP-CRT) technique, using apical right ventricular (RV)
and epicardial left ventricular (LV) pacing in the posterolateral or lateral area, although
significantly improving ventricular dyssynchrony and resulting in a more synchronious
ventricular activation, cannot completely restore the physiological ventricular activation
and synchrony [6]. Another problematic property of the current BIVP-CRT technique is
that it was originally devised to eliminate dyssynchrony caused by left bundle branch
block (LBBB) pattern. It is not appropriate in patients with pure, typical right bundle
branch block (RBBB) pattern, and may not be appropriate in some patients with nonspecific
intraventricular conduction disturbance (NICD) pattern, for eliminating dyssynchrony.
This is because the latest activated LV site in patient with pure, typical RBBB and in some
patients with NICD patterns is far away from the standard LV pacing site used in the
BIVP-CRT technique [2]. Therefore, we can decrease the non-response rate to CRT if we
can apply better pre-CRT patient selection criteria than QRS duration and morphology,
that can more accurately assess the presence or absence of significant ventricular electrical
dyssynchrony. The other possible way to decrease the non-response rate to CRT is the
application of novel CRT techniques, such as conduction system pacing (CSP) [His bundle
pacing (HBP) and left bundle branch area pacing (LBBAP)]. These, in contrast to BIVP-
CRT technique, can completely restore physiological ventricular activation [6]. Another
possibility to reduce the number of non-responders to CRT is to apply an individualized
BIVP-CRT technique, when the LV pacing electrode is positioned at the site or very close
to the site of the latest activated LV region [7]. Another advantage of CSP compared with
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BIVP-CRT technique is that the latter has proarrhythmic potential due to non-physiologic
ventricular activation. In contrast to that, CSP potentially abolishes this proarrhythmic
effect by restoring physiological ventricular activation [6]. This Special Issue, under the title
“New pacing techniques and non-invasive methods that may improve response and patient
selection to cardiac resynchronization therapy”, discusses novel non-invasive techniques
and methods that can better assess the presence of ventricular electrical dyssynchrony than
QRS duration and morphology and provides a review of CSP.

Simon A et al., (contribution 1) discuss novel 12-lead ECG signs that may improve the
prediction of response to CRT, such as the presence of masquerading bundle branch block,
the higher R wave amplitude and R/S ratio in lead V6 [8], increased intrinsicoid deflection
(ID) in lateral leads [9], the novel intraventricular [(aVLID-aVFID)/QRS duration] and
interventricular [(V5ID − V1ID)/QRS duration] ECG dyssynchrony criteria > 25% [10],
and a QRmax index ≥ 120 ms, that is the longest QR index in the limb leads, which is the
interval from the onset of the QRS to the R wave offset, defined as the intersection between
the descending limb of the R wave and the baseline [11]. They also delineate that a Q-LV
interval > 95 ms, measured during CRT from the onset of the QRS on the 12-lead ECG
to the first large peak of the LV electrogram obtained from the LV pacing lead, predicts
response to CRT as well [12]. An RV-LV interval ≥ 70 ms, determined during unpaced
beats during CRT by measuring the interval between the first large positive or negative
peaks of the RV and LV electrograms, also predicts response to CRT [13].

Eerenberg F et al., (contribution 2) discuss the potential use of the vectorcardiographic
QRS area in pre-CRT patient selection and in LV lead implantation guidance during CRT. A
QRS area > 109 µVs predicts a response to CRT, and a greater reduction in QRS area during
CRT indicates a more optimal position of the LV electrode [14].

Abu-Alrub S et al., (contribution 3) summarize the role of electrocardiographic imag-
ing, a combination of body surface mapping with computed tomography and a special
software, which corresponds to a non-invasive epicardial electrophysiological examination,
in patient selection for CRT and the optimization of LV lead placement, and the possible
use of ECG belt, an innovative body surface mapping system, in patient selection for CRT.

Nguyen UC et al., (contribution 4) outline the clinical application of ultra-high-
frequency ECG (UHF-ECG) in dyssynchrony assessment for patient selection to CRT and
during cardiac pacing to show which pacing modality preserves best ventricular synchrony.
UHF-ECG displays the ventricular activation sequence analyzing the ultra-high-frequency
(150–1000 Hz) components of ventricular myocyte action potentials’depolarization phase
(phase 0) using either the standard chest leads (V1–V6) or 8 chest leads (V1–V8).

The above-mentioned promising methods—vectorcardiographic QRS area, electro-
cardiographic imaging, ECG belt and UHF-ECG—can decrease non-response to CRT by
providing a more accurate assessment of ventricular electrical dyssynchrony than QRS
duration and morphology.

Dutta et al., (contribution 5) describe the most promising echocardiographic mechan-
ical dyssynchrony parameters that can be applied after the disappointing PROSPECT
trial for better patient selection for CRT, mostly in patients with non-LBBB pattern, who
respond less well to CRT, but also in patients with LBBB pattern. These potentially valuable
echocardiographic dyssynchrony parameters that can identify CRT responders are as fol-
lows: (1) the mechanical dispersion index (standard deviation of the averaged time to peak
longitudinal strain) ≥ 60 ms, (2) the time difference in peak septal wall to posterior wall
radial strain ≥ 130 ms, (3) the presence of apical rocking, (4) the presence of septal flash,
and (5) the classical pattern of mechanical discoordination in patients with LBBB pattern
(early contraction of septal wall and simultaneous passive stretching of the opposite lateral
wall, which contracts late, achieving its peak contraction after aortic valve closure).The
estimation of myocardial work, which is a more sensitive, afterload-independent parameter
of LV systolic function and ventricular dyssynchrony than the afterload-dependent ejection
fraction and global longitudinal strain, is also a promising parameter to predict response to
CRT [15,16]. The results of the Markers and Response to CRT (MARC) study [17] support
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that one previously mentioned echocardiographic parameter and the vectorcardiographic
QRS area are potentially valuable in the identification of CRT responders, because they
found that independent predictors of CRT response [defined as a ≥15% reduction of LV
end systolic volume (LVESV)] were as follows: younger age (<60 years); larger QRS area;
longer interventricular mechanical delay (>40 ms); calculated as the difference between LV
and RV pre-ejection intervals; measured from the QRS complex to the onset of aortic and
pulmonic flow; and the presence of apical rocking.

Cano O et al., (contribution 6) and Castagno D et al., (contribution 7) discuss CSP (HBP
and LBBAP) in detail, which is gradually becoming a potential real alternative to the stan-
dard BIVP-CRT technique due to its ability to restore the physiologic ventricular activation.
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