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Abstract: Background: Papillary muscles are structures integrated into the mitral valve
apparatus, having both electrical and mechanical roles. The importance of the papillary
muscles (PM) is mainly related to cardiac arrhythmias and mitral regurgitation. The aim
of this review is to offer an overview of the anatomy and physiology of the papillary
muscles, along with their involvement in cardiovascular pathologies, including arrhythmia
development in various conditions and their contribution to secondary mitral regurgitation.
Methods: A literature search was performed on PubMed using the following relevant
keywords: papillary muscles, mitral valve, arrhythmia, anatomy, and physiology. Results:
During the cardiac cycle, papillary muscles have continuous dimensional and pressure
changes. On one hand, their synchrony or dyssynchrony impacts the process of mitral valve
opening and closure, and on the other hand, the pressure changes can trigger electrical
instability. There is increased awareness of papillary muscles as an arrhythmic source.
Arrhythmias arising from PM were found in patients with or without structural heart
disease, via Purkinje fibres, due to increased automaticity or triggered activity. Conclusions:
Despite the interest in mitral valve physiology, there are still many unknowns in relation
to the papillary muscles, especially with regard to their role in arrhythmogenesis and the
pathogenesis of mitral regurgitation.
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1. Introduction
One of the first descriptions of the papillary muscles (PM) of the left ventricle (LV)

dates back to the Renaissance era, when Leonardo da Vinci, while dissecting the heart of
an ox, noticed the existence of the PM attached to the ventricular walls. He described two
potential roles for these structures: preventing the LV cavity from collapsing during systole,
allowing the blood to pass from the right ventricle to the LV via the interventricular septum,
and anchoring the ventricular walls in place and preventing excessive dilatation of the LV
cavity during diastole [1].
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2. Anatomy
The LV has two PMs, anterolateral and posteromedial, located on the anterolateral and

posteromedial walls, respectively, usually at the midventricular level. These anatomical
structures are components of the subvalvular apparatus of the mitral valve (MV), which
facilitates unidirectional blood flow inside the heart [2].

The morphology of the PM is highly variable in shape, number, and attachments [3].
Most anatomical reports describe the PM as being composed of a trunk with multiple
heads averaging about six per PM [4]. The anterolateral PM is usually single, as opposed
to the posteromedial PM, which can have two or more trunks (up to five) [5]. The PM can
be either ‘tethered’ or ‘finger-like’. The tethered PMs are attached to the LV free wall via
several trabecular ridges (see the anterior papillary muscle (APM) in Figure 1), while the
finger-like papillary muscles are usually attached to the LV free wall over a broad base (see
the posterior papillary muscle (PPM) in Figure 1) [6,7]. In addition, there are descriptions
of various interconnections between the heads of the same PM and even between the two
groups across the ventricular cavity (false tendons, muscular bands) [5,8].

J. Cardiovasc. Dev. Dis. 2025, 12, 14 2 of 16 
 

 

an ox, noticed the existence of the PM attached to the ventricular walls. He described two 

potential roles for these structures: preventing the LV cavity from collapsing during sys-

tole, allowing the blood to pass from the right ventricle to the LV via the interventricular 

septum, and anchoring the ventricular walls in place and preventing excessive dilatation 

of the LV cavity during diastole [1]. 

2. Anatomy 

The LV has two PMs, anterolateral and posteromedial, located on the anterolateral 

and posteromedial walls, respectively, usually at the midventricular level. These anatom-

ical structures are components of the subvalvular apparatus of the mitral valve (MV), 

which facilitates unidirectional blood flow inside the heart [2]. 

The morphology of the PM is highly variable in shape, number, and attachments [3]. 

Most anatomical reports describe the PM as being composed of a trunk with multiple 

heads averaging about six per PM [4]. The anterolateral PM is usually single, as opposed 

to the posteromedial PM, which can have two or more trunks (up to five) [5]. The PM can 

be either ‘tethered’ or ‘finger-like’. The tethered PMs are attached to the LV free wall via 

several trabecular ridges (see the anterior papillary muscle (APM) in Figure 1), while the 

finger-like papillary muscles are usually attached to the LV free wall over a broad base 

(see the posterior papillary muscle (PPM) in Figure 1) [6,7]. In addition, there are descrip-

tions of various interconnections between the heads of the same PM and even between 

the two groups across the ventricular cavity (false tendons, muscular bands) [5,8]. 

 

Figure 1. Anterolateral (APM) and posteromedial (PPM) papillary muscles in a necropsy specimen 

(courtesy of Dr. Doinita Crisan). 

False tendons are fibrous or muscle structures, variable in length and thickness, 

found in the LV cavity, generally located between the free wall of the LV or a PM and the 

interventricular septum, without connection to the mitral valve [9]. 

The variability in morphology and interconnections could be explained to a certain 

extent by taking into consideration the embryological development of the heart [10]. Pa-

pillary muscle development begins at week five in utero, with the muscular trabecular 

ridge. Between 8 and 10 weeks of development, due to delamination of the ventricular 

myocardium and detachment from the ventricular ridge, the PMs become freely movable 

Figure 1. Anterolateral (APM) and posteromedial (PPM) papillary muscles in a necropsy specimen
(courtesy of Dr. Doinita Crisan).

False tendons are fibrous or muscle structures, variable in length and thickness, found
in the LV cavity, generally located between the free wall of the LV or a PM and the interven-
tricular septum, without connection to the mitral valve [9].

The variability in morphology and interconnections could be explained to a certain
extent by taking into consideration the embryological development of the heart [10]. Pap-
illary muscle development begins at week five in utero, with the muscular trabecular
ridge. Between 8 and 10 weeks of development, due to delamination of the ventricular
myocardium and detachment from the ventricular ridge, the PMs become freely movable
structures [10]. It has been mentioned in several studies that each PM has its own unique
morphology, being likened to a fingerprint [5,11,12].

3. Ultrastructure of the Papillary Muscles
From a histological point of view, the PM has two layers: myocardium and endo-

cardium, the latter being composed of endothelial and subendothelial layers covering the
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PM. Myocardial fibres have a complex architecture, with multiple myocardial bundles
that intersect, which can result in an anisotropic depolarization of the PM [6]. The left
bundle branch of the His, which runs in the interventricular septum and generates the
anterior and posterior fascicles, ultimately subdivides into a fascicular network which
allows synchronous activation of the LV, including that of the PMs [8].

False tendons are chord-like structures, which lack the insertion point to the mitral
valve, but they frequently have one or sometimes two attachment points to the PMs
of the LV. Histologically, they can be fibromuscular or muscular bands, but often they
contain conduction tissue similar to those observed in the His bundle, raising the question
whether these structures are a part of the conduction system [13]. The presence of these PM
connections, whether between the PM and the ventricular wall or between the two PMs,
may be associated with atypical exit sites for PM arrhythmias. These sites, which may be
located away from the typical base of the PM, could explain the variability in ventricular
activation patterns, as reflected in the QRS axis and/or the precordial transition zone [6,14].

Purkinje fibres are located predominantly at the level of the subendocardial layer with
the network being more dense at the level of insertion of the PM to the ventricular wall,
determining the activation of the PM from base to apex [15]. Additionally, the intracavitary
position of the PMs themselves relative to the septum and the left ventricular free wall was
found to be correlated with the QRS duration in healthy subjects [16].

The electrical activation of the LV PMs occurs at the initial phases of the electrical acti-
vation of the ventricles. According to Armour et al., who studied electrical and mechanical
PM activation in dogs, there is a delay of approximately 45 ms between the electrical acti-
vation of the anterior PM and the mechanical contraction of the surrounding epicardium.
Myocardial contraction in both PMs begins approximately 20 ms later, occurring during an
intraventricular pressure rise and reaching maximum tension after the beginning of ven-
tricular systole. A rapid decrease in intraventricular pressure is followed by the relaxation
of the PM [17].

4. Physiology
Although they are complex structures, PMs are not independent entities but are part

of the mitral apparatus, which also includes chordae tendineae, the mitral valve, the mitral
annulus, and the adjacent LV and left atrial (LA) walls.

During the cardiac cycle, PMs have movements that are synchronous with rest of the
mitral apparatus [5]. This applies to circumferential as well as longitudinal contraction
and relaxation. Sanfilippo et al. [18] have shown using echocardiography that in normal
subjects, during systole, both PMs and the mitral annulus are displaced toward the LV apex,
and the distance between the PM tips and the mitral annulus remains relatively constant.
In mitral valve prolapse, the mitral leaflets are displaced in systole towards the left atrium
and, as a consequence, they apply increased traction to the PM via the chordae tendineae,
which causes systolic displacement of the PMs towards the annulus (instead of maintaining
a constant distance as is the case with normal subjects). A possible consequence of this
increased traction force applied to the PM is proarrhythmia [18,19].

In their experimental study in dogs, Marzilli et al. [20] measured the dimensions of
the LV PMs during the cardiac cycle in order to determine their dimensional change and
their impact on the mitral valve biomechanics. Maximal shortening and elongation of
the free wall segment of the LV preceded the corresponding dimensional changes of the
PM. The PM shortening began in the ejection phase and continued throughout systole and
into diastole, towards the end of isovolumic relaxation. The PM lengthened during late
diastole, isovolumic contraction and a short portion of the ejection phase (Figure 2) [21].
Shortening of the PM at the time of isovolumic relaxation, by increasing the tension in
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the chordae, facilitates the process of mitral valve opening (Figure 2). These dimensional
changes together with the integrity of the mitral valve apparatus will permit a proper
function of the mitral valve in open and closure, preventing its prolapse and giving an
active character to this process [20].
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wall (LV wall). The electrical activation of the left ventricular papillary muscles occurs during the
early stages of ventricular activation, while their mechanical contraction happens about 20 ms after
the contraction of the surrounding epicardium (Armour et al. [17]).

Despite the numerous articles published, the precise role of the PM in the opening and
closure of the mitral valve remains to be fully defined. Further studies on this topic may
help to clarify the degree of PM involvement in primary and secondary mitral regurgitation.

5. Arrhythmia Originating from the Papillary Muscles
The last decade has brought about increased awareness about PMs as an arrhythmic

source in both structurally normal and abnormal hearts [3,15,19,22].
Papillary muscle arrhythmias can originate in the regular myocytes or in the Purkinje

network, and are thought to be caused by delayed afterdepolarisations (triggered activity)
or abnormal automaticity [8]. The site of origin of ventricular arrhythmias was often found
to be at the Purkinje–fibre–muscular interface [23].

The mechanical stress experienced by the PMs throughout the cardiac cycle may
increase the risk of developing arrhythmias, particularly in patients with mitral valve
prolapse, as well as in those with other types of structural heart disease [19]. The me-
chanical stretch-mediated mechanism, however, is less likely to be involved in ventricular
arrhythmias occurring in patients with normal LV size and function and without struc-
tural abnormalities. In these cases, arrhythmogenesis was attributed to interactions at the
Purkinje–myocardial junction [23].

Decreased Purkinje cell–ventricular myocardium coupling at the PM might be respon-
sible for arrhythmogenesis via increased automaticity or triggered activity.

In addition, abrupt changes in fibre orientation, which occur at the Purkinje network–
myocardium interface at the base of the PM, can create conduction delays and micro-reentry
and thus also play a role in arrhythmogenesis [24]. PMs in animal studies were found
to be located at the centre of reentrant wavefronts and play a role in the pathogenesis
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of ventricular tachycardia or ventricular fibrillation [25]. Ventricular tachycardia can be
generated at the PM level via a macro-reentry scar-related mechanism as well, in which
case it is typically inducible with programmed stimulation.

Ventricular ectopy originating in the PMs is typically benign, but there have been cases
when ventricular fibrillation (VF) was triggered by short-coupled premature ventricular
complexes in patients with structurally normal hearts as well as in patients with coronary
artery disease or mitral valve prolapse [22,25–28].

In mitral valve prolapse, the PMs’ movement towards the mitral annulus as a con-
sequence of the prolapse causes an abnormal tension in the PM’s body, which can turn
into electrical instability [18]. The electrophysiologic changes can lead to ventricular ar-
rhythmias even before areas of fibrosis are present on contrast-enhanced cardiac magnetic
resonance imaging (MRI) [15]. These complex ventricular arrhythmias may be related
to stretch-mediated activity rather than a fixed myocardial scar [29]. A predominance of
PM site origin regarding ventricular arrhythmias was observed among women during
electrophysiologic studies [30].

As mentioned, myocardial fibrosis, identified by cardiac MRI, can cause premature
ventricular contractions. This fibrosis results from mitral valve prolapse stretching the
myocardium and PMs, seen as late gadolinium enhancement [30–32]. Complex ven-
tricular arrhythmias and a higher frequency of premature ventricular contractions and
non-sustained ventricular tachycardia were observed in patients with sudden cardiac death
who had considerably more fibrosis than those without [29,33,34]. In their review, Malagoli
et al. attempted to develop an imaging-based algorithm to assist clinicians in identifying
patients with MVP who are at a higher risk of developing malignant ventricular arrhyth-
mias [32]. By applying the speckle-tracking technique, they recommended that patients
with abnormal left ventricular longitudinal strain on echocardiography should be further
assessed using CMR to identify fibrous regions [32].

An experimental study found that QRS morphology was different from the baseline
QRS after the traction of the PM in the late diastolic phase. This alteration in QRS mor-
phology was related to early activation in the nearby area of the tractioned zone, as a
consequence of mechanical stress of the PM or distortion of local Purkinje fibres, generating
transient afterpotentials [19].

Several studies have revealed that bileaflet mitral valve prolapse, PM fibrosis, and
mitral annulus disjunction increase the risk of cardiac arrest through ventricular arry-
thmias [31–33,35,36]. Mitral annulus disjunction represents systolic separation between
mitral annulus and the basal posterior wall of the LV, and a self-sufficient arrhythmogenic
entity [37]. It is postulated that mitral annulus disjunction leads to excessive mobility of
the MV apparatus, which, in turn, causes traction on the PMs and the posterobasal LV
myocardium, serving as the trigger for ventricular arrhythmias. This increased traction
causes repetitive mechanical injuries to the myocardium, activating apoptosis pathways
and inducing PM and LV fibrosis (the arrhythmic substrate) [33]. Both localised and
generalised ventricular remodelling, as well as diffuse fibrosis, were identified as being
linked to patients with MVP [38,39]. The combination of a substrate and a trigger provokes
early after-depolarisations, which can lead to premature ventricular complexes, ventricular
arrhythmias, and sudden cardiac death [40].

Dejgaard et al. [37] discovered that curling of the base of the lateral ventricular wall
was associated with malignant ventricular arrhythmias in 12% of the cases and in 22% of
the patients, mitral valve prolapse was not present concomitantly, palpitations being by
far the most persistent clinical feature. They also observed that mitral annulus disjunction
was present at cardiac MRI up to 2/3 of mitral annulus circumference, with a variable
longitudinal dimension between 1 mm and 15 mm, bounded by normal, non-disjunctive
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tissue [37]. Despite the association with sudden cardiac death, mitral annulus disjunction
remains an entity with clinical relevance not yet fully elucidated, emphasising the need
to develop sudden cardiac death risk scores to assess the individual risk, allowing for the
subsequent management of each of these patients.

In another study focused on MVP and mitral annulus disjunction, Cerere et al. [41]
assessed the presence of late gadolinium enhancement on cardiac MRI and aimed to
quantify the degree of myocardial fibrosis in this patient group using a five-standard
deviation gray-scale threshold on semi-quantitative late gadolinium enhancement MRI.
This method yielded a percentage of myocardial fibrosis, proving to be a reproducible
technique that closely aligned with visual operator analysis. It allowed for more accurate
identification of patients with varying degrees of late gadolinium enhancement, potentially
associated with ventricular arrhythmias in those with MVP. Increased fibrosis in the PMs
and annular region was linked to the occurrence of ventricular arrhythmias [41].

Another morphofunctional aspect of mitral valve prolapse which is correlated with
increased risk of developing ventricular arrhythmias encompasses the high velocity of the
mitral annulus (Pickelhaube sign) [29]. Together with mitral annulus disjunction, they have
a role in the paradoxical increase in mitral annulus diameter during systole, being present
in patients with arrhythmogenic mitral valve prolapse [31]. Transposed into practical
terms, the high velocity of the posterolateral portion of the mitral annulus is an indicator
of increased tension on the PM, providing an echocardiographic parameter useful for the
assessment of arrhythmogenesis induced by PM and myocardium stretch, with triggered
activity serving as an electric substrate [29,31,37,42].

Although most patients with mitral valve prolapse have a normal ECG, there are cases
where some ECG features indicate a high risk of ventricular arrhythmias: QT prolongation,
T wave abnormalities (biphasic, inverted), increased QT dispersion [29]. T wave abnormali-
ties in inferior leads have been observed to be present on the ECG of patients with MVP and
cardiac arrest, probably serving as a hallmark for the increased mechanical stress exerted
on the PM and underlying myocardium by the prolapsed valve [29,33,34,43]. Increased
QT dispersion is associated with heterogeneity in repolarisation [44] resulting from local
variations in action potential and is strongly associated with arrhythmic events [45].

Ventricular arrhythmias (VAs) originating at the level of the PMs typically have a
right bundle branch block (RBBB) pattern on the ECG in lead V1 with a short intrinsic
deflection and a variable precordial transition [46]. This early intrinsic deflection may be
related to the proximity of the PMs to the conduction system [46]. In the case of VAs from
the posteromedial PM, they typically have a qR pattern in lead V1 with a short intrinsic
deflection (Figure 3), while VAs from the anterolateral PM have a rightward/inferior axis
and, in some patients, discordance between the inferior leads, with lead II being negative
and lead III positive [46].

Currently non-invasive mapping of the arrhythmia source is performed using a 12-lead
ECG. However, in order to improve location accuracy, future strategies may benefit from
computational methods for noninvasive preprocedural mapping [47]. The electrocardio-
graphic differential diagnosis of the PM arrhythmias includes arrhythmias originating in
the surrounding structures, which include the anterior and posterior fascicles, outflow
tract, and mitral annulus. Mitral annulus VAs have inferior lead discordance and positive
concordance in the precordial leads [46,48].

Given the specific Purkinje network and myocardial fibres disposition at the level of
the PMs, there is anisotropic and preferential conduction, which is responsible for different
QRS morphologies during pacing or during VAs originating from the PMs. This is an
important feature in differentiating PM arrhythmias from fascicular arrhythmias, the latter
exhibiting the same morphology due to the involvement of the normal conduction system
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and reentrant mechanism [49]. Another important distinguishing characteristic of these
two origins of ectopy is the QRS duration: if it is less than 130 ms, the origin is fascicular
with a sensitivity and specificity of 100% [7].
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Figure 3. Characteristic electrocardiographic pattern for ectopy originating from the posteromedial
papillary muscle. The superior axis and qR pattern, with slurred R wave and short intrinsic de-
flection (66 ms), in lead V1 is notable. In addition, there is a late transition in the precordial leads.
Electrocardiogram from a patient with mitral valve prolapse.

Briceno et al. [46] reported that the intrinsicoid deflection in V1 in PM premature
ventricular contractions occurred significantly earlier in comparison with other sites of
origin (63 ± 13 ms vs. 79 ± 24 ms); an intrinsicoid deflection of less than 74 ms had a
sensitivity of 79% and a specificity of 87% for PM ectopy. This observation reinforces what
other studies [15,50] have already concluded: the existence of a dense subendocardial
layer of Purkinje fibres, which explains the relatively fast intrinsicoid deflection due to the
proximity between the conduction system and the PM.

Catheter ablation of PM arrhythmias is a challenging procedure for several reasons.
First, the heterogeneous morphology of the PMs and their continuous motion inside the
LV cavity make achieving catheter stability during ablation very difficult. In addition, the
location of the arrhythmic foci deep within the body of the PM and the varied exit points
are a challenge, requiring accurate pace mapping as well as activation mapping [6,51,52].
Thirdly, there is a potential for damaging the PM during the ablation procedure with
consequent mitral regurgitation and subsequent recurrence of arrhythmia [6]. A study
published in 2023 investigated the factors influencing the heterogeneous morphology of
PVCs and ventricular arrhythmias originating from PMs [52]. The researchers categorised
the sites of arrhythmia origin into five distinct groups and concluded that the pleomorphism
was linked to the varying origins of premature ventricular contractions and the preferential
conduction through branching sites of the PMs [52].

Ablation strategies were adapted for the specifics of arrhythmias originating in the
PMs including the use of irrigation catheters, optimising the depth of the lesion and
tissue-catheter contact (radiofrequency or cryoablation), but this procedure remains a real
challenge for the interventional electrophysiologist [51,52].
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6. Mitral Valve and Papillary Muscles’ Synchrony
The mitral valve apparatus is one of the most complex structures in human body,

having two parts: the mitral valve annulus with the two leaflets and the subvalvular
apparatus composed of the PM which are attached to the LV free wall, and chordae
tendineae, which make the connection to the leaflets. Located between the left atrium and
ventricle, these anatomical structures are strongly interconnected; therefore, an alteration
affecting any level will lead to mitral regurgitation (atrial, primary or ventricular mitral
insufficiency) (Figure 4).
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Figure 4. Elements involved in genesis of mitral regurgitation: atrial dilation, annulus dilation,
papillary muscle dyssynchrony, left ventricular dilation. (LA: left atrium, MV: mitral valve, Ant:
anterior mitral leaflet, Post: posterior mitral leaflet, LVOT: left ventricular outflow tract, PM: posterior
papillary muscle, AL: anterior papillary muscle).

The PMs play a role in the opening and closing of the MV. As already mentioned, PM
depolarisation begins early in the cardiac cycle, and their shortening occurs at the time of
isovolumic contraction [17]. Probably, these dimensional changes may assist a constant
annulus–PM tip distance to prevent mitral valve prolapse [18].

In healthy subjects, LV contraction was accompanied by mitral annulus and PM
movement toward the apex during systole, maintaining a constant distance between
PM and mitral annulus, preventing atrial displacement of the MV [18]. During diastole,
more precisely during isovolumic relaxation, the PMs get shorter and open the MV and are
probably accompanied by the motion of the LV wall outwards [20,53]. According to Marzilli
et al. [20], who studied the PM in dogs, the timing of contraction and relaxation is slightly
different in the PM and the LV free wall. Papillary muscle tension does not appear to parallel
the changes in dimensions of the PM. The highest tension in the PM and chordae occurred
early during the ejection phase when the PM was maximally elongated. Conversely, low
tension occurs in early diastole when the length of the PM is at its minimum [20]. Optimal
function of the MV requires the integrity of all structures involved in this active process
and is a result of the interaction between the leaflets and surrounding myocardium [54].

The left bundle branch block is involved in the pathogenesis of secondary mitral regur-
gitation, caused by the dyssynchronous depolarisation of the ventricular walls. Karvounis
et al. [55] observed in their study that after cardiac resynchronisation therapy, the severity
of functional mitral regurgitation decreased acutely. This improvement was obtained due
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to the amelioration of the PMs’ nearby myocardial wall systolic deformation or the PMs’
own motion.

Dysfunction at any level of the mitral valve apparatus could impair the process of
closing and opening the MV and could therefore generate mitral regurgitation. Papillary
muscle dysfunction is frequently caused by acute or chronic myocardial ischemia and can
lead to mitral regurgitation and eventually LV failure [12].

7. Mitral Valve Closure
7.1. Secondary Mitral Regurgitation

Papillary muscles are complex entities serving as part of the pathophysiology of vari-
ous diseases. Taking into account the etiology of secondary mitral valve regurgitation, this
includes coronary artery disease, dilated cardiomyopathy, and hypertrophic cardiomyopa-
thy (HCM), which lead to PM displacement, asynchrony, mitral annulus dilation, impaired
LV contractility and pathologic remodelling [56,57].

To emphasise the importance of PMs in mitral valve opening and closure, the study
of Kanzaki et al. [58] highlights a problem concerning a reduction in the degree of MV
regurgitation immediately after cardiac resynchronisation therapy. Often, patients with
left bundle branch block and heart failure with reduced ejection fraction will benefit from
cardiac resynchronisation therapy. In the mentioned study [58], the researchers performed
a strain mapping of mechanical activation in the LV walls, assigning a corresponding part
of the wall to each PM. The activation delay between the two PMs was 12 ± 8 ms in normal
subjects, 106 ± 74 ms in patients before cardiac resynchronisation therapy and 35 ± 31 ms
after resynchronisation therapy [58]. Also, it was observed that mitral regurgitation induced
by PM dyssynchrony appeared earlier and was longer in duration before resynchronisation
therapy. As a conclusion, the degree of mitral valve insufficiency was improved shortly after
resynchronisation therapy. The reduction in activation time delay between the two PMs
was the most important factor attributed to the improvement of mitral regurgitation. Also,
the development of mitral insufficiency was correlated with the time delay of mechanical
activation observed on strain mapping in the LV segments [58].

An experimental study coordinated by Levine [59] revealed that inducing ischemia in
the inferior wall will cause mitral regurgitation due to restricted leaflets, but extending the
ischemia to the PM which causes contractile dysfunction, the degree of mitral insufficiency
will decrease despite the larger ischemic area. The induced ischemia of the PM lengthened
the PM, improving the apposition of the leaflets, paradoxically decreasing the mitral
regurgitation. This provides further proof that PMs are directly involved in the opening
and closure of MV, as well as PM dysfunction and geometrical changes in the LV which can
worsen or improve mitral valve insufficiency (Figure 4) [59].

7.2. Hypertrophic (Obstructive) Cardiomyopathy

Mitral valve prolapse and hypertrophic cardiomyopathy (HCM) are part of the arrhyth-
mogenic syndromes with risk of sudden cardiac death [34,60]. Isolated PM hypertrophy is
an uncommon variant of HCM [60–62]. Harrigan et colleagues [63] showed that almost
20% of patients with HCM and normal LV mass (with localised increased wall thickness)
also presented an increased mass in the PMs. Likewise, a more substantial PM mass was
associated with elevated LV mass index in this category of patients [63]. Although isolated
PM hypertrophy is not diagnostic of HCM, it can be part of the phenotypic expression of
the disease and it can contribute to dynamic LV obstruction, or it can, in association with
other abnormalities, be involved in the pathogenesis of mitral regurgitation [64].

The most common cause of dynamic LV obstruction in HCM is represented by asym-
metrical septal hypertrophy that leads to systolic anterior movement (SAM) of the mitral
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leaflets [65]. Mid-cavity obstruction as a result of solitary PM hypertrophy, direct PM
insertion into anterior mitral leaflet and anterior displacement of PMs in the LV have also
been reported as potential contributors to LV obstruction [62,63,65–67]. In addition, it
was observed that beside the anterior displacement of the PM in HCM, the leaflet elon-
gation of the mitral valve, especially the posterior one, can also contribute to the SAM
phenomenon [68]. Under the circumstances, PM hypertrophy can induce a series of clinical
features due to obstruction of LV mid-cavity, ranging from asymptomatic to shortness of
breath, thoracic pain and even syncope or sudden cardiac arrest [65]. Also, PM hypertrophy
and accessory PM proved to be significantly corelated with sudden cardiac death [67].

For the evaluation of PM anomalies and morphology, ECG, echocardiography
(Figure 5) and cardiac magnetic resonance (CMR) (Figure 6) are considered valuable diag-
nostic tools, with emphasis on the last one, that has proven to be superior to echocardiogram
for their assessment [61]. Subsequently, CMR not only demonstrates that PM are a fragment
of the cardiomyopathic process in HCM due to morphological characterisation, but is also
able to identify and describe remodelling through fibrosis with the use of post-gadolinium
T1 mapping [63,69]. Accordingly, Cresti et al. showed that CMR was able to identify fibrosis
of the PM’s head and confirmed the presence of strictly localised cardiomyopathic process
in HCM subjects [69].
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Figure 5. (A) PPM in parasternal long axis view (yellow arrow) in a patient with mitral valve
prolapse. (B) Parasternal mid-ventricular short axis view at the level of PMs. Notice that PPM has
two heads (red arrow), while APM has one (white arrow). (PPM: postero-medial papillary muscle;
APM: antero-lateral papillary muscle, PM: papillary muscle).
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Figure 6. Cardiac MRI. PM hypertrophy in a patient with HOCM (yellow arrows). (MRI: magnetic
resonance imaging, HOCM: hypertrophic obstructive cardiomyopathy, PM: papillary muscle).

Papillary muscle free strain is attracting growing interest in recent research [70–72]. It
is known that PMs are frequently abnormal in HCM [73], and while CMR is not yet widely
accessible, echocardiographic strain of the papillary muscle could be a valuable predictor
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of sudden cardiac death (SCD) in both low- and high-risk patients with HCM. This method
is easily reproducible and can complement CMR as an additional prognostic tool [71].

The identification of fibrotic process at the level of PM has both diagnostic and prog-
nostic value and is also a marker of proarrhythmic susceptibility. That given, the presence
of a higher percentage of fibroblasts in the PM leads to changes in their membrane potential
under cell-to-cell stretching, predisposing them to electrical anomalies as a response to
altered mechanical conditions [74]. This was backed up by Gao and colleagues [75], who
described the proarrhythmic effects of various pharmaceutical agents on human cardiomy-
ocytes due to their interaction with neighboring fibroblasts. Additionally, it appears that
the PMs of experimental animals with hypertension and heart failure exhibit a higher grade
of fibrosis [76] as they are also predisposed to electrical disturbances. One explanation
could be that increased cardiomyocyte-fibroblast electrical coupling in the initial stages of
heart disease may impact the electrical activity of the cardiac human cells and precipitate
arrhythmias [74,75].

Regarding ECG patterns amidst patients with isolated PM hypertrophy, there is a wide
spectrum of abnormalities, ranging from normal ECG, prominent U wave, LV hypertrophy
(the most frequent), negative/biphasic precordial T waves, and sinus arrhythmia to ST-
segment alterations [65,67,77,78]. Correspondingly, Alsaud and colleagues [61] described
a case of elongated and prominent anterolateral PM that generated electrocardiographic
changes masquerading ST-segment elevation myocardial infarction. Allegedly, even if
isolated PM hypertrophy may be overlooked by routine transthoracic echocardiography,
occasionally an unjustified ECG pattern of LV hypertrophy can be explained by an isolated
PM hypertrophy [67,69].

8. Conclusions
From a clinical perspective, the importance of the PM is mainly related to cardiac

arrhythmias and secondary mitral regurgitation. Papillary muscle arrhythmias are probably
under-recognised and arrhythmias with this origin are difficult to ablate. Establishing a
successful ablation strategy depends on accurate noninvasive localisation of the arrhythmia
source for preprocedural planning. Currently 12-lead ECG is the main instrument available
for arrhythmia location. Regarding their role in MV closure, the PMs play an important role
in secondary mitral regurgitation which has a ventricular mechanism in patients with both
ischemic and nonischemic heart disease. Alterations in the geometry and function of the
PMs as well as dyssynchrony play a role in PM-mediated secondary mitral regurgitation.
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