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Abstract: Genome-wide association studies and experimental mouse models implicate the MIB1
and GATA6 genes in congenital heart disease (CHD). Their close physical proximity and conserved
synteny suggest that these two genes might be involved in analogous cardiac developmental pro-
cesses. Heterozygous Gata6 loss-of-function mutations alone or humanized Mib1 mutations in a
NOTCH1-sensitized genetic background cause bicuspid aortic valve (BAV) and a membranous ven-
tricular septal defect (VSD), consistent with MIB1 and NOTCH1 functioning in the same pathway.
To determine if MIB1-NOTCH and GATA6 interact in valvular and septal development, we gen-
erated compound heterozygote mice carrying different Mib1 missense (Mib1K735R and Mib1V943F)
or nonsense (Mib1R530X) mutations with the Gata6STOP/+ heterozygous null mutation. Combining
Mib1R530X/+ or Mib1K735R/+ with Gata6STOP/+ does not affect Gata6STOP/+ single mutant phenotypes.
In contrast, combining Mib1V943F/+ with Gata6STOP/+ decreases the incidence of BAV and VSD by 50%,
suggesting a suppressive effect of Mib1V943F/+ on Gata6STOP/+. Transcriptomic and functional analyses
revealed that while the EMT pathway term is depleted in the Gata6STOP/+ mutant, introducing the
Mib1V943F variant robustly enriches this term, consistent with the Mib1V943F/+ phenotypic suppression
of Gata6STOP/+. Interestingly, combined Notch1 and Gata6 insufficiency led to a nearly fully penetrant
VSD but did not affect the BAV phenotype, underscoring the complex functional relationship between
MIB1, NOTCH, and GATA6 in valvular and septal development.
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1. Introduction

Bicuspid aortic valve (BAV) is the most prevalent congenital heart defect, affecting
up to 2% of the population, and is characterized by two asymmetrical leaflets instead
of the three leaflets found in normal aortic valves [1,2]. BAV individuals often do not
show symptoms and are usually diagnosed incidentally unless BAV is linked to significant
aortic valve dysfunction, including stenosis and regurgitation [3–6]. Importantly, BAV
disease in younger patients is associated with aortic medial defects that result in a higher
prevalence and accelerated rate of aortic dilatation, increasing the risk of lethal dissection or
rupture [7,8]. Aortic valve development entails the formation of endocardial cushions, their
cellularization through epithelial-to-mesenchymal transition (EMT), and remodeling by
mesenchymal compaction. Concomitant alignment and fusion of the endocardial cushion
mesenchyme is required to ensure cardiac septation [9,10].

Leaflet orientation in BAV varies relative to the coronary arteries, resulting in different
classifications, which depend on the number of raphe [11,12]. In rodents, two main types of
BAV have been described, involving the right and left leaflets (R-L) and, more commonly,
the right and non-coronary leaflets (R-N) [13]. Mechanistically, RL-BAV may be caused by
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defective cardiac neural crest cells (CNCCs) patterning of the outflow tract (OFT) [13]. RN-
type BAV may result from defective endocardial cushion formation, presumably because of
impaired EMT [14].

BAV is inherited in a dominant manner, with incomplete penetrance and variable
expressivity [2,15]. Genome-wide association studies have identified chromosomal regions
9q, containing NOTCH1, and 18q, harboring GATA6 and MIB1, as linked to BAV [16].
Mouse Gata6 and Mib1 genes are closely associated within 300 kb of DNA in a region of
conserved synteny with the human locus 18q11.2 region, which is frequently implicated in
cardiac abnormalities.

GATA6 is a key transcription factor that plays a crucial role in various developmental
processes, including initiating the EMT during mesoderm development and promoting
the migration of CNCCs [17,18]. GATA6 mutations have been reported in a wide spectrum
of CHD, including BAV [19–21]. Gata6 haploinsufficiency causes BAV [20,22], whereas
deletion in CNCCs causes aortic arch defects, suggesting a requirement in vascular smooth
muscle cell differentiation [23,24].

MIB1 is an E3 ubiquitin ligase required for activation of the NOTCH pathway [25].
NOTCH1 and MIB1 mutations have been reported in BAV [26–28]. Mib1 inactivation
in mice broadly recapitulates NOTCH loss of function cardiac phenotypes, including
BAV [14,29,30]. Humanized mouse models for the Mib1R530X nonsense or Mib1V943F missense
mutation [28,31] or the Mib1K735R missense mutation [28] develop BAV in a Notch-sensitized
background [28,32], indicating that valve morphogenesis is highly MIB1-NOTCH dosage-
sensitive.

GATA6 and MIB1’s close physical proximity on chromosome band 18q11 suggests
their involvement in shared developmental mechanisms. In this study, we investigated the
genetic interactions between Gata6 and Mib1 and found a complex functional relationship
between GATA6 and MIB1-NOTCH, which provides valuable insights into the genetic
determinants of BAV, VSD, and related cardiac anomalies.

2. Materials and Methods
2.1. Ethics Statement

Animal studies were approved by the CNIC Animal Experimentation Ethics Com-
mittee and by the Community of Madrid (Ref. PROEX 155.7/20). All animal procedures
conformed to EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the
protection of animals used for experimental and other scientific purposes, enforced in
Spanish law under Real Decreto 1201/2005.

2.2. Mouse Strains

Mouse strains used in this study are as follows: Gata6STOP/+ [22], Mib1R530X/+ [33],
Mib1V943F/+ [34], Mib1K735R/+ [35], Notch1KO/+ [36]. Genotyping primers are shown in
Table S1.

2.3. Tissue Processing for Histological Procedures

For histological procedures, whole embryos or torsos were fixed in 4% paraformalde-
hyde (PFA, Electron Microscopy Sciences, 50980487, Hatfield, PA, USA) overnight at 4 ◦C.
Paraffin-embedded embryos/torsos were cut into 7 µm sections. Hematoxylin and eosin
(H&E) staining was performed according to standard protocols.

2.4. Microscopy and Confocal Imaging

Brightfield imaging was performed using an Olympus BX51 Microscope (Tokyo, Japan)
and Olympus cellSense software (Version number 1.7). Images were processed in Adobe
Photoshop Creative Suite 5.1.
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2.5. Statistical Analysis

Sample sizes, statistical tests, and p-values are specified in the corresponding figure
legends and corresponding subsections of Section 2. For comparisons between two groups,
a mean ± SD is represented, and an unpaired two-tailed Student’s t-test was performed.
For experiments comparing two groups of categorical variables, a mean ± SD per group is
represented, and a Chi-Square test was performed. Differences were considered statistically
significant at a p-value < 0.05 (Table S2). Statistical analysis and graphical representation
were performed using GraphPad Prism, version 8.

2.6. RNA-Seq

RNA was isolated from E11.5 Mib1V943F/+ Gata6+/STOP and control OFT samples. Sam-
ples were distributed in three pools of four pairs of OFT per genotype. Tissue was homoge-
nized with a pestle mechanical homogenizer, and RNA was extracted with an Arcturus
PicoPure RNA Isolation kit (Thermo Fisher Scientific, Norristown, PA, USA, KIT0214).
RNA libraries were prepared using the NEB Next Ultra II Directional RNA Library Prep
Kit (Ipswich, MA, USA) and sequenced in a Nextseq 2000 Illumina sequencer (San Diego,
CA, USA) using a 60 bp single-end elongation protocol. Sequenced reads were QC and
pre-processed using cutadapt v1.18 [37] to remove adapter contaminants. The resulting
reads were aligned, and gene expression was quantified using RSEM v1.2.3 [38] over mouse
reference GRCm38 with Ensembl genebuild. Differential gene expression was analyzed
with the EdgeR R package (v3.32.1 on R 4.0.3) [39]. Genes with 1 count per million (cpm)
in at least 3 samples were defined as expressed and retained for later analysis. Counts
were normalized by the TMM method. Differential gene expression was tested using a
generalized linear model as implemented in the EdgeR package. Genes showing altered
expression with an adj. p-value < 0.05 were considered differentially expressed. The set
of differentially expressed genes was used for functional analysis with Ingenuity Path-
way Analysis Software (version 111725566, Qiagen-IPA, Redwood City, CA, USA) [40],
where we used a Benjamani–Hochberg adjusted p-value < 0.05 for significance. Gene Set
Enrichment Analysis (GSEA) was performed with GSEA on the complete set of expressed
genes against the Hallmark term database. A NOM p-value < 0.1 was used to select for
significantly enriched gene sets.

3. Results

3.1. Allele-Specific Mib1 Interaction with Gata6STOP/+

Mib1 and Gata6 are in close proximity in the chromosome 18q11.2 region (Figure 1A).
To determine if Mib1 and Gata6 interact genetically in valvular and septal development,
we generated compound heterozygote mouse lines by combining in trans three different
humanized Mib1 inactivating alleles (Mib1R530X, Mib1K735R, Mib1V943F) [28,31,32] with a
Gata6-null allele (harboring the Gata6V291X mutation, from now onwards Gata6STOP) [22].

Mib1R530X is a nonsense mutation that results in premature termination, nonsense-
mediated decay [31,41], and haploinsufficiency in humans [31] (Figure 1B). At E16.5,
Mib1R530X/+ Gata6+/STOP double heterozygous mice, in which the Mib1R530X and Gata6STOP

mutations are in trans configuration, developed an RN-BAV with 50% penetrance (14 of
28) compared to 62% penetrance (23 of 37) for the single Gata6STOP/+ mutant (χ2 = 0.9615,
p = 0.3268), and 7% (2 of 27) for the Mib1R530X/+ mutant (χ2 = 12.09, p = 0.0005)
(Figure 1C–E,H). Mib1R530X/+ Gata6+/STOP mutants also had VSD with 36% penetrance
(10 of 28), compared to 51% VSD penetrance (19 of 37) for the single Gata6STOP/+ mutant
(χ2 = 1.577, p = 0.2092) (Figure 1I–K,N). These data indicate that Gata6STOP and Mib1R530X

alleles do not interact genetically during valvular and septal development.
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Figure 1. Allele-specific Mib1 interaction with Gata6STOP/+. (A) Schematic representation of the 
chromosome 18 region harboring Mib1 and Gata6 genes. (B) Graphical representation of the MIB1 
domain organization and location of the identified MIB1 variants. MZM: Mib-Herc2 domain 1 + ZZ 
finger domain + Mib-Herc2 domain 2. REP: Mib Repeats 1 and 2. ANK: Ankyrin repeats 1−9. RNG: 
Ring domains 1−3. (C–G) H&E staining on aortic valve sections in control (C), Gata6STOP/+ (D), 
Mib1R530X/+ Gata6+/STOP (E), Mib1K735R/+ Gata6+/STOP (F), and Mib1V943F/+ Gata6+/STOP mice (G) at E16.5. The 
asterisk (*) indicates the position of the leaflets. (H) Quantification of BAV percentage. Statistical 
significance was determined by the Chi-Square test. (I–M) H&E staining on ventricular chamber 
sections in control (I), Gata6STOP/+ (J), Mib1R530X/+ Gata6+/STOP (K), Mib1K735R/+ Gata6+/STOP(L), and 
Mib1V943F/+ Gata6+/STOP mice (M) at E16.5. Arrowheads indicate VSD. rv, right ventricle. lv, left 
ventricle. (N) Quantification of VSD percentage. Statistical significance was determined by the Chi-
Square test. 

Figure 1. Allele-specific Mib1 interaction with Gata6STOP/+. (A) Schematic representation of the chro-
mosome 18 region harboring Mib1 and Gata6 genes. (B) Graphical representation of the MIB1 domain
organization and location of the identified MIB1 variants. MZM: Mib-Herc2 domain 1 + ZZ finger
domain + Mib-Herc2 domain 2. REP: Mib Repeats 1 and 2. ANK: Ankyrin repeats 1−9. RNG: Ring do-
mains 1−3. (C–G) H&E staining on aortic valve sections in control (C), Gata6STOP/+ (D), Mib1R530X/+

Gata6+/STOP (E), Mib1K735R/+ Gata6+/STOP (F), and Mib1V943F/+ Gata6+/STOP mice (G) at E16.5. The
asterisk (*) indicates the position of the leaflets. (H) Quantification of BAV percentage. Statistical
significance was determined by the Chi-Square test. (I–M) H&E staining on ventricular chamber
sections in control (I), Gata6STOP/+ (J), Mib1R530X/+ Gata6+/STOP (K), Mib1K735R/+ Gata6+/STOP(L), and
Mib1V943F/+ Gata6+/STOP mice (M) at E16.5. Arrowheads indicate VSD. rv, right ventricle. lv, left
ventricle. (N) Quantification of VSD percentage. Statistical significance was determined by the
Chi-Square test.
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Mib1K735R is a missense mutation affecting the ankyrin repeats of the MIB1 ANK region
(Figure 1B), which mediates MIB1 dimerization, suggesting that it acts as a dominant-
negative mutation [28]. At E16.5, Mib1K735R/+ Gata6+/STOP double heterozygous mice, in
which the Mib1K735R and Gata6STOP mutations are in trans configuration, developed an
RN-BAV with 60% penetrance (6 of 10) compared to 69% penetrance (11 of 16) for the single
Gata6STOP/+ mutant (χ2 = 0.2082, p = 0.6482), and 0% (0 of 13) for the Mib1K735R/+ mutant
(Figure 1D,F,H). Mib1K735R/+ Gata6+/STOP mutants also had VSD with 40% penetrance
(4 of 10), compared to 38% VSD penetrance (6 of 16) for the single Gata6STOP/+ mutant
(χ2 = 0.01625, p = 0.8986), and 0% (0 of 13) for the Mib1K735R/+ mutant (Figure 1J,L,N).
Therefore, Mib1K735R/+ Gata6+/STOP alleles do not interact genetically in valvular and septal
development.

Mib1V943F is a missense mutation affecting the third RING domain of the RNG region
that catalyzes ubiquitin transfer to substrate proteins [42] (Figure 1B). Previously, we
demonstrated that MIB1V943F has a dominant negative effect on normal MIB1 function [31].
At E16.5, Mib1V943F/+ Gata6+/STOP mice displayed an RN-BAV with 43% penetrance (13
of 30) compared to 70% penetrance (19 of 27) in Gata6STOP/+ mice (χ2 = 4.219, p = 0.0400)
(Figure 1G,H). Mib1V943F/+ Gata6+/STOP mice also developed VSD with 10% penetrance (3
of 30) compared to 41% penetrance (11 of 27) in Gata6STOP/+ mice (χ2 = 7.248, p = 0.0071)
(Figure 1M,N). Therefore, Mib1V943F has a suppressive effect on the Gata6STOP valvular and
septal phenotypes.

3.2. Mib1V943F Partially Restores EMT in Gata6STOP/+ Mice

To gain insight, we performed RNA-seq on E11.5 Mib1V943F/+ Gata6+/STOP mutant and
control outflow tract (OFT) tissue. Differential expression analysis identified 102 differ-
entially expressed genes (DEGs), 34 of which were upregulated and 68 downregulated
(Figure 2A; Table S3). We used Ingenuity Pathway Analysis (IPA) to provide insights into
the regulatory networks participating in aortic valve development (Ref. [37]). This analysis
uncovered multiple enriched categories in Mib1V943F/+ Gata6+/STOP mice, consistent with
processes expected to be altered in BAV and VSD, including “Heart dysfunction”, “Bone
Mineralization”, “Fibrosis”, and “Proliferation of mesenchymal cells”. In contrast, functional
categories like “Cardiogenesis”, “Intercellular junctions formation”, and “Cardiac contractility”
were all depleted (Figure 2B).

We performed a comparative Gene Set Enrichment Analysis (GSEA) against “HALL-
MARK” gene sets, which are collections of predefined genes representing fundamental,
well-defined biological processes [43]. Gene sets differentially enriched between Mib1V943F/+

Gata6+/STOP and Gata6STOP/+ mutants and respective controls [22] were broadly similar,
although several changes were exacerbated in compound heterozygotes (Figure 2C). For
example, “UV RESPONSE DOWN”, “INFLAMMATORY RESPONSE,” and “PROTEIN
SECRETION” were more significantly enriched, and “MYOGENESIS”, “ADIPOGENESIS”,
and “FATTY ACID METABOLISM” were more significantly depleted (Figure 2C). However,
enriched pathways evoking a proliferative defect like “G2M CHECKPOINT” and “KRAS
SIGNALING UP”, and depleted metabolic pathways like “OXIDATIVE PHOSPHORY-
LATION” and “GLYCOLYSIS” did not deviate significantly. Importantly, “EPITHELIAL
MESENCHYMAL TRANSITION” (“EMT”), the key process by which the endocardial
cushions become cellularized by endocardial and neural crest-derived mesenchyme, was
depleted in the Gata6STOP/+ mutant but enriched in the Mib1V943F/+ Gata6+/STOP mutant
(Figure 2C,D). These data indicate that the Mib1V943F/+ mutation partially suppresses the
Gata6 haploinsufficient phenotype by enhancing EMT.
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Figure 2. Mib1V943F partially restores EMT in Gata6STOP/+ mice. (A) Volcano plot of the transcripts
detected by RNA-seq of Mib1V943F/+ Gata6+/STOP vs. control contrast. Significantly downregulated
and upregulated genes (adjusted p-value < 0.05) are labeled in blue and red, respectively. Non-
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differentially expressed genes are labeled in gray. (B) Circular plot highlighting selected Ingenuity
Pathway Analysis diseases and function terms enriched in the Mib1V943F/+ Gata6+/STOP genotype.
Red dots, upregulated genes in the pathway. Blue dots, downregulated genes in the pathway. The
height of the inner circle section represents the Benjamani–Hochberg (B-H) p-value < 0.05 (higher
is more significant), and enrichment z-score values are color-coded from positive (red) to negative
(blue). (C) Bubble plots show 24 enriched statistically significant Hallmark gene sets in Gata6STOP/+

vs. control and Mib1V943F/+ Gata6+/STOP vs. control contrasts by Gene Set Enrichment Analysis
(GSEA). Negative logarithm of NOM p-value < 0.1 is represented by the size of the bubble (bigger
is more significant). Normalized enrichment score (NES) is color-coded from positive (red) to
negative (blue). Low-color density bubbles represent the Hallmark gene set categories that are not
statistically significant in this specific comparison. (D) Gene enrichment profiles for the “EMT”
gene set in the comparison of Gata6STOP/+ (NOM p-value = 0.0590; NES = −1.28) and Mib1V943F/+

Gata6+/STOP (NOM p-value = 0.0001; NES = 2.02). The expression intensity is plotted on a scale from
red (upregulated) to blue (downregulated). (E) H&E staining on aortic valve and ventricular chamber
sections in controls Notch1KO/+, Gata6STOP/+, and Gata6STOP/+; Notch1KO/+ mice at E16.5. The asterisk
(*) indicates the position of the leaflets. Arrowheads indicate VSD. rv, right ventricle. lv, left ventricle.
(F) Quantification of BAV and VSD percentages, respectively. Statistical significance was determined
by the Chi-Square test.

3.3. Compound Notch1 and Gata6 Haploinsufficiency Leads to Highly Penetrant VSD

The Mib1V943F/+ suppressive effect on the Gata6STOP/+ phenotype and the absence of
interaction between Mib1R530X/+ or Mib1K735R/+ and Gata6STOP/+ may depend on the dosage
of NOTCH. To clarify this, we generated Notch1KO/+; Gata6STOP/+ compound heterozygote
mice (Figure 2E). Combining Gata6STOP/+ and Notch1KO/+ mutant alleles resulted in BAV
with 63% penetrance (12 of 19), comparable to single Gata6STOP/+ mutant mice (64% pene-
trance or 7 of 11) (χ2 = 0.0007, p = 0.9791) (Figure 2E,F). However, Notch1KO/+; Gata6STOP/+

mice displayed VSD with 95% penetrance (18 of 19) compared with 35% penetrance (6 of
17) in Notch1KO/+ mutants (χ2 = 14.27, p = 0.0002), and with 36% penetrance (4 of 11) in
Gata6STOP/+ mutants (χ2 = 12.14, p = 0.0005) (Figure 2E,F). Therefore, the combined hap-
loinsufficiency of Notch1 and Gata6 leads to a high percentage of VSD but does not alter
the frequency of BAV. This indicates that VSDs are particularly sensitive to the combined
insufficiencies of the Gata6 and Notch1 genes, resulting in a more severe phenotype.

4. Discussion

Genetic interactions analysis aims to determine if two different genes participate in
the same developmental process by combining mutations in these genes and examine if
the resulting phenotype diverges from that caused by individual mutations [44]. In this
study, we examined whether the combination of Mib1-Notch1 and Gata6 mutations had a
more profound impact on valvular and septal development than the loss of Gata6 alone.
Previously, we observed that Mib1 mutations affect valvular and septal development only
in a sensitized, Notch-deprived genetic background [28,32]. We identified three types of
interactions between Mib1-Notch1 and Gata6 mutations: 1. Neutral interaction: Mib1K735R/+

Gata6+/STOP and Mib1R530X/+ Gata6+/STOP mutants show BAV and VSD frequencies similar to
those of GATA6STOP/+ heterozygotes; 2. Synergistic interaction: Notch1KO/+; Gata6STOP/+ mu-
tants exhibit a higher than expected VSD frequency compared to Gata6STOP/+ heterozygotes
alone. 3. Partially suppressive interaction: Mib1V943F/+ Gata6+/STOP mutations show lower
BAV and VSD frequencies than Gata6STOP/+ heterozygotes. These findings suggest that the
interactions between MIB1-NOTCH1 and GATA6 are complex and may result in different
biological outcomes, such as endocardial cushion formation and epithelial–mesenchymal tran-
sition (EMT), depending on the developmental context and/or temporal-spatial expression.

Our data may reflect differences due to the nature of the mutations analyzed and the
NOTCH dosage, which is less stringent in the context of valvular and septal development
in mice compared to humans. Specifically, the Mib1R530X and Mib1K735R mutations are
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predicted to be loss-of-function (null) and dominant-negative, respectively. These muta-
tions contribute to the manifestation of valvular and septal phenotypes when combined
with a Notch1 mutation, indicating that cardiac phenotypes are sensitive to Mib1-Notch1
dosage [28,32]. This interpretation is supported by the nearly fully penetrant VSD pheno-
type (95%) observed in compound Notch1KO/+; Gata6STOP/+ heterozygotes, compared to the
40% VSD frequency in Notch1KO/+ mutants.

Our finding that heteroallelic Notch1KO/+; Gata6STOP/+ haploinsufficiency does not
exacerbate the BAV phenotype underscores the more significant role of GATA6 in the
dosage-dependent control of aortic valve development. This is further supported by the
high mutational burden of GATA6 in human CHD [45]. Moreover, GATA6 is a key driver
in the early differentiation of the second heart field [46] and the recruitment of CNCC
lineages [24]. These processes collectively shape the cardiac outflow tract (OFT), potentially
acting upstream of NOTCH inhibitory functions during early cardiogenesis.

Our finding that Mib1V943F/+ partially restores the wild-type valvular and septal phe-
notype when combined with Gata6STOP is intriguing, especially considering the expected
negative effects from NOTCH loss-of-function interactions. Although Mib1V943F has previ-
ously been characterized as a dominant negative mutation [31], its phenotypic expression
still requires Notch1 sensitization [28]. The underlying mechanism of this suppression
involves the restoration of EMT in Mib1V943F/+ Gata6+/STOP/+ mice, which aligns with the
known roles of GATA6 and NOTCH in promoting this process.

The mechanism underlying the compensatory effect on the valvular and septal pheno-
types of the Mib1V943F/+ mutation when combined with Gata6STOP is unclear. Quantitative
PCR experiments indicate that Gata6 mRNA expression in the Mib1V943F/+ Gata6+/STOP

mutants is the predicted 50%, suggesting a post-transcriptional mechanism of compen-
sation. GATA6 interacts with GATA4 [47–49], GATA factors, and other cardiac factors,
ie. TBX5 and/or NKX2.5 [50]. Compensation mechanisms could be explored by quanti-
fying the protein expression levels of GATA6 and interacting partners in the compound
heterozygotes.

The limitations of our study are that Gata6 haploinsufficiency has a disproportionately
large effect size on the BAV phenotype alone and that heterozygous Mib1 mutations fail
to produce phenotypes in mice unless they are sensitized by a second NOTCH mutation.
Additional insight might be obtained from conditional null disruption experiments affecting
the tissue-specific functions of GATA6 and NOTCH.
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