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Abstract: Heart disease continues to be one of the most fatal conditions worldwide. This is in part due
to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar.
Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through
the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a
pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription
factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over
a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic
factors that can be used to optimize reprogramming efficiency. The integration of computational
tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements
in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only
enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have
also driven innovations that push direct cardiac reprogramming closer to clinical application. This
review article explores how these computational advancements have impacted and continue to shape
the field of direct cardiac reprogramming.
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1. Introduction
1.1. The Heart’s Limited Regenerative Capacity

Since 1921, heart disease has been the leading cause of death in the U.S. [1]. Over a
century later, heart disease continues to be the leading cause of death, not only in the U.S.
but also globally, resulting in over 19 million reported deaths in 2020 and, more recently,
over 20 million deaths in 2021 [2,3]. A significant proportion of these deaths are attributable
specifically to ischemic heart disease, a condition in which the heart fails to receive adequate
blood supply due to coronary artery disease or myocardial infarction (MI) [4].

It is estimated that more than a billion cardiomyocytes are lost after MI [5]. With
there being only 3–4 billion cardiomyocytes in an average adult human heart [6], this
substantial loss of contractile tissue can be devastating. It has been speculated that the
human heart can only regenerate cardiomyocytes at a turnover rate of around 1% annually
for adults aged 20, decreasing to about 0.3% by age 75 [7]. Due to the adult human heart’s
limited regenerative capacity, dead cardiomyocytes in the infarcted region are replaced by
fibroblasts, producing a rigid, fibrotic scar in a maladaptive process referred to as cardiac
remodeling [8]. Since this scar tissue cannot contract, the remaining viable contractile tissue
is placed under increased strain over time to continue satisfying the oxygen demands of
the body, resulting in the progression to heart failure and, eventually, death.
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Current treatments for heart disease are limited to symptom management through the
use of medication to regulate factors such as blood pressure, fluid levels, and vessel constric-
tion, and through the use of percutaneous coronary intervention (PCI) and stent placement
to reestablish blood flow in previously blocked vessels [9,10]. While these treatments can
prolong life expectancy and improve quality of life, they ultimately cannot reverse the
damage incurred to the heart or avoid eventual heart failure and death. Several methods
have been explored to address this issue. Heart transplants are a possible solution to extend
the lifespan of heart failure patients; however, the demand for donor hearts far exceeds the
supply [11]. Even after successful transplantation, patients can face severe challenges from
post-operative complications such as organ rejection and immunosuppression.

Stem cell therapies have presented another possible opportunity to address this issue
through the reprogramming of somatic cells into induced pluripotent stem cells and later
cardiomyocytes that can replace the diseased myocardium [12–14]. However, challenges
in ensuring adequate engraftment, function, and overall survival of these stem cells have
limited the clinical translation of this approach [15]. A less immunogenic alternative is
stimulating the proliferation of pre-existing cardiomyocytes to compensate for the loss in
contractile tissue. Numerous studies have investigated ways to prompt cardiomyocytes
to re-enter the cell cycle and proliferate by overexpressing cell cycle activators [16–20],
by expressing certain transcription factors [21–25], and by expressing microRNAs with
established roles in regulating cell cycle entry [26–28]. However, this approach runs
the risk of causing uncontrolled cancerous proliferation of existing cardiomyocytes [29].
Furthermore, while both stem cell-based and cardiomyocyte proliferation-based therapies
have demonstrated success in increasing the number of viable cardiomyocytes in the
heart, none of these methods directly address the scar tissue formed by fibroblasts in
the regions of infarcted tissue. Evidence has shown that untreated scar tissue presents
both mechanical and immunological barriers to successful clinical translation of these
approaches by physically hindering the engraftment of stem cells and the migration of
newly proliferated cardiomyocytes to the injury site, while also promoting an environment
marked by acute inflammation that can further impede the success of these regenerative
therapies [30–33]. In recent years, direct cell reprogramming—which is the process by
which fully differentiated somatic cells are directly induced into a different cell type— has
emerged as a promising alternative [34]. This process makes use of already residing cells,
eliminates the need for an intermediate pluripotent state, and can be used to directly target
fibroblasts, making it an attractive alternative to traditional transplantation, stem cell-based,
and proliferative therapies.

1.2. Origins of Direct Cardiac Reprogramming

In direct cardiac reprogramming, cardiac fibroblasts can be directly induced into
cardiomyocyte-like cells through the administration of only three developmental transcrip-
tion factors —Gata4, Mef2c, and Tbx5—collectively referred to as GMT [35–38]. This process
was first achieved in vitro using murine cardiac fibroblasts [35]. Gata4, Mef2c, and Tbx5
were selected from a larger panel of 14 cardiomyocyte-specific and developmentally critical
transcription factors and epigenetic remodeling factors. After testing different cocktails by
serially removing individual transcription factors, it was found that infection with GMT was
sufficient to induce direct transition from cardiac fibroblasts to induced cardiomyocyte-like
cells (iCMs) [35]. This was evidenced by the activation of cardiac-enriched alpha-myosin
heavy chain (αMHC)—a marker specific to cardiomyocytes—conjugated to GFP, by the
acquisition of sarcomeric markers of differentiated mature cardiomyocytes—cardiac Tro-
ponin T (cTnT), and α-actinin— and by the induction of a cardiac gene expression profile
in reprogrammed cells. These iCMs resembled endogenous cardiomyocytes not only in
terms of their gene expression profiles but also in terms of their chromatin structures,
sarcomeric structures, intracellular electrical signaling, calcium oscillations, and contractile
activity [35].
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However, at the inception of this technique, flow cytometry results indicated that the
GMT cocktail could only successfully reprogram about 7% of fibroblasts, with only 1%
achieving spontaneous beating activity [35]. Results from later studies further suggested
that, while effective, GMT-mediated reprogramming is still quite inefficient. As Chen et al.
reported, only 22% of infected fibroblasts in their study exhibited a voltage-dependent
calcium current without a spontaneous action potential, indicating that the electrophysi-
ological changes expected of successful reprogramming were incomplete [37]. They also
found that GMT-reprogrammed fibroblasts had poor survival rates and minimal cardiac
gene expression following transplantation into injured murine heart tissue [37].

To address these growing concerns, later studies, as outlined in Table 1, worked to
identify additional factors that increased reprogramming efficiency while also expanding
their focus to include in vivo models. In 2012, retroviral expression of GMT in mouse
models following ischemic cardiac injury attenuated the expected decline in cardiac func-
tion and reduced overall fibrosis [39]. Another study affirmed through genetic lineage-
tracing that delivery of GMT post-ischemic injury successfully reprogrammed cardiac
non-myocytes—predominantly composed of fibroblasts— into iCMs [36]. While GMT-
based in vivo cardiac reprogramming exhibited limited efficiency, similar to that observed
from in vitro reprogramming (10–15%), in vivo reprogramming produced iCMs that more
closely resembled endogenous cardiomyocytes, which Qian et al. attributed to factors
within the native environment of the heart that enhanced this process [36]. Both studies
also identified additional factors —Hand2 [39] and Thymosinβ4 [36]— for their potential
to improve reprogramming efficiency and cardiac repair. Another study identified a combi-
nation of microRNAs independent of GMT that could achieve reprogramming [40]. Several
variations of the GMT cocktail have since surfaced, with additional factors that have been
reported to increase reprogramming efficiency [39,41–45].

One of the most significant strides in increasing reprogramming efficiency was made in
2015 with the development of a single polycistronic construct that expressed optimal ratios
of Mef2c, Gata4, and Tbx5 [46]. Wang et al. tested different combinations of polycistronic
constructs expressing Mef2c, Gata4, and Tbx5 and discovered that the stoichiometry of
the three reprogramming factors greatly influenced the efficiency of direct cardiac repro-
gramming [46]. The construct that produced the most efficient in vitro and in vivo iCM
reprogramming has a relatively high expression of Mef2c, with low expression of Gata4
and Tbx5 [46]. Compared to the previously used separate Gata4/Mef2c/Tbx5 delivery, this
polycistronic construct —referred to as MGT— increased the percentage of αMHC-GFP+
cells by 3-fold (from 5% to 15%) and increased the percentage of cTnT+ cells by 5-fold
(from 5% to around 25%), with the percentage of double-positive αMHC-GFP+ and cTnT+
cells increasing from less than 5% to around 10% [46]. The success of the polycistronic
construct has resulted in MGT, which is currently the widely accepted basis of direct
cardiac reprogramming.
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Table 1. Summary of Reprogramming Methods.

Reprogramming Method Type of Study Origin Cell Efficiency Similarity to Primary CMs Refs.

GMT in vitro mouse CFs, TTFs 6.5% (CFs), 2.5% (TTFs)
αMHC-GFP+/ cTnT+

cardiac gene expression profiles, chromatin structures,
sarcomeric structures, intracellular electrical signaling, calcium
oscillations, contractile activity

[35]

GHMT in vivo mouse CFs, TTFs 9.2% (TTFs), 6.8% (CFs)
αMHC-GFP+/ cTnT+

calcium transients and action potential similar to neonatal
ventricular CMs

[39]

GMT, +Thymosinβ4 in vitro, in vivo mouse CFs 12% iCMs formed junctions with CMs; similar intracellular calcium
release and cell shortening, marker expression (αActinin)

[36]

MGT + Sall4 + Myocd in vitro Mouse CFs (with MI model) 30% cTnT+/cTnI+ cells/field beating [47]

Cre-mediated MGTH in vitro, in vivo mouse CFs 4.8–5.2% cTnT+ sarcomeric structures, calcium oscillations, contraction [48]

Ascl1 + Mef2c in vitro mouse CFs 9.45% (A+M), 14.0%
(A+MGT)

mature iCM phenotype [49]

miR combo (miR-1, miR-133,
miR-208, miR-499)

in vitro mouse CFs 4% Actn2+ sarcomere and electrophysiological properties of mature CM [50,51]

miR-1, miR-133, miR-208,
miR-499, ± JAK Inhibitor I
Treatment

in vivo mouse CFs 1.13–5.28% (αMHC-GFP+);
with JAK
Inhib—13.42–27.94%
(αMHC-GFP+)

gene expression, sarcomere organization, calcium oscillations,
mechanical contractions

[40]

MGT polycistronic in vitro, in vivo mouse CFs 9.23% αMHC-GFP+/cTnT+ Spontaneous beating [46]

hMGT133 in vitro human fibroblasts 30–40% cTnT+/α-Actinin+ CM molecular signature, calcium oscillations, contraction [52]

hMGT133 + TBX20 in vitro human fibroblasts 30.3% αMHC+; 23.8%
α-Actinin+

beating, calcium oscillation, energy metabolism [53]

CFs = cardiac fibroblasts, TTFs = tail tip fibroblasts, CM = cardiomyocyte, iCM = induced cardiomyocyte.
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1.3. Bioinformatics and Research in the Modern Era

In the past decade, numerous studies have built on the foundation of the MGT cocktail,
significantly advancing the field. The integration of bioinformatics —the application of
computational tools, software, and statistical techniques to analyze complex biological
data— has been integral to these advancements. In this review, we will explore key bioinfor-
matics applications over the past decade that have propelled the field forward. As outlined
in Figure 1, we will delve into the contributions of single-cell transcriptomic analyses to
direct reprogramming and examine epigenomic analyses using chromatin immunoprecipi-
tation and chromatin accessibility studies. Subsequently, we will review relevant proteomic
analyses utilizing quantitative mass spectrometry and the insights they have provided on
direct cardiac reprogramming. Following this, we will introduce emerging bioinformatics
tools, such as CRISPR-Cas9 technology, spatial transcriptomics, and machine learning,
which have yet to be extensively applied to the study of direct cardiac reprogramming.
Collectively, these computational tools have been essential in elucidating the molecular
mechanisms during the reprogramming process and in discovering additional factors and
delivery methods to enhance reprogramming efficiency.
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CRISPR [51,61–63], Machine Learning [64–67].

2. Transcriptomics in the Era of Single-Cell Analysis

One of the most important contributions of modern-day bioinformatics has been the
ability to analyze snapshots of gene activity through transcriptomics analysis. Studying
the changes in gene expression profiles has allowed us to not only gain insights into the
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regulatory networks driving direct cardiac reprogramming but has also helped to identify
new target genes for optimizing this process. While both bulk and single-cell RNA sequenc-
ing (scRNA-seq) are important to the study of gene expression, this review focuses on the
contributions of single-cell transcriptomics in the context of direct cardiac reprogramming.

Transcriptomics at the single-cell level has revolutionized the study of reprogramming.
The first commercial single-cell RNA-seq platform became available in 2014 [68], with 10x
Genomics’ Chromium for droplet-based high-throughput single-cell RNA sequencing only
becoming available in 2016. Since then, the integration of single-cell transcriptomics into
the study of direct cardiac reprogramming has been pivotal to advancing the field. By
distinguishing transcriptomes at the level of individual cells, scientists have unveiled the
heterogeneity of cell types at play throughout the reprogramming process. This review
will detail some of the main findings from single-cell analyses in the context of murine
fibroblast reprogramming, human fibroblast reprogramming, and reprogramming post-MI.

2.1. Insights from Single-Cell Analyses in Direct Cardiac Reprogramming of Murine Fibroblasts

As early as 2017, scRNA-seq analysis was used to study the reprogramming trajectory
of murine fibroblasts induced by MGT and to uncover previously unknown intermediate
cell subpopulations, gene pathways, and regulators involved in this process [54]. Using
single-cell transcriptomics in conjunction with Selective Locally Linear Inference of Cel-
lular Expression Relationships (SLICER) —an algorithm for inferring nonlinear cellular
trajectories— the continuum of cell states during the reprogramming process was closely
studied [69]. This allowed for the characterization of previously undefined intermediate
states: the Fib (fibroblast), iFib (induced fibroblast), piCM (pre-induced cardiomyocyte),
and iCM (induced cardiomyocyte) states [54]. Analysis of the gene networks specific to the
iCM subpopulation compared against earlier cell subpopulations led to the discovery of
novel negative selection markers Cd200, Clca1, Tm4sf1, and Vcam, as their expression levels
were anti-correlated with the reprogramming process [54].

Along the reprogramming trajectory, Mef2c was, on average, more highly expressed
than Tbx5 and Gata4 in the final iCM state, highlighting the uniquely important role that
Mef2c expression plays in iCM induction [54]. Consistent with this finding, a later study
used scRNA-seq data from GMT-based reprogramming to determine that while robust
expression of Mef2c is required for direct cardiac reprogramming, high expression of the
other two cocktail factors, Gata4 and Tbx5 were not as critical [56]. This was deduced
from the observation that gene expression levels of Gata4 and Tbx5 varied widely among
subclusters of cells along the trajectory from early to more distinct iCM reprogramming
states, while all states required robust expression of Mef2c.

An additional study of the pre-iCM cell subpopulation revealed that fibroblasts enter
a transitional state where they are unstable and distinct from isolated starting fibroblasts
as they express both CM (cardiomyocyte) and fibroblast markers [54]. This revealed a
critical difference between induced pluripotent stem cell (iPSC) reprogramming and direct
reprogramming: iPSC reprogramming requires an early downregulation of fibroblast
markers to successfully progress, while direct cardiac reprogramming proceeds through an
intermediate hybrid state before gradually suppressing fibroblast marker expression much
later in the process as cells proceed toward the iCM state.

2.2. Insights from Single-Cell Analyses in Direct Cardiac Reprogramming of Human Fibroblasts

Similar early applications of scRNA-seq analysis were later used to unveil the molecu-
lar framework behind direct reprogramming of human fibroblasts. One such application
involved the integration of scRNA-seq data with SLICER to reconstruct the trajectory
of human fibroblasts that were transduced with a human polycistronic MEF2C, GATA4,
and TBX5 construct along with microRNA-133 (hMGT133) toward becoming induced
human induced cardiomyocytes (hiCM) [52]. RNA velocity analysis —which predicts if
and how rapidly a given gene is being turned on or off— was applied to the reconstructed
reprogramming trajectory. This analysis revealed that individual cells reach a “decision
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point” whereby they can respond to the hMGT133 cocktail and proceed toward an iCM
fate referred to as the reprogramming pathway or regress toward a fibroblast fate in what
is called the refractory route [52]. Further analysis of the single-cell transcriptomic data
of the cells that undertook the refractory route was used to identify negative markers for
reprogramming, including immune cytokine tumor necrosis factor alpha-induced protein
6 (TNFAIP6), metabolic enzyme aldo-keto reductase family 1 member C1 (AKR1C1), and
fibroblast activation protein alpha (FAP) [52].

Other investigations of single-cell transcriptome data of hiCMs revealed additional
factors that could improve reprogramming. For example, TBX20 was identified as a critical
regulator of human cardiac reprogramming when single-cell transcriptome analysis of
hiCMs induced by hMGT133 revealed that TBX20 remained silent throughout the process,
with hiCMs showing 100-fold lower expression of this gene compared to endogenous func-
tional cardiomyocytes [53]. Validating this finding, overexpression of TBX20 in conjunction
with hMGT133 delivery drastically improved reprogramming efficiency and facilitated
higher levels of spontaneous beating and actional potential generation in the reprogrammed
hiCMs [53].

2.3. Application of Single-Cell Transcriptomics in Reprogramming after MI

Single-cell transcriptomics has been used to elucidate the underpinnings of cardiac re-
programming in the context of cardiac injury and infarction. In one such study, scRNA-seq
data of embryonic cardiac cells were used to create a regulatory network of core tran-
scription factors of cardiomyocyte identity. Screening TFs from this network led to the
identification of Sall4 and Myocd as additional factors that, when added to the MGT cock-
tail, could significantly increase the in vitro reprogramming efficiency of cardiac fibroblasts
isolated from adult mice with myocardial infarction (MICFs), promoting the subsequent
spontaneous beating of cells [47]. A later study used a novel transgenic mouse model in
which fibroblast lineage could be traced and reprogrammed via Mef2c, Gata4, Tbx5, and
Hand2 (MGTH) expression, which was induced in Cre-mediated druggable manner [48].
In this study, scRNA sequencing was used to determine the mechanism of cardiac repair
by in vivo reprogramming in mice that underwent MI [48]. Analysis of the transcriptomic
data from individual cells revealed seven different subpopulations of cardiac fibroblasts,
two of which were enriched for genes related to activated fibroblasts. Furthermore, in vivo
cardiac reprogramming showed a significant effect in reducing fibrosis post-MI, as overex-
pression of reprogramming factors converted profibrotic cardiac fibroblasts into a quiescent,
inactive state [48]. In a third study, scRNA-seq data demonstrated that direct cardiac repro-
gramming post-MI could induce a prominent anti-inflammatory state [70]. While cardiac
injury increases inflammatory pathway signaling, direct cardiac reprogramming appears
to significantly suppress the inflammatory profiles of cardiac fibroblasts and reduce the
relative ratios of pro-inflammatory signatures of cardiac macrophages post-MI [70].

Single-cell RNA-seq technology is one of the most impactful bioinformatics tools
for the study of direct cardiac reprogramming. The ability to analyze changes in gene
expression at single-cell resolution and at different time points during reprogramming has
unveiled the complexity and heterogeneity of cell identities at play within direct cardiac
reprogramming and has illuminated previously uncharacterized molecular mechanisms
underlying this process in both native and injured cardiac tissue. In these ways, single-
cell transcriptomic analyses have proven essential to inform current knowledge on the
trajectories of individual cells during reprogramming and to identify critical factors that
promote or inhibit successful transition to the iCM state.

3. Advances in Epigenomics

The transition from fibroblasts to iCMs entails a substantial change in gene expression.
Accomplishing such a drastic shift in the transcriptome necessitates overcoming epigenetic
barriers for fibroblasts to adopt a cardiomyocyte-like chromatin pattern and cell identity.
Analyzing the chromatin changes underlying this process is essential to improve our under-
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standing of the molecular mechanisms driving direct cardiac reprogramming and to identify
ways to optimize this transition. For these reasons, the application of epigenomics —or the
study of the regulatory mechanisms and modifications that govern gene expression— to the
study of direct cardiac reprogramming has proven to be of great importance. Two primary
methods of analyzing such epigenetic changes are the Assay for Transposase-Accessible
Chromatin (ATAC) sequencing and chromatin immunoprecipitation (ChIP) sequencing.

ATAC-seq is used to study genome-wide chromatin accessibility patterns by using
the hyperactive transposase Tn5 to preferentially fragment and tagment areas of open
chromatin with sequencing adapters, creating a library that can be further analyzed using
bioinformatics [71]. Alternatively, ChIP-seq is primarily used to identify the binding sites
of DNA-associated proteins by crosslinking complexes of DNA to a protein of interest and
extracting these protein-bound regions to construct a library for further analysis [72]. ChIP-
seq was only first developed in 2007 [72], and the earliest form of ATAC-seq was created in
2013 [71], with both methods becoming commercially available and more widely adopted
in subsequent years. As their names indicate, these are high-throughput sequencing
methods that generate large datasets that require computational analysis. Parsing through
these data has produced a wealth of knowledge on the inner workings of direct cardiac
reprogramming. This review will highlight key findings from ChIP- and ATAC-seq studies
with regard to insights into chromatin accessibility patterns, DNA-transcription factor
interactions, and histone modifications that shape direct cardiac reprogramming.

3.1. Chromatin Accessibility Patterns in Direct Cardiac Reprogramming

Tools in epigenomics have allowed researchers to observe how changes in chromatin
accessibility patterns facilitate changes in gene expression throughout the reprogramming
trajectory. Liu et al. was the first group to characterize this repatterning in 2016 by tracking
DNA methylation states of CpG sites within promoters of two representative cardiac genes:
Myh6 and Nppa [73]. In keeping with the goal of reprogramming to shift fibroblasts to
iCMs, such sites were expected to be demethylated to allow for an increased CM-like gene
expression profile. However, this study revealed that not every CpG site was equally
demethylated during the early stages of iCM reprogramming, with certain CpG sites
exhibiting greater demethylation and thus serving greater roles in regulating transcription
during reprogramming.

More recent studies have used ATAC-seq to analyze epigenomic repatterning during
reprogramming. In one such study, ATAC-seq was performed on cells selected for the
expression of αMHC-GFP [56]. These αMHC-GFP+ cells were collected at five different
time points during reprogramming [56]. The data were analyzed for regions of accessi-
ble chromatin that differed from those observed in the starting fibroblast population [56].
Hierarchical clustering of the most differentially accessible regions revealed that most
of these changes developed within three days of MGT induction and occurred distally
from transcription start sites. Most regions associated with a stable gain in accessibility
were highly correlated with the enrichment of sequence motifs specific to cardiovascular
development. Regions that exhibited a sustained loss of accessibility were associated with
inflammatory response mechanisms and monocytes, suggesting that effective reprogram-
ming requires diminished inflammatory pathways. However, certain regions exhibited
transient repatterning toward more open chromatin that quickly returned toward a more
closed fibroblast-specific chromatin accessibility state at later time points, resulting in
limited enrichment of transcription factor sequence motifs [56]. This may have prevented
stable MGT binding, highlighting an epigenomic barrier to reprogramming efficiency.

In another study, single-cell ATAC-seq data were integrated with scRNA-seq data
using SnapATAC to delineate networks of transcription factors involved in the early shift
of chromatin accessibility during cardiac reprogramming [74]. From this, a number of
active transcription factors were identified for their time-specific roles in iCM conversion.
For example, Fos —a gene encoding for a subunit of the heterodimeric transcription factor
AP-1— was identified as a barrier for direct cardiac reprogramming that, when knocked
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down, improved reprogramming efficiency [74]. ATAC-seq data revealed this was because
Fos-AP1 motifs rapidly become inaccessible upon the induction of the iCM fate, result-
ing in its downregulation and, consequently, the suppression of fibroblast cell identity
gene expression [74]. Interestingly, another transcription factor —Smad3— was found
to play both inhibitory and supportive roles depending on the timing of its expression
during reprogramming. Early in the process, Smad3 plays an inhibitory role by interacting
with the heterodimeric transcription factor AP-1 to block the initiation of reprogramming.
However, when active at intermediate stages, this same transcription factor facilitates
reprogramming [74].

In the same study, scATAC-seq data were used to identify cis-regulatory regions
gained by cardiac genes. Cardiac cis-regulatory regions were found to contain motifs of not
only canonical MGT reprogramming factors, but also those of Tead family proteins, which
are speculated to function as enhancers during reprogramming due to the enrichment of
H3K27ac [74]. In these ways, ATAC-seq data have been used to reveal both the barriers
and facilitators of direct cardiac reprogramming.

3.2. Applications of ChIP-Seq to Unveil Transcription Factor Interactions

One of the most advantageous results of applying ChIP-seq to the study of direct
cardiac reprogramming has been the exposition of the genomic binding sites of repro-
gramming transcription factors. Hashimoto et al. were one of the first groups to use
ChIP-seq in this way, analyzing both the genomic and epigenomic landscapes during direct
cardiac reprogramming of mouse embryonic fibroblasts (MEFs) into induced cardiac-like
myocytes (iCLMs) mediated by the GMT cocktail, a modified cocktail incorporating Hand2
(GHMT), and another modified cocktail incorporating an additional transcription factor
Akt1 (AGHMT) [55]. Analysis of the binding sites for reprogramming transcription factors
(TFs) Gata4, Hand2, Mef2c, and Tbx5 2 days after GMT-mediated reprogramming revealed
considerable co-occupancy of reprogramming TFs, where the percentage of co-occupied
peaks (or peaks occupied by at least two reprogramming TFs) increased with the addition
of Hand2 (GHMT) and Aktl1 (AGHMT) [55]. This led to the discovery that reprogramming
TFs are synchronously recruited to genomic sites to drive reprogramming and that Hand2
and Akt1 can enhance reprogramming by increasing the recruitment and subsequent
co-occupancy of these TFs to sites that drive cardiac gene expression [55].

Hashimoto et al. also used the data from this ChIP-seq analysis to construct a gene
regulatory network (GRN) of reprograming factors in day 2 AGHMT iCLMs [55]. By
annotating all TF peaks in day 2 AGHMT iCLMs, comparing all upregulated genes in
day 2 AGHMT iCLMs against those of mock-infected MEFs, and connecting each upregu-
lated gene with the reprogramming TF responsible for driving its expression based on the
nearest TF peaks, they were able to construct a GRN of the reprogramming factors with
their potential target genes during reprogramming [55]. In silico analysis using the Protein
Analysis Through Evolutionary Relationships (PANTHER) classification system [75]—a
database containing gene ontology (GO) analysis— further revealed that the upregulated
genes in this network were highly enriched for GO terms related to “muscle contraction,
metabolism, cell-cell interaction, and ECM”, which is consistent with the transition of
fibroblasts into cells of contracting muscle with increased metabolic demands that occurs
during direct cardiac reprograming [55]. Downregulated genes in the GRN showed en-
richment in terms associated with “cell cycle, ECM, and inflammation pathways”, all of
which have been reported to enhance reprogramming when suppressed [55]. In these
ways, ChIP-seq analysis has been an integral tool in uncovering the ways in which repro-
gramming TFs mechanistically drive the changes in gene expression observed during the
reprogramming process.

ChIP-seq has also been used to study epigenomic repatterning during reprogramming,
whereby certain regions of chromatin become more or less accessible for transcription
factor binding. As Stone et al. observed, ChIP-seq analysis revealed statistically significant
enrichment of MGT binding in regions that gained accessibility during reprogramming [56].
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There is additionally significant enrichment of motifs specific for several non-cocktail
reprogramming transcription factors from families that include bZIP, Homeobox, and Fork-
head proteins. This indicates that administration of MGT induces changes in chromatin
accessibility that permit combinatorial binding of factors beyond MGT alone to facilitate
reprogramming [56]. However, these changes are attributable only to Mef2c and Tbx5,
as Gata4 was not observed to independently cause any stable increase in chromatin ac-
cessibility. Mef2c has been further highlighted for its uniquely important role in driving
direct cardiac reprogramming, as ChIP-seq data revealed that histone marks associated
with active enhancer elements were most dominantly associated with Mef2c binding sites
compared to the binding sites of other reprogramming TFs [55]. The results of these studies
suggest that while Mef2c and Tbx5 are critical drivers of epigenomic remodeling, Mef2c is
also a critical transcriptional activator of reprogramming [55], whereas Gata4 likely plays a
more downstream role in the reprogramming process [56].

Additional chromatin immunoprecipitation studies have helped clarify the function
of Gata4 in reprogramming. In a 2017 study, it was observed that MGT administration to
rat cardiac fibroblasts in vitro significantly downregulated the expression of Snail, Col1a1,
fibronectin, and other profibrotic factors [76]. ChIP-qPCR identified Gata4 binding sites in
the Snail promoter, revealing that Gata4 was responsible for the downregulation of Snail.
This finding was further validated in a rat coronary ligation model, in which only Gata4
administration out of all the pioneer reprogramming factors was found to independently
improve post-infarct ventricular function and reduce fibrosis. In a more recent study,
Cleavage Under Targets and Tagmentation (CUT and Tag) analysis —a newer alternative
method to profile the interactions between DNA and proteins— identified Gata4 as a
critical target of the immune system’s response to resist direct cardiac reprogramming [77].
Wang et al. observed that cardiac fibroblasts that were transplanted into infarct regions
of MI mouse models resisted reprogramming due to an upregulation of IFN response
genes, such as STAT1 [77]. CUT and Tag analyses revealed that phosphorylated STAT1
interacts with Gata4 in a way that inhibits Gata4 from binding to cardiac genes during
reprogramming [77].

3.3. Histone Modifications in Direct Cardiac Reprogramming

Histone modifications are also important in dictating chromatin accessibility pat-
terns. Along with DNA demethylation studies, Liu et al. used ChIP-seq to character-
ize the repatterning of chromatin during direct cardiac reprogramming [73]. This study
revealed that histone marker deposition coincided with the early and rapid activation
of cardiomyocyte-specific genes and progressive attenuation of fibroblast-specific genes.
Specifically, H3K27me3 deposition, a marker of gene silencing, was reduced, and H3K4me3
deposition, a marker of gene activation, was increased at cardiac promoters as early as
day 3 of reprogramming [73]. In contrast, H3K27me3 deposition at fibroblast-specific loci
increased much later, around day 10, with H3K4me3 marks progressively decreasing [73].
These time-specific changes in histone marker deposition and removal shed light on the
transcriptional shifts observed throughout the reprogramming trajectory.

Other studies have identified potential non-cocktail regulators of direct cardiac re-
programming by analyzing the mappings of repressive and active histone marks. In
2016, ChIP-seq data of H3K4me3 and H3K27me3 genome mappings were analyzed in a
reprogramming model that used cells depleted of Bmi1 –an epigenetic regulator known
to mediate monoubiquitination of histone H2A to repress gene expression [57]. Knock-
down of Bmi1 led to an increase in H3K4me3 deposition at cardiogenic loci, indicating that
Bmi1 plays an antagonistic role in direct cardiac reprogramming by reducing chromatin
accessibility of CM-specific genes [57]. Another study in 2021 established that the histone
reader PHF7 is a potent activator of direct cardiac reprogramming [58]. H3K27ac ChIP-seq
analyses revealed that PHF7 localizes to cardiac super-enhancer regions in fibroblasts
through its cooperation with the SW1/SNF chromatin remodeling complex, inducing
increased chromatin accessibility for transcription factor binding [58]. Similarly, Dal-Pra
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et al. used ChIP-qPCR to investigate the mechanism of reprogramming mediated by a
combination of microRNAs (miR-1, miR-133, miR-208, an miR-499), referred to as the “miR
combo”. Their study showed decreased H3K27me3 deposition at promoter regions of car-
diac transcription factors when treated with the miR combo, indicating that the miR combo
facilitates fibroblast transition to iCMs by removing repressive histone marks [50]. In a
more recent study, ChIP-seq data were used to validate the mechanism by which a neuronal
transcription factor —Ascl1— could be used to enhance direct cardiac reprogramming [49].
It was determined that Mef2c induced a shift in the binding pattern of Ascl1, such that this
neuronal TF binds to more cardiogenic sites [49]. In these ways, histone marker ChIP data
have successfully been used to illuminate not only the mechanisms by which epigenomic
remodeling occurs during reprogramming, but also to identify important non-cocktail
repressive and activating factors that can be further studied to optimize this process.

4. Advances in Proteomics

Mass spectrometry, which uses the mass-to-charge ratio of ions in a sample to analyze
proteins, is one of the primary methodologies in proteomics. With the large-scale data
produced from proteome studies, bioinformatics tools and software have become integral
to analyzing this data. Many of the computational tools commonly used today, such as
Proteome Discoverer, Mascot, MaxQuant, PEAKS, and SpectroNaut, were first developed
between 2007 and 2012 and have since undergone numerous updates to improve their
protein quantitation, characterization, and identification methods [60,78–80]. The use of
proteomics —or the analysis of cellular states at the protein level— has contributed sig-
nificant findings to our current understanding of the changes that occur during direct
reprogramming. This review specifically explores how the use of quantitative mass spec-
trometry has afforded a greater understanding of direct cardiac reprogramming through
the investigation of the proteins secreted during this process.

Findings from Mass Spectrometry

In 2018, a quantitative mass spectrometry (QMS)-based proteomics approach was
used to analyze changes in protein abundance during the initial phases of iCM repro-
gramming [59]. It has previously been demonstrated that transduced fibroblasts undergo
drastic repatterning of histone marks 3 days after MGT-mediated direct reprogramming,
and this was correlated with both early activation of cardiac genes as well as progressive
suppression of fibroblast genes [73]. To investigate whether these changes extend beyond
the transcriptome, Sauls et al. applied QMS and performed gene set enrichment analysis
of quantified proteins. Using the STRING database, they were able to investigate protein-
signaling networks and identify time-specific changes in protein abundance that coincided
with the transcriptomic changes observed earlier. For example, extracellular matrix (ECM)
protein and integrin signaling protein abundances were the most significantly upregulated
protein classes at both 2- and 3-days post-transduction, with Agrin —an ECM protein that
inhibits Hippo pathway signaling and has been established to stimulate cardiac repair
and proliferation— being the single most upregulated of all ECM proteins [59]. These
findings highlighted the potential uses of inhibiting Hippo pathway signaling and driving
integrin signaling to optimize conditions for the growth and proliferation of iCMs in direct
cardiac reprogramming.

Interestingly, however, ECM proteins were less strongly upregulated at 3 days post-
transduction than at 2 days post-transduction, consistent with previous studies that showed
a gradual suppression of fibroblast-specific genes. Other protein classes displayed more
nuanced changes. For example, translation factor proteins were downregulated at 2 days
post-transduction but not at 3 days, which they posited reflected an early initial need for
accelerated protein synthesis as fibroblasts adopt the structural components of cardiomy-
ocytes, followed by a decrease in protein synthesis by day 3 as energy is depleted from the
cells [59]. Similarly, chromatin-binding proteins displayed downregulation in abundance
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at day 3, but not at day 2 post-transduction, suggesting that major chromatin remodeling
events for reprogramming may have already been completed in the first 3 days [59].

A more recent study in 2023 used mass spectrometry to study the secretome of proteins
produced by induced cardiomyocyte cell precursors (iCMPs) [81]. Studies have shown
that transplantation of this intermediate cell type into infarcted mouse heart tissue reduces
fibrotic scarring and preserves ventricular function. For this reason, proteomics was used
to investigate whether these cardioprotective features could be attributed to specific factors
secreted by iCMPs. Mass spectrometry data revealed that these precursor cells secreted
proteins specific to the regulation of cell death, extracellular matrix composition, and
heart development, among other processes [81]. Galectin-3 —a protein reported to reduce
infarct size, promote wound healing, increase ventricular remodeling, support macrophage
infiltration, and sustain heart function when present after injury— and S100-A10 —a protein
associated with macrophage invasion and migration— were among the proteins secreted
exclusively by iCMPs [81]. These findings substantiate the clinically relevant role of cardiac
fibroblasts in secreting proteins that drive wound healing, inflammatory responses, and
heart development processes to protect injured myocardium.

5. Upcoming Bioinformatics Applications in Direct Cardiac Reprogramming

The integration of bioinformatics into the study of direct reprogramming is an ongoing
development. A few burgeoning examples in recent years include the use of CRISPR-Cas9,
spatial transcriptomics, and machine learning-based analyses. This review will detail any
recent applications of these technologies in the study of direct cardiac reprogramming and
explore their potential for future applications.

5.1. Developments from CRISPR-Activation and -Inhibition Studies in Cardiac Reprogramming

CRISPR, short for clustered, regularly interspaced short palindromic repeats, has been
a widely used tool in gene editing studies since its discovery over a decade ago [82]. This
system makes use of a catalytically dead Cas9 (dCas9) that, when customized with single
guide RNAs (sgRNAs), can regulate gene expression in a targeted manner. In the context
of direct cardiac reprogramming, CRISPR presents itself as a powerful alternative to con-
ventional reprogramming methods that overexpress exogenous reprogramming factors. In
contrast, CRISPR mainly targets endogenous gene expression, as directed by sgRNAs. This
presents a considerable difference in overall expression levels, as traditional reprogram-
ming methods of exogenous GMT/GMTH overexpression increase the expression of these
factors by over 10,000-fold, whereas miR combo-mediated reprogramming only increases
endogenous GMTH expression by 1.5–5 fold [51]. Interestingly, despite the considerably
smaller change in overall GMTH expression compared to traditional methods, the miR
combo still induces reprogramming [51]. Studies employing this use of CRISPR have
increased our understanding of the role of both endogenous and exogenous transcription
factors in reprogramming [51,62].

The applications of CRISPR have shown mixed results. For example, Dal-Pra et al.
employed CRISPR to study the role of endogenous reprogramming factors Gata4, Mef2c,
Tbx5, and Hand2 in the context of both GMTH- and miR combo-mediated reprogram-
ming [51]. When Dal-Pra et al. used a dCas9 fused to transcriptional activator VPR to
induce the expression of endogenous factors GMT, this CRISPR-mediated approach failed
to reprogram fibroblasts into cardiomyocyte-like cells, despite inducing GMT expression at
levels comparable to those observed by the miR combo. In a follow-up experiment using
CRISPR-mediated inhibition, the miR combo, while successfully inducing reprogramming
of fibroblasts, could not facilitate cardiomyocyte maturation when GMTH expression was
inhibited [51]. This highlights the necessity of the miR combo to induce the expression of
GMTH and the overall importance of high levels of GMTH for cardiomyocyte maturation.

Other studies, however, were able to derive success from CRISPR-mediated repro-
gramming. Jiang et al. used a CRISPR activation system to induce endogenous expression
of factors Gata4, Nkx2.5, and Tbx5 in adult extracardiac fibroblasts [62]. This resulted in suc-
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cessful reprogramming into cardiovascular progenitor cells (CPCs), which could even give
rise to cardiovascular cells and restore contractile function when engrafted into infarcted
heart regions [62]. This approach still has limitations in that the reprogrammed CPCs
predominantly develop into vascular smooth muscle cells and endothelial cells (~24% and
~39%, respectively), with cardiomyocytes constituting a minority (~36%) [62]. Nonetheless,
the success of this approach highlights a different set of reprogramming factors —GNT—
that can be used to endogenously drive direct cardiac reprogramming. In another study,
CRISPR-Cas9 was used to activate endogenous cardiac factors GATA4, HAND2, MEF2C,
and TBX5 in human fibroblasts [61]. This method of lineage reprogramming was able to
successfully reprogram human dermal fibroblasts into induced cardiac progenitor cells
(iCPCs) that can differentiate into three cardiac lineage cells: cardiomyocytes, smooth
muscle cells, and endothelial cells [61].

CRISPR technology has also been used to optimize reprogramming through knockout
screens that enable the subsequent identification of novel factors for improved cocktails. In
2019, Yu et al. used a CRISPR-Cas9 knockout model to explore the molecular mechanisms
underlying reprogramming with a specific chemical cocktail [63]. Notably, this cocktail
deviates from the canonical reprogramming MGT cocktail, as its main constituents are
small molecule TGFβ-pathway inhibitors that are used to upregulate the necessary lineage-
specific changes in gene expression to reprogram fibroblasts into progenitor cells [63]. The
results of this study were later used to identify the factors and pathways that regulate this
process. To do this, researchers used next-generation sequencing to examine the DNA of
cells with high levels of Nkx2-5, a marker for cardiac cells, from their CRISPR-edited library.
They then analyzed the data using the MAGeCK tool, which helps identify which gRNAs
were significantly enriched, pointing to important genes involved in the process [63].
The results of the knockout screen revealed that among the top hits, guides targeting
and inhibiting DNA methyltransferase 1 associated protein 1 (Dmap1) most consistently
increased Nkx2-5 expression. This suggests that Dmap1 acts as a negative regulator of
direct cardiac reprogramming [63]. Further validation studies confirmed this, showing that
the loss of Dmap1 led to a 50% reduction in Nkx2-5 promoter methylation, which increased
chromatin accessibility and likely facilitated Nkx2-5 expression [63].

5.2. Future Applications of Spatial Transcriptomics to Study Direct Cardiac Reprogramming

As discussed in this review, transcriptomic analyses have been integral to the study
of direct cardiac reprogramming, unveiling the changes in gene expression that must
take place as cells transition from fibroblasts to cardiomyocyte-like cells. Single-cell RNA
sequencing has enabled closer investigation of the different cardiac cell types at play during
the reprogramming process. Nevertheless, these analyses, when applied in vivo, come
with the caveat of losing all the organizational and positional information of these different
cell types.

Fortunately, in 2016, Ståhl et al. introduced spatial transcriptomics —a novel method
for profiling quantitative changes in gene expression in a way that also maps the spatial
organization of these changes within intact tissue [83]. This method makes use of unique
positional barcodes that allow transcriptomic data captured from gene-specific probes to
be mapped back to their physical origins within the tissue. While this tool is yet to be
applied to direct cardiac reprogramming, studies have used spatial transcriptomics to better
understand the organizational structure of the developing heart [84–86] and the changes in
expression that occur in the context of cardiac disease [87–89].

One current limitation of applying spatial transcriptomics (ST) to the study of direct
cardiac reprogramming is the need for careful spot deconvolution when using sequenced-
based assays such as the Visium ST platform. The spatial resolution of sequence-based
spatial transcriptomics approaches has drastically improved from 100 µm [83] to 55 µm, cap-
turing 1–10 cells in each spot and eventually down to a resolution of 2 µm [90]. Nonetheless,
proper deconvolution and segmentation methods are essential to ensure that heteroge-
neous and sometimes transient cell types at play during reprogramming can be accurately
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distinguished. Image-based spatial transcriptomics approaches, such as Xenium [91], have
reported better success in capturing data at the subcellular level; however, these image-
based approaches are far more limited in the number of RNA targets they allow compared
to sequence-based approaches. These differences are important to consider when planning
to integrate spatial transcriptomics into the study of direct cardiac reprogramming.

Nonetheless, future studies on the spatial distribution of gene expression changes
during direct cardiac reprogramming can provide valuable insights into how this process
is directly affected by the native microenvironment. Such data would be clinically relevant
to understanding, for example, how the spatial organization of the heart influences cellu-
lar responses to reprogramming and how reprogramming cocktails can be improved to
selectively target infarct regions.

5.3. Potential Developments from Machine Learning in Cardiac Reprogramming

Machine learning —a branch of artificial intelligence in which computer systems can
be trained to process and model data— is a recent and promising development in bioinfor-
matics that can confer numerous advantages in the study of direct cardiac reprogramming.
Isolating primary fibroblasts and culturing them for a sufficient time can be a taxing process.
Computational modeling can be used to circumvent this issue, producing timely results
for further experimental validation. Such advances can be critical for progressing the field
of direct cardiac reprogramming. The following sections will explore current machine
learning algorithms focused on cell identity annotation and cell reprogramming modeling
that can potentially be applied to study direct cardiac reprogramming.

5.3.1. Cell Identity Annotation Algorithms

Given the heterogeneous nature of cells, as they progress through transdifferentiation,
a critical concern in direct cardiac reprogramming is properly annotating and identifying
discrete and intermediary cell types. As previously discussed, the rise of bioinformatics
has created large repositories of data for computational analysis to address this question.
In 2014, Cahan et al. developed CellNet —a network biology platform to quantify how
closely reprogrammed cell populations resemble their target cell type [64]. This platform
was developed by reconstructing gene regulatory networks using around 3500 publicly
available gene expression profiles from diverse cell types in both human and mouse tissues
to train a Random Forest classifier. Findings from CellNet indicated that while iCMs from
direct reprogramming via ectopic expression of Gata4, Mef2c, and Tbx5 do resemble their
endogenous CM counterparts, they are less similar to endogenous CMs than induced
pluripotent stem cells (iPSCs) that are converted to iCMs [64]. This observation was at-
tributed to the inadequate silencing of gene expression programs from the starting fibroblast
population, thus highlighting a key area for improvement and future troubleshooting in
direct cardiac reprogramming.

Several computation-based algorithms have since been developed to annotate cell
identity using scRNA-seq data, scATAC-seq data, or the integration of these data [92–95].
More recently, Capybara —a computational tool for classifying discrete cell identities and
intermediate “hybrid” states—was developed [65]. This method assigns continuous identity
scores to each cell against exhaustive public cell types using quadratic programming to
capture the gradual transition in cell identity that occurs during reprogramming. Kong et al.
applied Capybara to MGT-mediated direct cardiac reprogramming of cardiac fibroblasts to
CMs and found that atrial CMs are generated in larger quantities than ventricular CMs [65].
This finding was used to support modified protocols that inhibit TGFβ-signaling with
Wnt activation to optimize reprogramming and increase the relative yield of ventricular
CMs [65].

5.3.2. Computational Modeling and Reprogramming Factor Prediction

Compared to purely experimental approaches, machine learning can be used to screen
for novel reprogramming factors and model reprogramming in silico in a time- and cost-
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efficient manner. One of the earliest examples of this is Mogrify —a platform that leverages
transcriptomic data with regulatory network information to predict reprogramming factors
necessary for specific cell conversions [66]. When applied to the conversion of human
dermal fibroblasts into cardiomyocytes, Mogrify was able to predict four out of the five
major transcription factors used in this conversion (GATA4, TBX4, HAND2, and NKX2.5).

While MGT-based reprogramming has had wide success in studies involving mouse
fibroblasts, this same cocktail has not been as efficacious when applied to human fibroblasts.
To address this, Mogrify was able to successfully predict and identify novel transcription
factor candidates to induce human direct cardiac reprogramming [67]. The authors then
developed a high-throughput screening process using lentiviral transduction and a reporter
system to screen all potential combinations of transcription factors. Ultimately, a combi-
nation of the factors identified by Mogrify —MYOCD, SMAD6, and TBX20 (MST)— was
found to successfully drive human direct cardiac reprogramming, with overexpression of
MST consistently producing 40% of TNNT2+ cells over the course of 25 days [67]. While
such computational reprogramming models will always benefit from additional experi-
mental validation, the early success of Mogrify proves that machine learning can quickly
shorten the time for factor discovery by modeling reprogramming in silico.

Machine learning has already begun to inform studies on direct cardiac reprogram-
ming. In 2019, Stone et al. developed a computational framework to model gene expression
changes as a function of transcription factor-binding motifs in dynamic regions of open
chromatin [56]. This model was used to identify new candidate factors during the first
two days of GMT-based reprogramming. shRNA knockdown validated these predictions,
showing a significant reduction in reprogramming efficiency when targeted toward pre-
dicted inhibitory factors Sp1, Foxo1, Tcfp2l1, Tgif1, and Foxp1, and increased reprogramming
efficiency when targeted toward predicted facultative factors Hif1a, Prdm1, and Smad3 [56].

Similar computational modeling methods have been developed. While some platforms
do not have documented applications specific to direct cardiac reprogramming, their
application to other reprogramming studies nonetheless serves as a proof of concept
for future applications to direct cardiac reprogramming. For example, the single-cell
Reprogramming Model Through cis-regulatory Elements (scREMOTE) is a platform that
integrates both scRNA-seq and scATAC-seq data to calculate the regulatory potential for
each given transcription factor [96]. These regulatory potentials are then used to build a
regression model based on gene expression to estimate the effect of transcription factor
perturbations on reprogramming [96].

Another platform called Reprogram-seq was developed to experimentally screen
thousands of transcription factor combinations for reprogramming performance [97]. This
method uses organ-specific cell atlas data with single-cell perturbations to predict the effects
of different transcription factor cocktails. To screen for transcription factors that can convert
fibroblasts to epicardial-like cells, Reprogram-seq was trained on single-cell transcriptomic
data from nearly 16,000 primary cardiac cells with known specific cell types. This model
was then applied to mouse embryonic fibroblasts (MEFs) using a library of 48 cardiac
factors as well as 10 epicardial-related factors curated from the literature and bulk-RNA-seq
data for perturbations. The results of this approach identified a combination of three
transcription factors —Atf3, Gata6, and Hand2— as the primary cocktail to efficiently
reprogram MEFs into cells that resemble epicardial cells transcriptionally, molecularly,
functionally, and morphologically [97]. While the end goal of this transition was targeted
toward epicardial-like cells and not cardiomyocytes, Reprogam-seq could similarly be
applied to direct cardiac reprogramming to further validate the current cocktails and
potentially identify new factors to be validated experimentally.

A final example of a promising machine learning platform to model reprogramming is
DeepNEU —a model that simulates the reprogramming of artificially induced pluripotent
stem cells (aiPSCs) into other targeted cell types using defined sets of reprogramming
factors from the literature [98]. Each factor combination used for each simulation can be
evaluated for its potential efficacy in converting aiPSCs into the target cell type based on
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the number of iterations the model must undergo before the reprogrammed cells achieve
a gene expression profile specific to the target cell type. This was applied to simulate
the conversion of aiPSCs into cardiomyocytes (aiCMCs) using Activin A and BMP4 as
the leading reprogramming factors, with the model converging after 15 iterations to a
cardiomyocyte-marker-specific expression profile [98].

A main caveat of computational reprogramming models is that the reference datasets
used to train the models are crucial for the integrity of the resulting predictions [56].
Nonetheless, as this model and others show, machine learning is becoming a crucial tool in
streamlining the search for factors that can optimize direct cardiac reprogramming and in
artificially modeling the effects of novel cocktails as an efficient antecedent for more costly
in vitro and in vivo studies.

6. Closing Perspectives

Direct cardiac reprogramming has great potential to affect countless lives by creating
a life-saving alternative trajectory for cells in the injured myocardium. Significant progress
in the field has been made in just the past decade, leading to an improved understanding
of the molecular mechanisms at play within this process and increased efficiency of repro-
gramming. As discussed in this review, the integration of bioinformatics has been integral
to this process and has bridged the gap between basic reprogramming studies and future
clinical applications. The vast amount of data amassed from being able to computationally
process transcriptomic, epigenomic, and proteomic data has made the inner workings of
direct reprogramming less obscure. The contributions of each factor in the MGT cocktail
are far better understood than when they were first introduced in 2010, and the complex
temporal trajectory of the reprogrammed cells is more clearly defined. We are now more
aware of the strengths of direct cardiac reprogramming, as well as the areas that require
more focused attention for improvement –such as in mitigating fibroblast marker gene
expression in the final iCM state. Furthermore, machine learning has opened the door to
streamlining the process of optimizing direct cardiac reprogramming in ways that would
otherwise not be as efficient using purely experimental approaches.

There is still a long way between the current state of direct cardiac reprogramming
and its future clinical application. However, if the last decade has given us any reassurance,
it is that tools of computational biology have previously served and will continue to play a
valuable role in advancing the field.
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