Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Data of Gene Expression Profiles
2.2. Processing of Raw Data and Screening of Differentially Expressed Genes (DEGs)
2.3. Screening of Common Differentially Expressed Genes
2.4. Gene Ontology (GO) Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
2.5. Construction of Protein–Protein Interaction (PPI) Networks and Screening of Hub Genes
2.6. Screening of Potential Pharmacological Targets
2.7. Subgroup Analysis
3. Results
3.1. Screening of Differentially Expressed Genes
3.1.1. Screening of Differentially Expressed Genes in GSE417
3.1.2. Screening of Differentially Expressed Genes in GSE17800
3.1.3. Screening of Common Differentially Expressed Genes
3.2. GO Enrichment and KEGG Pathway Analysis
3.3. PPI Network Analysis and Screening of Hub Genes
3.4. Screening for Potential Pharmacological Targets
3.5. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollack, A.; Kontorovich, A.R.; Fuster, V.; Dec, G.W. Viral myocarditis--diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 2015, 12, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Sole, M.J.; Liu, P. Viral myocarditis: A paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J. Am. Coll. Cardiol. 1993, 22, 99A–105A. [Google Scholar] [CrossRef]
- Schultheiss, H.-P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated cardiomyopathy. Nat. Rev. Dis. Prim. 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Merlo, M.; Cannatà, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 2017, 20, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Yajima, T.; Knowlton, K.U. Viral myocarditis: From the perspective of the virus. Circulation 2009, 119, 2615–2624. [Google Scholar] [CrossRef] [Green Version]
- Kawai, C.; Matsumori, A.; Fujiwara, H. Myocarditis and Dilated Cardiomyopathy. Annu. Rev. Med. 1987, 38, 221–239. [Google Scholar] [CrossRef]
- Reyes, M.P.; Lerner, A.M. Coxsackievirus myocarditis—With special reference to acute and chronic effects. Prog. Cardiovasc. Dis. 1985, 27, 373–394. [Google Scholar] [CrossRef]
- Kereiakes, D.J.; Parmley, W.W. Myocarditis and cardiomyopathy. Am. Heart J. 1984, 108, 1318–1326. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, C.; Lisewski, U.; Wrackmeyer, U.; Radke, M.; Westermann, D.; Sauter, M.; Tschöpe, C.; Poller, W.; Klingel, K.; et al. Cardiac Deletion of the Coxsackievirus-Adenovirus Receptor Abolishes Coxsackievirus B3 Infection and Prevents Myocarditis In Vivo. J. Am. Coll. Cardiol. 2009, 53, 1219–1226. [Google Scholar] [CrossRef] [Green Version]
- Kaya, Z.; Katus, H.A.; Rose, N.R. Cardiac troponins and autoimmunity: Their role in the pathogenesis of myocarditis and of heart failure. Clin. Immunol. 2010, 134, 80–88. [Google Scholar] [CrossRef]
- Wu, R.Z.; Wu, H.P.; Wang, Z.Q.; Rong, X.; Jiang, J.B.; Qiu, H.X.; Chen, Q.; Xiang, R.L. Effects of carvedilol on cardiomyocyte apoptosis in autoimmune myocarditis in mice. Zhonghua Er Ke Za Zhi 2011, 49, 376–380. [Google Scholar] [PubMed]
- Wittchen, F.; Suckau, L.; Witt, H.; Skurk, C.; Lassner, D.; Fechner, H.; Sipo, I.; Ungethüm, U.; Ruiz, P.; Pauschinger, M.; et al. Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. Klin. Wochenschr. 2006, 85, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Ameling, S.; Herda, L.R.; Hammer, E.; Steil, L.; Teumer, A.; Trimpert, C.; Dörr, M.; Kroemer, H.K.; Klingel, K.; Kandolf, R.; et al. Myocardial gene expression profiles and cardiodepressant autoantibodies predict response of patients with dilated cardiomyopathy to immunoadsorption therapy. Eur. Heart J. 2012, 34, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Pauschinger, M.; Doerner, A.; Kuehl, U.; Schwimmbeck, P.L.; Poller, W.; Kandolf, R.; Schultheiss, H.-P. Enteroviral RNA Replication in the Myocardium of Patients With Left Ventricular Dysfunction and Clinically Suspected Myocarditis. Circulation 1999, 99, 889–895, Erratum in: Circulation 2010, 122, e388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, L.T. Myocarditis. N. Engl. J. Med. 2009, 360, 1526–1538. [Google Scholar] [CrossRef] [Green Version]
- Samuels, M.A. The Brain–Heart Connection. Circulation 2007, 116, 77–84. [Google Scholar] [CrossRef]
- Kimura, K.; Ieda, M.; Fukuda, K. Development, Maturation, and Transdifferentiation of Cardiac Sympathetic Nerves. Circ. Res. 2012, 110, 325–336. [Google Scholar] [CrossRef]
- Ohshima, S.; Isobe, S.; Izawa, H.; Nanasato, M.; Ando, A.; Yamada, A.; Yamada, K.; Kato, T.S.; Obata, K.; Noda, A.; et al. Cardiac Sympathetic Dysfunction Correlates With Abnormal Myocardial Contractile Reserve in Dilated Cardiomyopathy Patients. J. Am. Coll. Cardiol. 2005, 46, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Kasama, S.; Toyama, T.; Hatori, T.; Sumino, H.; Kumakura, H.; Takayama, Y.; Ichikawa, S.; Suzuki, T.; Kurabayashi, M. Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur. Heart J. 2007, 28, 989–995. [Google Scholar] [CrossRef]
- Parthenakis, F.I.; Patrianakos, A.; Prassopoulos, V.; Papadimitriou, E.; Nikitovic, D.; Karkavitsas, N.S.; Vardas, P.E. Relation of cardiac sympathetic innervation to proinflammatory cytokine levels in patients with heart failure secondary to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2003, 91, 1190–1194. [Google Scholar] [CrossRef]
- Jeyaraj, S.C.; Unger, N.T.; Chotani, M.A. Rap1 GTPases: An emerging role in the cardiovasculature. Life Sci. 2011, 88, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wei, C.-X.; Shao, L.-Q.; Zhao, M. MiRNA Signaling in Viral Myocarditis Novel and Unique Pathological Features. Acta Cardiol. Sin. 2018, 34, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Yang, Z.; Yang, F.; Wang, J.; Zhuang, Y.; Xu, C.; Zhang, B.; Tian, X.-L.; Liu, D. Suppression of Rap1 Impairs Cardiac Myofibrils and Conduction System in Zebrafish. PLoS ONE 2012, 7, e50960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, Y.; Katoh, M. FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review). Int. J. Mol. Med. 2009, 23, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Vandebroek, A.; Yasui, M. Regulation of AQP4 in the Central Nervous System. Int. J. Mol. Sci. 2020, 21, 1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oklü, R.; Hesketh, R. The latent transforming growth factor beta binding protein (LTBP) family. Biochem. J. 2000, 352, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Andriopoulos, B., Jr.; Corradini, E.; Xia, Y.; Faasse, S.A.; Chen, S.; Grgurevic, L.; Knutson, M.D.; Pietrangelo, A.; Vukicevic, S.; Lin, H.Y.; et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 2009, 41, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Overholtzer, M.; Besser, D.; Levine, A.J. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev. 2002, 16, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, T.; Craig, T.A.; Bowe, A.E.; Vassiliadis, J.; Reczek, D.; Finnegan, R.; De Beur, S.M.J.; Schiavi, S.C.; Kumar, R. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Investig. 2003, 112, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Krinks, M.; Lin, K.; Luyten, F.P.; Moos, M. Frzb, a Secreted Protein Expressed in the Spemann Organizer, Binds and Inhibits Wnt-8. Cell 1997, 88, 757–766. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, H.; Sugimoto, Y.; Sugiyama, Y. ABCG2 Transports Sulfated Conjugates of Steroids and Xenobiotics. J. Biol. Chem. 2003, 278, 22644–22649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.R.; Hewitson, T.D. HBEGF: An EGF-like growth factor with FGF23-like activity? Kidney Int. 2021, 99, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Bilguvar, K.; Tyagi, N.K.; Ozkara, C.; Tuysuz, B.; Bakircioglu, M.; Choi, M.; Delil, S.; Caglayan, A.O.; Baranoski, J.F.; Erturk, O.; et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 3489–3494. [Google Scholar] [CrossRef] [Green Version]
- Polymeropoulos, M.H.; Ide, S.; Soares, M.B.; Lennon, G.G. Sequence Characterization and Genetic Mapping of the Human VSNL1 Gene, a Homologue of the Rat Visinin-like Peptide RNVP1. Genomics 1995, 29, 273–275. [Google Scholar] [CrossRef]
- Polymeropoulos, M.; Rath, D.; Xiao, H.; Merril, C. Dinucleotide repeat polymorphism at the human β1 subunit of the GABAAreceptor gene (GABRB1). Nucleic Acids Res. 1991, 19, 6345. [Google Scholar] [CrossRef] [Green Version]
- Mclean, P.J.; Farb, D.H.; Russek, S.J. Mapping of the α4 subunit gene (GABRA4) to human chromosome 4 defines an α2—α4—β1—γ1 gene cluster: Further evidence that modern GABAA receptor gene clusters are derived from an ancestral cluster. Genomics 1995, 26, 580–586. [Google Scholar] [CrossRef]
- Guo, J.; Hang, P.; Yu, J.; Li, W.; Zhao, X.; Sun, Y.; Fan, Z.; Du, Z. The association between RGS4 and choline in cardiac fibrosis. Cell Commun. Signal. 2021, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Chen, W.; Liu, Y.; Jiang, B.; Yin, L.; Chen, X. LncRNA AC061961.2 overexpression inhibited endoplasmic reticulum stress induced apoptosis in dilated cardiomyopathy rats and cardiomyocytes via activating wnt/β-catenin pathway. J. Recept. Signal Transduct. 2020, 41, 494–503. [Google Scholar] [CrossRef]
- Lu, D.; Bao, D.; Dong, W.; Liu, N.; Zhang, X.; Gao, S.; Ge, W.; Gao, X.; Zhang, L. Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. Lab. Investig. 2015, 96, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Le Dour, C.; Macquart, C.; Sera, F.; Homma, S.; Bonne, G.; Morrow, J.P.; Worman, H.J.; Muchir, A. Decreased WNT/β-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum. Mol. Genet. 2016, 26, 333–343. [Google Scholar] [CrossRef]
- Zhang, X.; Hintze, T.H. Amlodipine releases nitric oxide from canine coronary microvessels: An unexpected mechanism of action of a calcium channel-blocking agent. Circulation 1998, 97, 576–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.Z.; Matsumori, A.; Yamada, T.; Shioi, T.; Okada, I.; Matsui, S.; Sato, Y.; Suzuki, H.; Shiota, K.; Sasayama, S. Beneficial effects of amlodipine in a murine model of congestive heart failure induced by viral myocarditis. A possible mechanism through inhibition of nitric oxide production. Circulation 1997, 95, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.; Seidman, M.; Oudit, G.Y. Critical Role of Extracellular Matrix Remodelling in Patients With Dilated Cardiomyopathy: Lessons From Connective Tissue Disorders. Can. J. Cardiol. 2022, 38, 309–310. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Piao, H.; Li, B.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. Bioinformatics Analysis Reveals MicroRNA-193a-3p Regulates ACTG2 to Control Phenotype Switch in Human Vascular Smooth Muscle Cells. Front. Genet. 2021, 11, 572707. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Yetkin, E. SCN1A Mutation or Cross Talk? The Connection Between the Heart and Brain. Pediatr. Neurol. 2016, 63, e3. [Google Scholar] [CrossRef]
- Monfrini, E.; Straniero, L.; Bonato, S.; Compagnoni, G.M.; Bordoni, A.; Dilena, R.; Rinchetti, P.; Silipigni, R.; Ronchi, D.; Corti, S.; et al. Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Park. Relat. Disord. 2019, 63, 66–72. [Google Scholar] [CrossRef]
- Heissler, S.M.; Selvadurai, J.; Bond, L.M.; Fedorov, R.; Kendrick-Jones, J.; Buss, F.; Manstein, D.J. Kinetic properties and small-molecule inhibition of human myosin-6. FEBS Lett. 2012, 586, 3208–3214. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Chen, X.; Ren, Q.; Yue, L.; Niu, S.; Li, Z.; Zhu, R.; Chen, X.; Jia, Z.; Zhen, R.; et al. Single-cell transcriptomics identifies Col1a1 and Col1a2 as hub genes in obesity-induced cardiac fibrosis. Biochem. Biophys. Res. Commun. 2022, 618, 30–37. [Google Scholar] [CrossRef]
- Sagave, J.F.; Moser, M.; Ehler, E.; Weiskirchen, S.; Stoll, D.; Günther, K.; Büttner, R.; Weiskirchen, R. Targeted disruption of the mouse Csrp2gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure. BMC Dev. Biol. 2008, 8, 80. [Google Scholar] [CrossRef]
Sequence Number of Chip | GSE4172 | GSE17800 |
---|---|---|
Platform | GPL570 | GPL570 |
Disease | VMC | DCM |
Chip provider | Patricia Ruiz Lab of Max Planck Institute for Molecular Genetics, Germany | Funktionelle Genomforschung LAb of Universitätsmedizin Greifswald, Germany |
Address | Ihnestrasse 65, Berlin | Jahnstraße 15a, Greifswald |
Research object | Human | Human |
Experiment type | Expression profiling by array | Expression profiling by array |
Sample type | Myocardial biopsy | Myocardial biopsy |
Biopsy method | EMBs from the right ventricular septum by standard procedure | EMBs in accordance with the Dallas criteria |
Number of chip samples (used/total) | 12/12 | 48/48 |
Number of cases/controls | 8/4 | 40/8 |
Clinical diagnosis | PVB19 infected viral myocarditis | Dilated cardiomyopathy in chronic heart failure |
Age (years) | 52.5 ± 17 | 49 ± 10 |
Genetic DCM | - | None available |
NYHA classification (n) II III | None available | 21 19 |
LVEF (%) | 42 ± 9.9 | 33 ± 6 |
Time of uploading chip | Public on 1 December 2012 | Public on 31 May 2006 |
Gene | Log (Fold Change (FC)) | p-Value | Adjusted p-Value (Adj. p-Value) |
---|---|---|---|
Ribosomal protein S4 Y-linked 1 (RPS4Y1) | 4.64160144 | 0.045674364 | 0.329086230 |
PRKAG2 antisense RNA 1 (PRKAG2-AS1) | 3.30130593 | 5.04 ×10−6 | 0.036385392 |
Long intergenic non-protein coding RNA 619 (LINC00619) | 3.17781081 | 0.001389913 | 0.111583803 |
Lysine demethylase 5D (KDM5D) | 3.07836573 | 0.047057584 | 0.331496365 |
Cytochrome P450 family 7 subfamily A member 1 (CYP7A1) | −2.9602019 | 0.009582648 | 0.190923364 |
Adiponectin, C1Q and collagen domain containing (ADIPOQ) | −2.9003638 | 0.005991097 | 0.163809624 |
Selectin E (SELE) | 2.8820485 | 0.001643719 | 0.116984950 |
Carboxyl ester lipase (CEL) | −2.8475079 | 0.001768902 | 0.116984950 |
Odd-skipped related transcription factor 1 (OSR1) | −2.7789156 | 0.001293961 | 0.110794568 |
Death domain containing 1 (DTHD1) | −2.7152671 | 0.004448966 | 0.150065986 |
Gene | Log [Fold Change (FC)] | p-Value | Adjusted p-Value (Adj. p-Value) |
---|---|---|---|
Natriuretic peptide B (NPPB) | 4.05015683 | 0.000115140 | 0.020903873 |
Natriuretic peptide A (NPPA) | 2.75622823 | 0.000500400 | 0.033619529 |
Secretoglobin family 1D member 2 (SCGB1D2) | −2.57902288 | 6.78 × 10−5 | 0.019568598 |
BRAF-activated non-protein coding RNA (BANCR) | 2.41882011 | 0.010147490 | 0.144758837 |
SH3 domain containing GRB2 like 2 (SH3GL2) | 2.35313533 | 3.26 ×10−5 | 0.015148092 |
Dickkopf WNT signaling pathway inhibitor 2 (DKK2) | 2.19390935 | 0.001508777 | 0.057371767 |
Tryptase alpha/beta 1 (TPSAB1) | 2.16841600 | 2.59 × 10−7 | 0.001867599 |
Tubulin tyrosine ligase like 2 (TTLL2) | −2.08152092 | 0.000291571 | 0.027683044 |
Transmembrane protein with EGF like and two follistatin like domains 2 (TMEFF2) | −2.06265730 | 0.003409397 | 0.08621005 |
Ankyrin repeat domain 33B (ANKRD33B) | 2.04754302 | 1.72 × 10−5 | 0.010465682 |
Gene | GSE4172 | GSE17800 | ||||
---|---|---|---|---|---|---|
LogFC | p-Value | Adj. p-Value | LogFC | p-Value | Adj. p-Value | |
Secretoglobin family 1D member 2S (SCGB1D2) | −1.75498617 | 0.04204305 | 0.31896103 | −2.57902288 | 6.78 × 10−5 | 0.01956859 |
Tubulin tyrosine ligase like 2 (TTLL2) | −1.82673252 | 0.03890554 | 0.30862780 | −2.08152092 | 0.00029157 | 0.02768304 |
Carbohydrate sulfotransferase 9 (CHST9) | −2.19566055 | 0.01626551 | 0.22897841 | −1.63510255 | 0.00283399 | 0.07848970 |
Ankyrin repeat domain 33B (ANKRD33B) | 1.68900071 | 0.00959245 | 0.19092336 | 2.04754302 | 1.72 × 10−5 | 0.01046568 |
Attractin like 1 (ATRNL1) | 1.91097325 | 0.00197345 | 0.11875941 | 1.72884700 | 9.96 × 10−7 | 0.00359621 |
leucine rich repeat transmembrane neuronal 4 (LRRTM4) | −2.39878360 | 0.02226852 | 0.25514298 | −1.22008170 | 0.00191667 | 0.06546316 |
LOC101927256 | −2.29163892 | 0.00192950 | 0.11875941 | −1.30036608 | 0.00737064 | 0.12564681 |
C3orf67 | −2.01670334 | 0.01670482 | 0.23158961 | −1.56047472 | 0.00573556 | 0.11059997 |
Sphingosine-1-phosphate phosphatase 2 (SGPP2) | −2.45705659 | 0.03309688 | 0.29296064 | −0.97853812 | 0.04971122 | 0.29650900 |
AC124997.1 | −1.49892026 | 0.04662649 | 0.33039811 | −1.88192387 | 0.00051151 | 0.03366817 |
Category | ID | Term | Count | p-Value |
---|---|---|---|---|
BP | GO:1903792 | negative regulation of anion transport | 3/48 | 4.99 × 10−5 |
GO:0042220 | response to cocaine | 3/48 | 3.81 × 10−4 | |
GO:0060359 | response to ammonium ion | 4/48 | 3.98 × 10−4 | |
GO:0051956 | negative regulation of amino acid transport | 2/48 | 4.20 × 10−4 | |
GO:0060078 | regulation of postsynaptic membrane potential | 4/48 | 4.56 × 10−4 | |
CC | GO:1902711 | GABA-A receptor complex | 2/51 | 0.001 |
GO:1902710 | GABA receptor complex | 2/51 | 0.001 | |
GO:0097730 | non-motile cilium | 3/51 | 0.007 | |
GO:0034707 | chloride channel complex | 2/51 | 0.007 | |
GO:0034702 | ion channel complex | 4/51 | 0.008 | |
MF | GO:0022851 | GABA-gated chloride ion channel activity | 2/48 | 5.51 × 10−4 |
GO:0042910 | xenobiotic transmembrane transporter activity | 2/48 | 5.51 × 10−4 | |
GO:0004890 | GABA-A receptor activity | 2/48 | 0.001 | |
GO:0099095 | ligand-gated anion channel activity | 2/48 | 0.001 | |
GO:0016917 | GABA receptor activity | 2/48 | 0.002 | |
KEGG | hsa04727 | GABAergic synapse | 3/25 | 0.002 |
hsa05032 | Morphine addiction | 3/25 | 0.003 | |
hsa05033 | Nicotine addiction | 2/25 | 0.007 | |
hsa05219 | Bladder cancer | 2/25 | 0.007 |
Category | ID | Term | Count | p-Value |
---|---|---|---|---|
BP | GO:0055010 | ventricular cardiac muscle tissue morphogenesis | 3/44 | 1.96 × 10−4 |
GO:0003229 | ventricular cardiac muscle tissue development | 3/44 | 2.94 × 10−4 | |
GO:0055008 | cardiac muscle tissue morphogenesis | 3/44 | 5.74 × 10−4 | |
GO:0003208 | cardiac ventricle morphogenesis | 3/44 | 6.77 × 10−4 | |
GO:0048639 | positive regulation of developmental growth | 4/44 | 9.11 × 10−4 | |
MF | GO:0004714 | transmembrane receptor protein tyrosine kinase activity | 2/44 | 0.010 |
GO:0016829 | lyase activity | 3/44 | 0.011 | |
GO:0005518 | collagen binding | 2/44 | 0.012 | |
GO:0019199 | transmembrane receptor protein kinase activity | 2/44 | 0.016 | |
GO:0038024 | cargo receptor activity | 2/44 | 0.019 | |
KEGG | hsa04015 | Rap1 signaling pathway | 4/23 | 0.003 |
Score | Name | Description | Comment |
---|---|---|---|
95.81 | HG-6-64-01 | RAF inhibitor, Abl kinase inhibitor, ephrin receptor inhibitor, KIT inhibitor, MAP kinase inhibitor, MEK inhibitor, p38 MAPK inhibitor, src inhibitor | uncharacterized |
94.20 | selamectin | nematocide | neurotoxicity |
92.97 | tetrindole | monoamine oxidase inhibitor | antidepressant |
92.63 | PD-198306 | MAP kinase inhibitor, MEK inhibitor | uncharacterized |
91.78 | elvitegravir | HIV integrase inhibitor, HIV inhibitor | classic cocktail drug ingredients |
91.60 | amsacrine | topoisomerase inhibitor, DNA intercalating drug | in clinical trial for Acute Myeloid Leukemia |
91.53 | GSK-461364 | PLK inhibitor | in clinical trial for Non-Hodgkin Lymphoma |
91.45 | gefitinib | EGFR inhibitor | first-generation targeted drug for non-small cell lung cancer |
91.13 | amlodipine | breast cancer resistance protein inhibitor, calcium channel blocker, calcium channel inhibitor, L-type calcium channel blocker | classic CCB class antihypertensive drug |
90.41 | AZ-628 | RAF inhibitor | uncharacterized |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xu, M.; Chen, T.; Zhou, Y. Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds. J. Cardiovasc. Dev. Dis. 2022, 9, 353. https://doi.org/10.3390/jcdd9100353
Zhang J, Xu M, Chen T, Zhou Y. Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds. Journal of Cardiovascular Development and Disease. 2022; 9(10):353. https://doi.org/10.3390/jcdd9100353
Chicago/Turabian StyleZhang, Junyi, Mingzhu Xu, Tan Chen, and Yafeng Zhou. 2022. "Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds" Journal of Cardiovascular Development and Disease 9, no. 10: 353. https://doi.org/10.3390/jcdd9100353
APA StyleZhang, J., Xu, M., Chen, T., & Zhou, Y. (2022). Bioinformatics Analysis of Common Differential Genes of Viral Myocarditis and Dilated Cardiomyopathy: Screening for Potential Pharmacological Compounds. Journal of Cardiovascular Development and Disease, 9(10), 353. https://doi.org/10.3390/jcdd9100353