Better Medications Adherence Lowers Cardiovascular Events, Stroke, and All-Cause Mortality Risk: A Dose-Response Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Exposure Quantification
2.5. Statistical Methods
3. Results
3.1. Literature Search and Characteristics of Studies
3.2. Medications Adherence and Any CVEs, Stroke, and All-Cause Mortality Analysis
3.3. Cardiovascular Events
3.4. Stroke
3.5. All-Cause Mortality
3.6. Subgroup, Sensitivity Analyses, and Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Sun, X.S.; Tao, Y.; Le Tourneau, C.; Pointreau, Y.; Sire, C.; Kaminsky, M.C.; Coutte, A.; Alfonsi, M.; Boisselier, P.; Martin, L.; et al. Debio 1143 and high-dose cisplatin chemoradiotherapy in high-risk locoregionally advanced squamous cell carcinoma of the head and neck: A double-blind, multicentre, randomised, phase 2 study. Lancet Oncol. 2020, 21, 1173–1187. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases. Available online: https://www.who.int/cardiovascular_diseases/about_cvd/en/ (accessed on 7 July 2021).
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to drugs that prevent cardiovascular disease: Meta-analysis on 376,162 patients. Am. J. Med. 2012, 125, 882–887.e1. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Khan, H.; Heydon, E.; Shroufi, A.; Fahimi, S.; Moore, C.; Stricker, B.; Mendis, S.; Hofman, A.; Mant, J.; et al. Adherence to cardiovascular therapy: A meta-analysis of prevalence and clinical consequences. Eur. Heart J. 2013, 34, 2940–2948. [Google Scholar] [CrossRef] [Green Version]
- Bosworth, H.B.; Granger, B.B.; Mendys, P.; Brindis, R.; Burkholder, R.; Czajkowski, S.M.; Daniel, J.G.; Ekman, I.; Ho, M.; Johnson, M.; et al. Medication adherence: A call for action. Am. Heart J. 2011, 162, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, D.M.; Everett, W. Thinking outside the pillbox--medication adherence as a priority for health care reform. N. Engl. J. Med. 2010, 362, 1553–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterberg, L.; Blaschke, T. Adherence to medication. N. Engl. J. Med. 2005, 353, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, M.M.; Aarnio, K.; Martinez-Majander, N.; Pirinen, J.; Sinisalo, J.; Lehto, M.; Kaste, M.; Tatlisumak, T.; de Leeuw, F.E.; Putaala, J. Use of antihypertensive medication after ischemic stroke in young adults and its association with long-term outcome. Ann. Med. 2019, 51, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Simpson, S.H.; Eurich, D.T.; Majumdar, S.R.; Padwal, R.S.; Tsuyuki, R.T.; Varney, J.; Johnson, J.A. A meta-analysis of the association between adherence to drug therapy and mortality. BMJ 2006, 333, 15. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Yu, X.; Ou, S.; Liu, X.; Yuan, J.; Chen, Y. Statin Adherence and the Risk of Stroke: A Dose-Response Meta-Analysis. CNS Drugs 2017, 31, 263–271. [Google Scholar] [CrossRef]
- Xu, T.; Yu, X.; Ou, S.; Liu, X.; Yuan, J.; Tan, X.; Chen, Y. Adherence to Antihypertensive Medications and Stroke Risk: A Dose-Response Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e006371. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.J.; O’Connell, D.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. Ottawa (Canada), Ottawa Health Research Institute. 1999. Available online: http//wwwohrica/programs/clinical_epidemiology/oxfordasp (accessed on 15 July 2021).
- Cramer, J.A.; Roy, A.; Burrell, A.; Fairchild, C.J.; Fuldeore, M.J.; Ollendorf, D.A.; Wong, P.K. Medication compliance and persistence: Terminology and definitions. Value Health J. Int. Soc. Pharm. Outcomes Res. 2008, 11, 44–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrijens, B.; De Geest, S.; Hughes, D.A.; Przemyslaw, K.; Demonceau, J.; Ruppar, T.; Dobbels, F.; Fargher, E.; Morrison, V.; Lewek, P.; et al. A new taxonomy for describing and defining adherence to medications. Br. J. Clin. Pharmacol. 2012, 73, 691–705. [Google Scholar] [CrossRef]
- Hartemink, N.; Boshuizen, H.C.; Nagelkerke, N.J.; Jacobs, M.A.; van Houwelingen, H.C. Combining risk estimates from observational studies with different exposure cutpoints: A meta-analysis on body mass index and diabetes type 2. Am. J. Epidemiol. 2006, 163, 1042–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamling, J.; Lee, P.; Weitkunat, R.; Ambuhl, M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat. Med. 2008, 27, 954–970. [Google Scholar] [CrossRef]
- Greenland, S.; Longnecker, M.P. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am. J. Epidemiol. 1992, 135, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Orsini, N.; Li, R.; Wolk, A.; Khudyakov, P.; Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software. Am. J. Epidemiol. 2012, 175, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Bekkering, G.E.; Harris, R.J.; Thomas, S.; Mayer, A.M.B.; Beynon, R.; Ness, A.R.; Harbord, R.M.; Bain, C.; Smith, G.D.; Sterne, J.A. How much of the data published in observational studies of the association between diet and prostate or bladder cancer is usable for meta-analysis? Am. J. Epidemiol. 2008, 167, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Chang, A.; Ritchey, M.D.; Loustalot, F. Antihypertensive Medication Adherence and Risk of Cardiovascular Disease among Older Adults: A Population-Based Cohort Study. J. Am. Heart Assoc. 2017, 6, e006056. [Google Scholar] [CrossRef]
- Corrao, G.; Rea, F.; Monzio Compagnoni, M.; Merlino, L.; Mancia, G. Protective effects of antihypertensive treatment in patients aged 85 years or older. J. Hypertens. 2017, 35, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Corrao, G.; Parodi, A.; Nicotra, F.; Zambon, A.; Merlino, L.; Cesana, G.; Mancia, G. Better compliance to antihypertensive medications reduces cardiovascular risk. J. Hypertens. 2011, 29, 610–618. [Google Scholar] [CrossRef]
- Ní Chróinín, D.; Asplund, K.; Åsberg, S.; Callaly, E.; Cuadrado-Godia, E.; Díez-Tejedor, E.; Di Napoli, M.; Engelter, S.T.; Furie, K.L.; Giannopoulos, S.; et al. Statin therapy and outcome after ischemic stroke: Systematic review and meta-analysis of observational studies and randomized trials. Stroke 2013, 44, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora Newsome, A.; Casciere, B.C.; Jordan, J.D.; Rhoney, D.H.; Sullivan, K.A.; Morbitzer, K.A.; Moore, J.D.; Durr, E.A. The Role of Statin Therapy in Hemorrhagic Stroke. Pharmacotherapy 2015, 35, 1152–1163. [Google Scholar] [CrossRef]
- Giannopoulos, S.; Katsanos, A.H.; Tsivgoulis, G.; Marshall, R.S. Statins and cerebral hemodynamics. J. Cereb. Blood Flow Metab. J. Int. Soc. Cereb. Blood Flow Metab. 2012, 32, 1973–1976. [Google Scholar] [CrossRef]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Michel, M.C.; Brunner, H.R.; Foster, C.; Huo, Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol. Ther. 2016, 164, 1–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohuet, G.; Struijker-Boudier, H. Mechanisms of target organ damage caused by hypertension: Therapeutic potential. Pharmacol. Ther. 2006, 111, 81–98. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Dormuth, C.R.; Patrick, A.R.; Shrank, W.H.; Wright, J.M.; Glynn, R.J.; Sutherland, J.; Brookhart, M.A. Statin adherence and risk of accidents: A cautionary tale. Circulation 2009, 119, 2051–2057. [Google Scholar] [CrossRef]
- LaFleur, J.; Nelson, R.E.; Sauer, B.C.; Nebeker, J.R. Overestimation of the effects of adherence on outcomes: A case study in healthy user bias and hypertension. Heart 2011, 97, 1862–1869. [Google Scholar] [CrossRef]
- Yeo, S.H.; Toh, M.P.H.S.; Lee, S.H.; Seet, R.C.S.; Wong, L.Y.; Yau, W.P. Impact of medication nonadherence on stroke recurrence and mortality in patients after first-ever ischemic stroke: Insights from registry data in Singapore. Pharmacoepidemiol. Drug Saf. 2020, 29, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Lee, H.C.; Chang, K.C.; Hung, J.W.; Chen, H.M.; Wu, C.Y.; Yang, C.L.; Huang, Y.C.; Wang, H.H. Low persistence of antithrombotic agents is associated with poor outcomes after first-ever acute ischemic stroke. Acta Neurol. Taiwanica 2019, 28, 95–118. [Google Scholar]
- Quagliariello, V.; Berretta, M.; Buccolo, S.; Iovine, M.; Paccone, A.; Cavalcanti, E.; Taibi, R.; Montopoli, M.; Botti, G.; Maurea, N. Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression. Front. Oncol. 2021, 11, 680758. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Hudson, M.; Rahme, E.; Richard, H.; Pilote, L. Comparison of measures of medication persistency using a prescription drug database. Am. Heart J. 2007, 153, 59–65. [Google Scholar] [CrossRef]
- Choudhry, N.K.; Kronish, I.M.; Vongpatanasin, W.; Ferdinand, K.C.; Pavlik, V.N.; Egan, B.M.; Schoenthaler, A.; Houston Miller, N.; Hyman, D.J.; American Heart Association Council on Hypertension; et al. Medication Adherence and Blood Pressure Control: A Scientific Statement From the American Heart Association. Hypertension 2021. [Google Scholar] [CrossRef] [PubMed]
Eligible Studies | Studies | Participants | ||
---|---|---|---|---|
n | % | n | % | |
Total unique Studies | 46 | 100.0 | 4,051,338 | 100.0 |
Cohort | 40 | 87.0 | 3,427,207 | 84.6 |
Nested Case-Control | 6 | 13.0 | 624,131 | 15.4 |
Average Follow-Up (years), (range) | 4.2 | (0.5–11) | - | - |
Participants | ||||
Male (%), (range) | 56 | (1–100) | - | - |
Average Age (years), (range) | 60.1 | ≥18 | - | - |
Location | ||||
Europe | 18 | 39.1 | 1,137,158 | 28.1 |
North America | 14 | 30.4 | 1,442,159 | 35.6 |
Asia | 14 | 30.4 | 1,472,021 | 36.3 |
Baseline Population | ||||
Healthy | 1 | 2.2 | 84,262 | 2.1 |
Hypertensive | 13 | 28.3 | 1,506,239 | 37.2 |
Hypercholesterolemia | 10 | 21.7 | 1,379,902 | 34.1 |
Diabetic | 2 | 4.3 | 95,070 | 2.3 |
Known Prior CVD | 20 | 43.5 | 985,865 | 24.3 |
Medication Group(s) | ||||
Lipid-Lowering Agents | 21 | 45.7 | 2,271,122 | 56.1 |
Antihypertensive | 17 | 37.0 | 1,643,330 | 40.6 |
Antiplatelet Agents | 1 | 2.2 | 7,431 | 0.2 |
Multiple Vascular Agents | 7 | 15.2 | 129,455 | 3.2 |
Adherence Measure | ||||
MPR | 12 | 26.1 | 1,728,753 | 42.7 |
PDC | 31 | 67.4 | 2,226,750 | 55.0 |
Other | 3 | 6.5 | 95,835 | 2.4 |
Prevalence of Good Adherence | ||||
To Any CVD Medication | 31 | 67.4 | 2,419,776 | 59.7 |
Percent | 54.0 | - | - | - |
Outcome Events | ||||
CVEs | 35 | 76.1 | 187,306 | 4.6 |
Stroke | 23 | 50.0 | 51,794 | 1.3 |
All-Cause Mortality Events | 38 | 82.6 | 175,050 | 4.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zheng, G.; Cao, X.; Chang, X.; Zhang, N.; Liang, G.; Wang, A.; Yu, Y.; Yang, Y.; Zhao, Y.; et al. Better Medications Adherence Lowers Cardiovascular Events, Stroke, and All-Cause Mortality Risk: A Dose-Response Meta-Analysis. J. Cardiovasc. Dev. Dis. 2021, 8, 146. https://doi.org/10.3390/jcdd8110146
Liu M, Zheng G, Cao X, Chang X, Zhang N, Liang G, Wang A, Yu Y, Yang Y, Zhao Y, et al. Better Medications Adherence Lowers Cardiovascular Events, Stroke, and All-Cause Mortality Risk: A Dose-Response Meta-Analysis. Journal of Cardiovascular Development and Disease. 2021; 8(11):146. https://doi.org/10.3390/jcdd8110146
Chicago/Turabian StyleLiu, Mengying, Guowei Zheng, Xiting Cao, Xinyu Chang, Ningning Zhang, Ge Liang, Anran Wang, Yan Yu, Yongli Yang, Yang Zhao, and et al. 2021. "Better Medications Adherence Lowers Cardiovascular Events, Stroke, and All-Cause Mortality Risk: A Dose-Response Meta-Analysis" Journal of Cardiovascular Development and Disease 8, no. 11: 146. https://doi.org/10.3390/jcdd8110146
APA StyleLiu, M., Zheng, G., Cao, X., Chang, X., Zhang, N., Liang, G., Wang, A., Yu, Y., Yang, Y., Zhao, Y., Shi, X., Hu, D., & Lu, J. (2021). Better Medications Adherence Lowers Cardiovascular Events, Stroke, and All-Cause Mortality Risk: A Dose-Response Meta-Analysis. Journal of Cardiovascular Development and Disease, 8(11), 146. https://doi.org/10.3390/jcdd8110146