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Abstract: The evaluation of the left atrial (LA) size using the LA volume index (LAVI) is clinically
relevant due to its prognostic significance in various conditions. Nonetheless, adding a LA function
assessment to the LAVI provides further clinical and prognostic information in different cardio-
vascular (CV) diseases. The assessment of LA function by echocardiography primarily includes
volumetric measurements (LA ejection fraction [LAEF]), tissue Doppler imaging (TDI) (mitral annular
late diastolic velocity [a’]), and speckle-tracking methods, such as LA longitudinal reservoir strain
(LA strain). This review analyzes and discusses the current medical evidence and potential clinical
usefulness of these different methods to analyze LA function.

Keywords: cardiovascular imaging; echocardiography; diastolic dysfunction; LAEF; LA strain;
TDI-a’; LAVI/a’

1. Introduction

The evaluation of the left atrial (LA) size is key in any comprehensive transthoracic
echocardiogram due to its prognostic value in different clinical conditions [1–4]. To date,
the LA volume indexed for body surface area (LAVI) is preferred over the anteroposterior
diameter, representing the most accurate measure of LA size by standard transthoracic
echocardiography. Since the LA enlarges in the setting of increased left ventricular (LV)
filling pressures, the LAVI is considered a good marker of diastolic dysfunction (DD) and
is strongly associated with cardiovascular (CV) events [4–12]. However, the LAVI does
not necessarily mirror DD [13]. Indeed, we [14] and others [15,16] reported an upper limit
of a normal LAVI in non-athletes, exceeding that suggested by guidelines [5]. Moreover,
discrepancies have been reported among different methods to assess the LAVI [17]. Hence,
both for clinical and research purposes, different echocardiographic methods cannot be
used interchangeably for diagnosis and follow-up.

An assessment of LA functional parameters provides early insights into pathological
changes, offering additional information as compared to the LAVI [7]. Different methods
are used to assess LA function as follows: 2D and 3D volume-based approaches, transmitral
and pulmonary veins spectral Doppler imaging, tissue Doppler imaging (TDI), strain and
strain rates by TDI, and speckle-tracking echocardiography (STE) [8,9]. However, the
methods used for estimating LA function may be unpractical in everyday clinical activities,
either due to the need for multiple measurements (beyond the LAVI) or to the dependence
on the specific software available on dedicated workstations or board-only last-generation
echocardiographic machines.
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As mitral annular velocities are routinely measured by pulsed-wave TDI as a compo-
nent of the assessment of diastolic function [18], the peak late diastolic velocity (TDI-a’)
might be a candidate to assess LA function in everyday clinical practice [10,11] This review
aims to summarize the updated knowledge on TDI-a’, exploring its potential role for
evaluating LA function.

2. Left Atrial Function: An Introduction

The LA plays a key role in maintaining optimal cardiac performance by dynamically
modulating LV filling. The interplay between LA and LV performance is characterized
by the three following phases (Figure 1): (a) a “reservoir” phase, when blood moves from
the pulmonary veins to the LA, achieving maximum volume (LAVI max); (b) a “conduit”
phase in which blood passively shifts from the LA directly into the LV, leaving in the LA a
“pre-atrial contraction” volume (LA pre-A); (c) a “booster pump” phase in which the LA
actively shifts blood in the LV, reaching a minimum LA volume (LAVI min).
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Figure 1. Left atrial pressure-volume loop, with a qualitative representation of a left atrial (LA)
pressure-volume loop and corresponding echocardiographic evaluations of LA volumes. Maximal
LA volume (usually reported in clinical echocardiography as LAVI) occurs at the end of the reser-
voir phase, while the conduit phase can be captured by LA volume pre-A. Minimum LA volume
corresponds to the end of the LA contractile phase. Superimposed arrows indicate the time-course.

Studies of LA function provide new insights into the pathophysiologic and prog-
nostic role of the LA in CV disease and outcomes [4–9], suggesting that LA functional
measurements may be superior to the LA size in LV DD and can even precede volumetric
changes [19–21]. LA function has been historically assessed by a variety of techniques,
including time-honored systo-diastolic variations in M-mode LA tracings. Subsequently,
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volumetric approaches (first by 2D, more recently by 3D techniques) have been used to
assess LA function alone (Table 1) [8] or in association with the LV outflow-tract velocity
time integral (VTI)—the so-called LA function index (LAFI) [22].

Table 1. Volumetric indices to assess left atrial function.

LA Function Functional Parameter Calculation

Global function LA EF (LAmax − LAmin)/LAmax
Reservoir function Expansion index (LAmax − LAmin)/LAmin
Conduit function Passive EF (LAmax − LApreA)/LAmax

Booster pump Active EF (LApreA − LAmin)/LApreA
See the manuscript for abbreviations.

An analysis of pulsed-wave Doppler flow velocities, recorded in the pulmonary veins
(PVF) (LA filling) and mitral valve tips (LA emptying), may provide some estimation of LA
function (Table 2).

Table 2. Spectral Doppler indices to assess left atrial function.

Method Measurement Clinical Applicability

E/A ratio E/A ratio, E-VTI/A-VTI diastolic function
Atrial filling fraction A-VTI/(E-VTI+A-VTI) atrial contribution

S/D ratio S-VTI/D-VTI relative reservoir to conduit
contribution

pulmonary vein atrial reversal
wave (Ar) Ar velocity and duration atrial contractility

LA ejection force 0.5 × blood density × mitral
orifice area × A velocity LA systolic function

LA kinetic energy
0.5 × blood density ×

(LAVIpreA-LAVImin) × A
velocity

LA work

See the manuscript for abbreviations.

The ratio of peak transmitral early (E) and late (A) transmitral velocities, or velocity
time integral (VTI) and the atrial filling fraction (A-VTI/(E-VTI+A-VTI)), estimate the
relative contribution of LA contraction to global LA function [23]. The ratio of systolic (S)
to diastolic (D) PVF waves estimates the relative contribution of the reservoir to conduit
function [24]. The extent and duration of the reversed pulmonary flow wave during atrial
contraction (Ar) is used to estimate LA contraction. LA ejection force [25,26] and LA kinetic
energy are used as markers of LA performance. The interpretation of transmitral and PVF
patterns is, however, affected by the load conditions and heart rate, age, and LV diastolic
properties [27–29].

The strain and strain rate using either TDI or STE, measure the extent and the rate of
myocardial deformation and may be utilized to evaluate LA function [29,30]. TDI-based
strain-rate imaging is challenging, as it is affected by the insonation angle and requires
tracking with the motion of the wall to avoid the influence of the translational motion [31].
Despite these limitations, in expert hands feasibility is high, and multiple studies support
its relevance in different contexts [19]. The introduction of STE has overcome the difficulties
related to TDI-derived technologies [32]. The LA peak longitudinal strain (PALS) can
be easily obtained by STE and reliably reflects the LA phasic function. LA strain has
demonstrated an association with major CV outcomes in several clinical settings, including
all stages of heart failure (HF) [33–35]. Normal values for 2D or 3D LA ejection fraction
(LAEF) and the peak left atrial longitudinal strain have been explored by multiple studies;
those with at least 300 patients are summarized in Table 3. In Figures 2 and 3, calculations
of LAEF (biplane 2D) and LA strain in a healthy subject and in a patient with HF with
reduced ejection fraction (HFrEF), respectively, are reported.
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Table 3. Normal values of 2D and 3D LA EF and LA strain.

Study N. Patients LA EF 2D (%) Mean (IQR)
or ± SD

LA EF 3D (%) Mean (IQR)
or ± SD

PALS (%) Mean (IQR)
or ± SD

Morris et al., 2015 [36] 329 65.8 ± 7.5
LLN 51.1 - 45.5 ± 11.4

LLN 23.1

Pathan et al., 2016 [37] meta-analysis 40 studies
2542 - - 39 (95% CI 38–41)

Sugimoto et al., 2018 [38] 371
68.5

(63.2 to 73.2)
LLN 48.7 ± 1.9

57.3
(52.4 to 61.9)

LLN 41.4 ± 1.1

42.5
(36.1 to 48.0)

LLN 26.1

Takeuchi et al., 2019 [39] 313 - M 48 ± 9
F 48 ± 11 -

Sun et al.,
2020 [40] 324 - - 35.9 ± 10.6

Singh et al.,
2021 [15] 1765 65.7 ± 8.4 62.2 ± 7.7 42.1 ± 10.0

Nielsen et al., 2021 [41] 1641 - - 39.4
(33.2–46.6)

Wang et al.,
2024 [42] 783 -

M 57.3 ± 5.7
F 57.5 ± 6.4

LLN
M 46; F 44

-

Yafasov et al., 2024 [43] 979 - 61 ± 6 31.2 ± 6.3

Based on the way data were reported by single studies, numbers are mean (IQR) or ± SD. Moreover, when
available, LLNs are included. Abbreviations: CI: confidence interval; F: females; IQR: interquartile ranges; LLN:
lower limit of normal; M: males; PALS: peak left atrial longitudinal strain. SD: standard deviation.
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Figure 2. Measurement of LA volume and function in a healthy individual. LA maximal and minimal
volumes by four-chamber (upper left) and two-chamber (lower left) views in a 30-year-old healthy
man. LAVI is 31 mL/m2 and LAEF 59%. In the right panel, the LA function by biplane STE is
depicted: the average LA strain is 43%.
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Figure 3. Measurement of LA volume and function in a patient with heart failure. LA maximal and
minimal volumes by four-chamber (upper left) and two-chamber (lower left) views in a 56-year-old
male with heart failure and mildly reduced ejection fraction. LAVI is 43 mL/m2 and LAEF 35%. In
the right panel, the LA function by biplane STE is depicted: the average peak LA strain is 19%.

3. Left Atrial Ejection Fraction (LAEF)

Left atrial ejection fraction (LAEF), also known as left atrial emptying fraction, is
calculated using the left atrial maximum volume (LAV max) at end-systole and minimum
volume (LAV min) at end-diastole, following the formula (LAV max − LAV min)/LAV
max. The volumes are measured in both apical four-chamber and apical two-chamber
views. The choice of appropriate timing by ECG allows the examination of the global
LA function as well as each of its components (Table 1, Figure 1) [44]. LAEF describes
atrial functional remodeling more than LA enlargement and can be assessed by different
imaging techniques such as 2D and 3D echocardiography, cardiac magnetic resonance
(CMR), and computed tomography (CT) (Table 3 shows the normal values of 2D and 3D
LAEF). Obtaining accurate and reproducible echocardiographic measures of LA function
can be challenging due to multiple patient- and operator-dependent factors. Moreover, an
echocardiographic assessment of heart volumes systematically underestimates the chamber
size in comparison with CMR and CT [45]. Importantly, LAEF by echocardiography is
widely available in multiple clinical scenarios and does not require dedicated software.
Similarly to LV myocardial physiology, the Frank–Starling mechanism also applies to the
LA myocardium and should be considered for the proper interpretation of LAEF data. For
instance, it is well recognized that the longer the duration of AF, the more advanced the
pathophysiological alterations, leading to increasing LA dilatation and dysfunction. The
prognostic relevance of an echocardiographic LAEF has been assessed by multiple studies
encompassing different clinical situations (Table 4), ranging from HF to AF.

Inciardi et al. [46], in participants from the ARIC (Atherosclerosis Risk In Communities)
study without prevalent HF, showed that LAEF (and other abnormal LA measures but
LAVi) was associated with NT-proBNP levels and with incident HF or death. Moreover,
Welles et al. [47], integrating LAEF with the left ventricular outflow-tract velocity time
integral, as the LAFI (LAEF xLV outflow-tract velocity time integral]/[LAVI]) showed that
any decrease in the LAFI was associated with increased adverse cardiovascular outcomes
in patients with coronary arteries disease and preserved EF. In 1951, participants from the
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4th Copenhagen City Heart Study, free from atrial fibrillation (AF), functional measures
of the LA, including LAEF, were independent predictors of incident AF, particularly in
individuals without hypertension [48]. LAEF can also be used to predict postoperative
AF, as shown by Darweesh et al. [49], after coronary artery bypass graft (CABG) surgery.
Intriguingly, Larsen et al. [50] demonstrated that lower LAEF was associated with the
primary endpoint of ischemic stroke, independently of incident AF, in participants from the
Copenhagen City Heart Study with no prior history of AF or ischemic stroke. Interestingly,
in patients with AF undergoing cardioversion, LAEF, assessed during AF, was significantly
larger in the group with sinus rhythm maintenance after 12 months than in the group with
AF recurrence [51]. Similarly, higher LAEF was noted in the sinus rhythm compared with
the AF recurrence group following ablation at 3 months [52].

Table 4. Studies regarding LA function measured by left atrial ejection fraction (LAEF).

Author Population Principal Findings

Welles et al.,
2012 [47]

855 patients with CAD and
EF > 50%

LA dysfunction predicts HF
hospitalization

Olsen et al.,
2017 [48] 1951 patients without prior AF Lower LAEF (45 ± 15%) in

patients who developed AF

Henriksen et al.,
2018 [53]

320 patients hospitalized for
AMI

LAEF reduced in response to
elevated LV end-diastolic

pressure

Walek et al.,
2020 [51]

146 patients with persistent
AF underwent CVE

LAEF, measured during AF,
was superior to predicting SR

maintenance after CVE
(30.8 ± 8.3 vs. 24.6 ± 10.4%)

Darweesh et al.,
2021 [49]

84 patients hospitalized for
CABG

LAEF mean of 43% was found
in patients developing

postoperative AF

Inciardi et al.,
2021 [46] 4901 without prevalent HF

LAEF 51.6 ± 11.45% in
patients with incident HF or

death associated with
NT-proBNP levels

Larsen et al.,
2022 [50]

1866 patients without known
AF or prior ischemic stroke

LAEF decrease was associated
with ischemic stroke

(mean value 46.4 ± 14.5%)

Khan et al.,
2023 [52]

83 patients undergoing AF
ablation

Lower LAEF (27.9 ± 9.9% vs.
36.3 ± 10.6%) in patients with
AF recurrence after 3 months

Abbreviations: AF, atrial fibrillation; AMI, acute myocardial infarction; CABG, coronary artery bypass graft; CAD,
coronary artery disease; CVE, electrical cardioversion; LAEF, left atrial ejection fraction; LV, left ventricle; HF,
heart failure; SR, sinus rhythm.

4. Peak Atrial Longitudinal Strain

The most studied STE-derived parameter for atrial function is LA strain, which corre-
sponds to the peak atrial longitudinal deformation during the LA reservoir phase. This
parameter is automatically calculated by specific software that is available on workstations
or last-generation echocardiographic machines [50], using the LA endocardial traces from
the four- and two-chamber apical views. However, LA strain curves can be traced either
from the start of the P wave or the start of the QRS complex; the QRS as the reference
point for the analysis of LA strain is more commonly used. LA strain (Figures 2 and 3)
provides essential information about the mechanical function of the LA [54,55] with some
limitations, which have been reviewed by Nagueh et al. [56].

Meel et al. [57] showed that LA reservoir function remains stable over decades. A
similar finding was reported by Morris et al. [36] using a 2D STE in healthy controls.
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Moreover, Yoshida et al. [58] identified a significant interaction between gender and LA
function. Their study on 414 subjects with paroxysmal and/or persistent AF revealed lower
LA systolic strain values in women. LA strain inversely correlates with the fibrosis extent,
particularly in persistent AF. Cameli et al. [59] observed a negative correlation between
histological fibrosis and LA strain in patients with severe degenerative mitral regurgitation.

Many studies have shown the usefulness of LA strain in predicting elevated LV filling
pressures. According to different authors who studied LVFP invasively, LA strain corre-
lates with LVEDP, PCWP, and pre-A pressure when invasively assessed [60–62], though
it is better in HFrEF patients [63]. It performs better than the LAVI and other commonly
guideline-directed echocardiographic measures [62–64]. LA strain is considered helpful
to grade LVDD [65] and to accurately discriminate between non-cardiac and HF with pre-
served ejection fraction (HFpEF)-related dyspnea [55], with some potential limitations [56].

LA strain demonstrated good prognostic value in predicting CV events or a new onset
of AF in various clinical conditions, including hypertension, diabetes mellitus, and chronic
kidney disease [66–68]. LA strain is a predictor of cardiovascular events in patients who
have suffered acute myocardial infarction. Firstly, according to Madsen et al. [69], a lower
LA strain can detect new-onset AF in the post-acute setting. Similarly, Antoni et al. [70]
and Ersbøll et al. [71] showed the prognostic role of lower values of LA strain in patients
with acute coronary artery disease. More recently, Pastore et al. [72] showed the role of LA
strain in predicting postoperative AF in patients undergoing CABG.

Recently, Benfari et al. [34] examined the determinants of left atrial strain and its clinical
features across different heart failure stages using data from the EACVI MASCOT registry.
The study revealed that LA strain varies significantly with heart failure progression, from
the preclinical to clinical stages, and provides valuable insights into cardiac dysfunction.
LA strain has been identified as a predictor of new-onset AF in patients with heart failure,
thus indicating that LA strain could be a useful marker for monitoring and managing HF
patients [73]. Moreover, Park et al. [74] also demonstrated that LA strain is associated
with worse clinical outcomes in acute HF, showing its potential as a predictive marker for
mortality and adverse events. Aimo et al. [75] explored the diagnostic value of LA strain
in cardiac amyloidosis. Their study concluded that LA strain is significantly reduced in
patients with amyloid cardiomyopathy and can aid in early diagnosis, providing a non-
invasive method to enhance the detection and management of this condition. Essayagh
et al. [76] followed for a mean of 21 months 307 consecutive HCM patients, observing that
LA strain was strongly associated with the occurrence of cardiac events.

Patients with valvular heart disease (VHD) are at high risk of atrial remodeling and
subsequent dysfunction, even before LV alterations [77]. LA strain, mirroring LA function,
can identify VHD patients who are at an increased risk of events. According to Thellier
et al. [78], both LA strain and diastolic dysfunction are strong predictors of increased mor-
tality in patients with aortic stenosis. Even in mitral regurgitation, lower LA strain values
are associated with worse outcomes, as shown in moderate asymptomatic primary mitral
regurgitation by Cameli et al. [79] and also in functional mitral regurgitation by Gomes
et al. [80], who linked LA strain with all-cause mortality. LA strain has been extensively
used in identifying patients at risk of AF. Firstly, a systematic review by Anagnostopou-
los et al. [81] showed that lower LA strain can help detect occult AF in patients with
cryptogenic stroke. Furthermore, Pagola et al. [82] investigated the predictive value of
LA strain and NT-proBNP for AF with a high risk of embolization, finding that reduced
LA strain and elevated NT-proBNP levels are strong predictors of embolic events in AF
patients. Studies by Alhakak et al. [83] and Hauser et al. [54] showed that LA strain is
a significant predictor of both AF and stroke in the general population. Finally, Takagi
et al. [84] suggested that, due to its prognostic role, routine LA strain measurements can
help tailor treatment strategies for AF patients and improve their clinical outcomes. These
and other [85–90] studies among major ones regarding LA strain are summarized in Table 5.
What is noteworthy is that based on the lower limit of normal LA strain (23%) [36] (Table 3),
Morris et al. [88] demonstrated that in patients with LV diastolic dysfunction, elevated
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LV filling pressures, and a normal LAVI, abnormal LA strain was related to an increased
frequency of dyspnea, New York Heart Association functional class III/IV, pulmonary
capillary wedge pressure >15 mm Hg, and heart failure hospitalization at 2 years. Moreover,
in the same subgroup, abnormal LA strain was the only independent risk for developing
HF after adjusting for sex and age. Similar values of LA strain have been correlated with
the incidence of AF by others [55,84]. It should also be underscored, however, that a
consensus report from the European Association of Cardiovascular Imaging suggested a
lower threshold of LA strain (i.e., 18%) for evaluating LV filling pressure both in HFrEF
and HFpEF [35].

Table 5. Studies regarding LA function measured by LA strain.

Author Population Principal Findings Regarding LA Function, Measured by PALS

Cameli et al., 2012 [85] 312 adults in SR PALS < 18.8% is associated with the development of the first CV
event (sens. 78.2%, spec 85.2%, AUC 0.83)

Freed et al., 2016 [86] 308 HFpEF longitudinally followed 1-SD decrease in PALS is associated with composite outcome of
hospitalization or death (HR 1.54)

Santos et al., 2016 [87] 357 HFpEF enrolled in the TOPCAT
study

Unit reduction in PALS is associated with an increased risk of CV
events

Morris et al., 2017 [88] 517 patients in SR and risk factors for
LVDD

Adding LA strain (cut-off < 23%) to LAVI significantly improves the
detection of LVDD in indeterminate LV diastolic function

Cameli et al., 2019 [89] 276 patients with asymptomatic
moderate MR

PALS < 35% is associated with the development of CV events
(AUC 0.87)

Park et al., 2020 [73] 2461 patients with AHF and SR PALS < 18% predicts new-onset AF at 5 years (AUC 0.53)

Nielsen et al., 2020 [90] Meta-analysis of 1025 patients
undergoing RFA for AF

PALS significantly predicts AF recurrence (multivariate OR 1.16
CI95% [1.09–1.24], p < 0.001, per 1% decrease)

Park et al., 2021 [74] 3818 AHF patients
PALS is a significant predictor of events regardless of HF

phenotype (multivariate PALS < 8.8%: HR 1.637, p = 0.001, PALS
8.8–16.5%: HR 1.416, p = 0.004)

Inoue et al., 2021 [63] 322 patients with CV disease of different
etiologies PALS < 18.0% predicts elevated LV falling pressure

Pagola et al., 2021 [82] 253 patients with cryptogenic stroke
followed for 2 years

PALS < 25.3% predicted HpAF with a sensitivity of 70% and
specificity of 60% (AUC 0.73)

Hauser et al., 2021 [55] 3590 general population in SR
Patients with PALS < 23% have a 6.8 increased risk of developing

AF; with multivariate, PALS remained an independent predictor of
AF [HR 1.05, 95% CI (1.03–1.07), p < 0.001, per 1% decrease]

Alhakak et al., 2022 [83] 400 general population in SR PALS independently predicts AF in participants < 65 years (HR
1.46; 95% CI (1.06–2.02), p = 0.021, per 5% decrease)

Aimo et al., 2022 [75] 423 patients screened for cardiac
amyloidosis PALS < 6.65% gives 3.6-fold risk of cardiac amyloidosis

Thellier et al., 2023 [78] 387 patients with severe aortic stenosis PALS < 14% improves mortality risk stratification over diastolic
dysfunction grades

Madsen et al., 2023 [69] 381 patients with ACS With univariate analysis, PALS predicts new onset of AF (HR: 1.05,
p < 0.01, per 1% decrease)

Gomes et al., 2023 [80] 307 HFrEF with functional MR PALS predicts all-cause mortality with HR: 1.05 per each 1%
decrease

Takagi et al., 2023 [84] 335 patients PALS < 22% predicts new-onset AF (AUC: 0.89)

Anagnostopoulos et al., 2023
[81]

Meta-analysis of 2081 patients with
cryptogenic stroke

PALS < 20% presents 71% sensitivity and 71% specificity for the
diagnosis of occult AF

Pastore et al., 2024 [72] 310 patients undergoing isolated CABG multivariate analysis, PALS < 28% carries a 3.6-fold higher risk of
postoperative AF

Based on the way data were reported by single studies. Abbreviations: ACS: acute coronary syndrome; AHF:
acute heart failure; AUC: area under curve; CABG: coronary artery bypass graft; CI: confidence interval; CV:
cardiovascular; HFeEF: HF with reduced ejection fraction; HFpEF: HF with preserved ejection fraction; HpAF:
paroxysmal atrial fibrillation with high risk of embolization (AF episodes > 5 h); HR: hazard ratio; LAVI: left
atrial volume index; LVDD: left ventricular diastolic dysfunction; MR: mitral regurgitation; PALS: peak atrial
longitudinal strain; RFA: radiofrequency ablation; SD: standard deviation; SR: sinus rhythm.
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5. Tissue Doppler Imaging and LA Function: A Simplified, Complementary Approach

Measurement of myocardial velocities with tissue Doppler imaging (TDI) has become
an integrated part of the assessment of diastolic heart function in clinical echocardiography.
Moreover, both systolic (TDI-s’) as well as early (e’) and late (a’) diastolic TDI velocities have been
demonstrated to be sensitive markers of impaired cardiac function and prognosis [2,7,91,92].
Importantly, it has been shown that different phases of the TDI curve carry different
prognostic information [93].

TDI-a’ is a fast and accurate marker of atrial systolic function, as it correlates with
other measures of LA function. [94–98]. In the general population, TDI-a’ is normally
distributed [99]. Differently from early diastolic velocity (TDI-e’), TDI-a’ directly increases
with age progressively, resulting in a temporal alignment of LA contraction and late
diastolic flow [100,101] (Figure 4).
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Figure 4. Age and diastolic velocities by tissue Doppler imaging (TDI). Septal TDI traces measured in
three healthy male individuals (aged 17, 33, and 62 years) are reported to show the inverse behaviors
of early (e’) and late (a’) diastolic TDI velocities across different ages. At 17 years, TDI-e’ and a’
were16 and 6 cm/s, respectively (left panel); at 33 years (mid panel), TDI-e’ and a’ were 11 and
9 cm/s, respectively; at 62 years (right panel), TDI-e’ and a’ were 8 and 11 cm/s, respectively.

Finally, all systolic atrioventricular-plane measures correlate with TDI-e’ but not with
TDI-a’ [101–107]. Consistently, with progressing myocardial deterioration, s′ and e′ will
decrease early in the disease progression while TDI-a’ will increase, implying compensation
by augmentation of atrial function [108].

The relationship between TDI-a’ and LA function has been extensively demonstrated.
Invasive studies have shown that TDI-a’ is directly related to LA contractile function,
inversely related to LA afterload (i.e., LV end-diastolic pressure), and is affected by myocar-
dial ischemia [109–113]. Moreover, the relationship between TDI-a’ and other echocardio-
graphic indices of LA function, including STE [113], has been demonstrated in different
clinical and hemodynamic settings [95–97,113–116]. Interestingly, the echocardiographic
parameter that most accurately represented LAEF, obtained by multi-detector computed
tomography in 104 consecutive patients scheduled for paroxysmal (AF) ablation, was TDI-
a’ [117]. Importantly, there is evidence of an impaired reserve of LA function parameters,
including TDI-a’ in patients with HF and preserved ejection fraction (HFpEF) as opposed to
hypertensives without HF [100,118,119]. Normal values for TDI-a’ from very large studies
are summarized in Table 6 [17,120–123].



J. Cardiovasc. Dev. Dis. 2024, 11, 241 10 of 20

Table 6. Normal values of TDI-a’.

Study N. Patients Age (Years)
TDI-a’ Septal
Mean (IQR)

or ± SD

TDI-a’ Lateral
Mean (IQR)

or ± SD

TDI-a’ Average
Mean (IQR)

or ± SD

Daimon et al., 2008
[120]

M 383
F 317 20–79 M 9.2 ± 2.1

F 8.2 ± 2.4
M 9.0 ± 3.0
F 8.3 ± 2.7 -

Ruohonen et al.,
2015 [121]

M 444
F 635 34–49 M 12.9 ± 2.2 *

F 12.4 ± 2.1 *
M 14.0 ± 3.0 *
F 13.7 ± 3.0 * -

Caballero et al.,
2015 [122] 444 20–75

9.4 ± 2.0
IQR

8.0–11.0

9.2 ± 2.7
IQR

7.0–11.0

11.9 ± 3.3
IQR

9.25–14.0

Yao et al., 2016
[123]

M 678
F 716 18–79 M 9.4 ± 2.1

F 8.9 ± 2.1
M 9.9 ± 2.6
F 9.8 ± 2.8

M 9.6 ± 2.1
F 9.3 + 2.1

Ballo et al., 2017
[17] 282 7–84 - - 10.1 ± 2.4

Based on the way data were reported by single studies, numbers are mean (IQR) or ± SD unless otherwise
specified. Abbreviations: F: females; IQR: interquartile ranges; M: males, SD: standard deviation. * median.

6. TDI-a’ and Outcome

TDI-a’ emerges as a valuable prognostic marker, offering insights into LA function
and prognosis across various clinical scenarios [107,119,123–129]. Yamamoto et al. [123]
showed that a TDI-a’ cut-off value of <5 cm/s strongly predicted the clinical outcome in
HFrEF compared with the clinical, hemodynamic, and other echocardiographic variables.
Mogelvang et al. [126] showed that TDI-assessed systolic and both early and late diastolic
function provide prognostic information on CV mortality and morbidity independently
of and incrementally to the traditional risk factors and biomarkers. Intriguingly, the
expected interdependency between early and late diastolic function (Figure 4) was not
found in the group who suffered an event during follow-up, indicating that the otherwise
expected compensatory mechanism between TDI-e’ and TDI-a’ is impaired in this subset
and maybe, in part, responsible for their poor prognosis. Even in patients with ischemic
cardiomyopathy and implantable cardioverter-defibrillator, Biering-Sorensen et al. [107]
could demonstrate that TDI-a’ predicted future arrhythmic and CV mortality outcomes.
In patients with ST-elevation myocardial infarction, Iwahashi et al. [128] showed that
TDI-a’, at 24 h, predicted major adverse CV events. Oike et al. [118] demonstrated that
HFpEF patients with a TDI-a’ of <7.45 cm/s had a significantly higher risk of total CV- and
HF-related events than those with a TDI-a’ of ≥7.45 cm/s.

7. TDI-a’ Integrated Echocardiographic Indices

The TDI-a’ velocity has been integrated with other echocardiographic indices. The
total atrial conduction time (PA-TDI), defined as the time from the onset of the P wave on
an ECG to the peak of TDI-a’ tracing, is a useful marker of atrial remodeling to identify
patients at risk for AF, as well as to guide AF management, as extensively reviewed by
Müller and colleagues [130]. Moreover, with the progressive development of HF with
elevated LV end-diastolic pressure, atrial afterload results in decreased LA contraction—an
effect that can be detected by prolonged PA-TDI [131].

Preclinical atrial dysfunction is characterized by reduced reservoir and conduit func-
tion, while atrial contractile function remains normal. As further deterioration of LV
compliance occurs, TDI-a’ reduces, and the LAVI progressively increases [132]. This has
resulted in considering LAVI/a’ a likely candidate for detecting raised LV end-diastolic
pressure (Figure 5).

In 395 patients hospitalized with dyspnea, Park et al. [133] demonstrated that a LAVI/a’
of 4.0 was the best cut-off value to identify advanced DD and was an independent predictor
of clinical outcomes. Consistently, Stahrenberg et al. [129] showed that a LAVI/a′ of < 2.3
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could effectively rule out paroxysmal AF on 7-day Holter monitoring in 193 consecutive
patients with cerebral ischemia and sinus rhythm on presentation. Moreover, the LAVI/a’
enabled a more accurate diagnosis of a history of paroxysmal AF than the conventional
parameters in hypertensive patients [134], and LAVI/a′ was related to plasma BNP levels
in patients with acute coronary syndrome—being useful for predicting cardiac events in
these patients [135].
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Figure 5. Measurements of left atrial volume index (LAVI) over TDI-a’. LAVI over TDI-a’, renamed
LA volumetric/mechanical coupling index (LACI) by Benfari et al. [136], has been shown to mirror
the severity of diastolic dysfunction and to correlate with outcomes in different settings. The left
panel shows a 58-year-old woman with uncomplicated hypertension, with mildly enlarged LAVI
(40 mL/m2) and TDI-a’ = 9 cm/s, resulting in LACI = 4.4. The right panel reports a 78-year-old
woman with heart failure with preserved ejection fraction due to transthyretin amyloidosis, with
severely enlarged LAVI (60 mL/m2) and a TDI-a’ = 4 cm/s, reduced in comparison with what is
expected for age, resulting in a LACI = 15.

Interestingly, Setti et al. [13], in 1158 individuals without HF, including 273 healthy
individuals, showed that LAVI/a’ mirrored grades of DD and was the single most powerful
tool to disentangle the undetermined diastolic function. In particular, by a stepwise regres-
sion model, LAVI/a’ was more significantly related to DD grades than a’ alone. Benfari
et al. [136], in 4196 patients with HFrEF, showed that LAVI/a’, [renamed the LA volumet-
ric/mechanical coupling index (LACI)], was strongly, independently, and incrementally
associated with excess mortality, irrespective of the functional mitral regurgitation grade
and in all subsets. Similarly, Essayagh et al. [137], in 4792 patients with floppy mitral
valves, reported that the LACI was both associated with worse clinical presentations and
incrementally determinant of the outcome. Benfari et al. [138] also demonstrated that the
LACI predicted new-onset AF independently from the CHARGE-AF or CHA2DS2-VASc
score in the Copenhagen City Heart Study. Finally, Madsen et al. [68] demonstrated that
echocardiographic measures of LA function, including LAVI/a’, are independent predictors
of AF following acute coronary syndrome, suggesting that evaluation of LA function might
improve the prognostic workup, aid in risk stratification for AF, and improve selection for
further examinations.
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The importance of the LA contribution to cardiac function has become increasingly
recognized in clinical practice. The assessment of LA volume by transthoracic echocardiog-
raphy is an indispensable component of any echocardiographic examination. Dedicated
views, appropriate methods, and accurate tracings are all necessary technical skills to
obtain an optimal LA volumetric assessment, whose interpretation, however, must con-
sider the multiplicity of factors affecting the LAVI [5,14,16,17]. However, it has become
progressively clearer that a morphological evaluation should be integrated with a proper
assessment of LA function [7,18]. Historically, Doppler echocardiography, particularly the
PVF signal, is utilized to understand LA pressure and function [21]. Regrettably, PVF is
relatively underused compared with the transmitral flow to evaluate LA function, though
the waveform of PVF enables an assessment of the LA pump, reservoir, and conduit func-
tions [24,134]. Echocardiographic volumetric techniques for assessing LA function have
been proposed, with important clinical results achieved [47–52], but multiple factors raise
concerns about time expenditure and its feasibility in clinical practice. STE represents an
undoubted improvement in the assessment of LA function [55,63,72–75,80–90]. However,
using LA function based on STE to predict LV filling pressure [21,56] must take into consid-
eration the presence of either a normal/abnormal LVEF as well as the presence of AF. Even
more importantly, in terms of clinical applicability, STE relies on the quality of 2D images
and claims dedicated software that only recently became available on echocardiographic
machines, thus often needing external workstations. Moreover, issues related to potential
vendor dependence raise questions about the usability of the cut-off values obtained by
specific software packages [35]. Finally, STE is not available in most non-referral settings,
thus limiting its wide implementation in clinical practice.

TDI is a largely available echocardiographic technique and offers a unique possibility
for implementing LA function in everyday clinical practice [87,135]. TDI-a’ is correlated
with both invasive and non-invasive estimates of LA function [94–98], and its clinical and
prognostic significance has been shown in multiple clinical scenarios (Table 7). Interestingly,
TDI-a’ has been integrated with other parameters, namely PA-TDI [130,131] and LAVI/a’
(Table 7), with potential interesting clinical and prognostic implications. TDI-a’ thus
emerges as a valuable tool in providing a complementary but simple assessment of LA
function, which is feasible in a busy clinical setting without the need for post-processing
analysis. Of course, TDI-a’ is negatively affected by the insonation angle and unreliability in
patients with extensive mitral annular calcification, as is any other TDI measure [139–141].
Moreover, the implication of the site of measurement (i.e., septal, lateral, or average) or
the influence of major intraventricular conduction disturbances on measurements and
interpretation must also be assessed.

Unfortunately, TDI-a’ is often disregarded. This is likely attributable to the fact that
the current guidelines support the exclusive utilization of TDI-e’ and E/e’ in the context
of the assessment of diastolic function. Moreover, it is not habitually mentioned in the
vast majority of research studies devoted to refined, newer technologies such as STE.
Furthermore, the determinants of TDI-a’ and other derived indexes, such as LAVI/a’, and
their potential in tracking therapeutical interventions in specific clinical settings must be
explored. Most importantly, studies comparing a TDI-a’-based evaluation of LA function
with well-established STE-based technologies are necessary to ascertain its full significance.
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Table 7. Summary of major studies assessing the relevance of TDI-a’ or LAVI/a’ (LACI).

Study Population Study
Design Cut-Off Aims/

End-Point

Studies with TDI-a’

Yamamoto et al., 2003
[124] HFrEF Prospective TDI-a’ ≤ 5 cm/s Cardiac mortality

Wang et al.,
2003 [125]

Patients with and
without cardiovascular

disease
Retrospective TDI-a’ < 4 cm/s Cardiac death

Mogelvang et al., 2015
[127] General population Prospective

HR 1.17 for 1 cm/s
decrease in

TDI-a’

Acute myocardial
infarction, HF, CV

death
Biering-Sorensen et al.,

2016 [107]
Ischemic

cardiomyopathy Prospective Multivariate TDI-a’ HR
1.25

Arrhythmic events,
CV death

Oike et al.,
2020 [119] HFpEF Prospective TDI-a’ > 7.45 cm/s CV and HF events

Iwahashi et al., 2021
[129]

ST-elevation
myocardial infarction Prospective TDI-a’ < 9.4 cm/s

at 24 h
Major adverse CV

events

Studies with LAVI/a’ (LACI)

Stahrenberg et al., 2011
[128] Cerebral ischemia Prospective LAVI/a’ < 2.5

to rule out AF AF onset

Park et al., 2011 [134] Patients with dyspnea
(NYHA II-IV) Prospective

LAVI/a’ ≥ 4
higher incidence of

outcome

Cardiac death/
rehospitalization HF

Benfari et al., 2021 [137] HFrEF in sinus rhythm
with MR Prospective LAVI/a’ ≥ 6

excess mortality Survival

Essayagh et al., 2022
[138]

Patients with floppy
mitral valve in sinus

rhythm
Prospective LAVI/a’ ≥ 5

excess mortality Survival

Benfari et al., 2023 [139] General population Prospective LAVI/a’ > 3.9

AF onset
independently from
CHARGE-AF and

CHA2DS2-Vasc

See the manuscript for abbreviations.

8. Conclusions

The current medical evidence underscores the clinical relevance of adding an assess-
ment of LA function to the LAVI to enhance the clinical and prognostic information in
the management of CV diseases. Among the methods used to assess LA function by
echocardiography, LA strain emerges as the key parameter, supported by the most exten-
sive medical evidence. Additionally, LAEF, using 2D and 3D echocardiography and, to a
lesser extent, mitral annular a’ using TDI, are also valuable parameters that provide clinical
and prognostic information. Thus, incorporating these parameters, particularly LA strain,
into standard LA measurements such as the LAVI in clinical practice provides clinical and
prognostic information for better patient management, especially in those with CV risk
factors and preserved LVEF.
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