Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease—Results from the KidDiCo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckardt, K.U.; Coresh, J.; Devuyst, O.; Johnson, R.J.; Köttgen, A.; Levey, A.S.; Levin, A. Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 2013, 382, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr. Cardiol. Rev. 2013, 9, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, G.C.; Kanter, M.H.; Li, B.H.; Qian, L.; Reading, S.R.; Harrison, T.N.; Jacobsen, S.J.; Scott, R.D.; Cavendish, J.J.; Lawrence, J.M.; et al. Trends in Acute Myocardial Infarction by Race and Ethnicity. J. Am. Heart Assoc. 2020, 9, e013542. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.L.; Kao, F.C.; Hsu, Y.C.; Lo, Y.Y.; Tu, Y.K. Perioperative acute myocardial infarction rate in chronic renal disease patients undergoing orthopedic surgery: Is there any difference between dialyzed and nondialyzed patients? PLoS ONE 2019, 14, e0210554. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Eisen, A.; Hoshen, M.; Balicer, R.D.; Reges, O.; Rabi, Y.; Leibowitz, M.; Iakobishvili, Z.; Hasdai, D. Estimated Glomerular Filtration Rate Within the Normal or Mildly Impaired Range and Incident Cardiovascular Disease. Am. J. Med. 2015, 128, 1015–1022.e2. [Google Scholar] [CrossRef]
- Rahman, M.; Brown, C.D.; Coresh, J.; Davis, B.R.; Eckfeldt, J.H.; Kopyt, N.; Levey, A.S.; Nwachuku, C.; Pressel, S.; Reisin, E.; et al. The prevalence of reduced glomerular filtration rate in older hypertensive patients and its association with cardiovascular disease: A report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Arch. Intern. Med. 2004, 164, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.X.; Clark, W.F.; Haynes, R.B.; House, A.A. Moderate renal insufficiency and the risk of cardiovascular mortality: Results from the NHANES I. Kidney Int. 2002, 61, 1486–1494. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, G.; Tighiouart, H.; Ibrahim, H.; MacLeod, B.; Salem, D.N.; Griffith, J.L.; Coresh, J.; Levey, A.S.; Sarnak, M.J. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J. Am. Coll. Cardiol. 2003, 41, 47–55. [Google Scholar] [CrossRef]
- Culleton, B.F.; Larson, M.G.; Wilson, P.W.; Evans, J.C.; Parfrey, P.S.; Levy, D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int. 1999, 56, 2214–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataklte, F.; Song, R.J.; Upadhyay, A.; Musa Yola, I.; Vasan, R.S.; Xanthakis, V. Association of Mildly Reduced Kidney Function with Cardiovascular Disease: The Framingham Heart Study. J. Am. Heart Assoc. 2021, 10, e020301. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Carrero, J.J.; Axelsson, J.; Lindholm, B.; Heimburger, O.; Massy, Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: How do new pieces fit into the uremic puzzle? Clin. J. Am. Soc. Nephrol. 2008, 3, 505–521. [Google Scholar] [CrossRef] [Green Version]
- Lambers Heerspink, H.J.; Brinkman, J.W.; Bakker, S.J.; Gansevoort, R.T.; de Zeeuw, D. Update on microalbuminuria as a biomarker in renal and cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 2006, 15, 631–636. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Muntner, P.; Anderson, A.; Charleston, J.; Chen, Z.; Ford, V.; Makos, G.; O’Connor, A.; Perumal, K.; Rahman, M.; Steigerwalt, S.; et al. Hypertension awareness, treatment, and control in adults with CKD: Results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2010, 55, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, P.; Massy, Z.A.; Azizi, M.; Bakris, G.; Ritz, E.; Covic, A.; Goldsmith, D.; Heine, G.H.; Jager, K.J.; Kanbay, M.; et al. The double challenge of resistant hypertension and chronic kidney disease. Lancet 2015, 386, 1588–1598. [Google Scholar] [CrossRef]
- Manjunath, G.; Tighiouart, H.; Coresh, J.; Macleod, B.; Salem, D.N.; Griffith, J.L.; Levey, A.S.; Sarnak, M.J. Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int. 2003, 63, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Matts, J.P.; Karnegis, J.N.; Campos, C.T.; Fitch, L.L.; Johnson, J.W.; Buchwald, H.; POSCH Group. Serum creatinine as an independent predictor of coronary heart disease mortality in normotensive survivors of myocardial infarction. J. Fam. Pract. 1993, 36, 497–503. [Google Scholar]
- Shulman, N.B.; Ford, C.E.; Hall, W.D.; Blaufox, M.D.; Simon, D.; Langford, H.G.; Schneider, K.A. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 1989, 13 (Suppl. S5), I80–I93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.M.; DesMeules, M.; Luo, W.; Duncan, A.S.; Wielgosz, A. Socioeconomic status and cardiovascular disease: Risks and implications for care. Nat. Rev. Cardiol. 2009, 6, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, J.; Tao, S.; Hong, H.G.; Li, Y.; Fu, P. Associations between socioeconomic status and chronic kidney disease: A meta-analysis. J. Epidemiol. Community Health. 2018, 72, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampmann, J.D.; Goya Heaf, J.; Mogensen, C.B.; Mickley, H.; Brandt, F. Kidney Disease Cohort (KidDiCo) of Southern Denmark: Design, Coverage, Generalizability and Implications for Use. Clin. Epidemiol. 2021, 13, 971–980. [Google Scholar] [CrossRef] [PubMed]
- KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. 2012, 2 (Suppl. S1), 1–138.
- Dansk Nefrologisk Selskab Hjemmeside. Available online: www.nephrology.dk (accessed on 10 October 2022).
- Sundbøll, J.; Adelborg, K.; Munch, T.; Frøslev, T.; Sørensen, H.T.; Bøtker, H.E.; Schmidt, M. Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: A validation study. BMJ Open 2016, 6, e012832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, L.C.; Daasnes, C.; Thaulow, I.; Bronnum-Hansen, H. Introduction to Danish (nationwide) registers on health and social issues: Structure, access, legislation, and archiving. Scand. J. Public Health 2011, 39 (Suppl. S7), 12–16. [Google Scholar] [CrossRef]
- Pedersen, C.B. The Danish Civil Registration System. Scand. J. Public Health 2011, 39 (Suppl. S7), 22–25. [Google Scholar] [CrossRef]
- Lesko, C.R.; Lau, B. Bias Due to Confounders for the Exposure-Competing Risk Relationship. Epidemiology 2017, 28, 20–27. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Schiffrin, E.L.; Lipman, M.L.; Mann, J.F. Chronic kidney disease: Effects on the cardiovascular system. Circulation 2007, 116, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wattanakit, K.; Coresh, J.; Muntner, P.; Marsh, J.; Folsom, A.R. Cardiovascular risk among adults with chronic kidney disease, with or without prior myocardial infarction. J. Am. Coll. Cardiol. 2006, 48, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carstensen, B.; Ronn, P.F.; Jorgensen, M.E. Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996–2016. BMJ Open Diabetes Res. Care 2020, 8, e001071. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, J.D.; Nybo, M.; Brandt, F.; Støvring, H.; Damkier, P.; Henriksen, D.P.; Lund, L.C. Statin use in chronic kidney disease patients before and after the KDIGO Lipids in CKD guideline: A population-based interrupted time series analysis. Basic Clin. Pharmacol. Toxicol. 2022, 131, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Ye, F.; Hemmelgarn, B.; Zaidi, D.; Jindal, K.K.; Tonelli, M.A.; Cooper, M.; James, M.T.; Khan, M.; Tinwala, M.M.; et al. Trends in nephrology referral patterns for patients with chronic kidney disease: Retrospective cohort study. PLoS ONE 2022, 17, e0272689. [Google Scholar] [CrossRef]
- Kampmann, J.D.H.J.; Mogensen, C.B.; Mickley, H.; Wolff, D.L.; Brandt, F. Referral rate of chronic kidney disease patients to a nephrologist in the Region of Southern Denmark: Results from KidDiCo. Clin. Kidney J. 2022, 15, 2116–2123. [Google Scholar] [CrossRef]
- Moller-Leimkuhler, A.M. Barriers to help-seeking by men: A review of sociocultural and clinical literature with particular reference to depression. J. Affect. Disord. 2002, 71, 1–9. [Google Scholar] [CrossRef]
- Carrero, J.J.; Hecking, M.; Chesnaye, N.C.; Jager, K.J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
Patients with CKD Stage G3–5 without an Incident AMI during the 5-Year Follow-Up Period | Patients with CKD Stage G3–5 with an Incident AMI during the 5-Year Follow-Up Period | p-Value * | ||
---|---|---|---|---|
N | N = 60,988 | N = 1008 | ||
Sex | male | 23,200 (38.0%) | 512 (50.8%) | <0.001 |
female | 37,788 (62.0%) | 496 (49.2%) | ||
Age (median) | 76 (68–83) | 76 (70–82) | 0.44 | |
CKD stage, according to GFR | G3a | 41,408 (67.9%) | 711 (70.5%) | 0.17 |
G3b | 14,155 (23.2%) | 204 (20.2%) | ||
G4 | 3841 (6.3%) | 65 (6.4%) | ||
G5 | 1584 (2.6%) | 28 (2.8%) | ||
GFR (mean) | 47.2 (11.2) | 47.6 (10.7) | 0.31 | |
CKD stage, according to albuminuria | A1 | 4465 (7.3%) | 115 (11.4%) | <0.001 |
A2 | 987 (1.6%) | 20 (2.0%) | ||
A3 | 154 (0.3%) | 5 (0.5%) | ||
missing | 55,382 (90.8%) | 868 (86.1%) | ||
Diabetes | no | 50,770 (83.2%) | 804 (79.8%) | 0.003 |
yes | 10,218 (16.8%) | 204 (20.2%) | ||
Hypertension | no | 12,397 (20.3%) | 161 (16.0%) | <0.001 |
yes | 48,591 (79.7%) | 847 (84.0%) | ||
Cardiovascular disease (excluding acute myocardial infarction) | no | 46,813 (76.8%) | 757 (75.1%) | 0.22 |
yes | 14,175 (23.2%) | 251 (24.9%) | ||
Educational level | short | 46,347 (76.0%) | 835 (82.8%) | <0.001 |
medium | 6273 (10.3%) | 82 (8.1%) | ||
long | 371 (0.6%) | 6 (0.6%) | ||
missing | 7997 (13.1%) | 85 (8.4%) | ||
Occupational status | active | 4551 (7.5%) | 64 (6.3%) | 0.026 |
not active | 55,803 (91.5%) | 941 (93.4%) | ||
other/missing | 634 (1.0%) | 3 (0.3%) |
Haz. Ratio | p-Value * | [95% Conf. Interval] | |
---|---|---|---|
Sex (female) | 0.567 | <0.001 | 0.50–0.64 |
Age Group | |||
18–59 years of age | 1 | ||
60–79 years of age | 1.659 | 0.002 | 1.21–2.28 |
80 years of age and above | 1.883 | <0.001 | 1.35–2.64 |
CKD stage, according to GFR | |||
G 3a | 1 | ||
G 3b | 0.960 | 0.615 | 0.82–1.13 |
G 4 | 1.402 | 0.010 | 1.08–1.81 |
G 5 | 1.491 | 0.042 | 1.01–2.19 |
CKD stage, according to albuminuria | |||
A1 | 1 | ||
A2 | 0.788 | 0.326 | 0.49–1.27 |
A3 | 1.382 | 0.48 | 0.56–3.39 |
missing | 0.764 | 0.011 | 0.62–0.94 |
Diabetes | |||
no | 1 | ||
yes | 1.084 | 0.344 | 0.92–1.28 |
Hypertension | |||
no | 1 | ||
yes | 1.219 | 0.024 | 1.03–1.45 |
Cardiovascular disease (excluding acute myocardial infarction) | |||
no | 1 | ||
yes | 1.106 | 0.177 | 0.96–1.28 |
Educational level | |||
short | 1 | ||
medium | 0.75 | 0.013 | 0.60–0.94 |
long | 0.84 | 0.671 | 0.38–1.88 |
missing | 0.792 | 0.051 | 0.63–1.00 |
Occupational status | |||
active | 1 | ||
not active | 1.181 | 0.246 | 0.89–1.57 |
other/missing | 0.365 | 0.088 | 0.12–1.16 |
Haz. Ratio | p-Value * | [95% Conf. Interval] | |
---|---|---|---|
Sex (female) | 0.607 | <0.001 | 0.54–0.681 |
Age Group | |||
18–59 years of age | 1 | ||
60–79 years of age | 1.505 | 0.005 | 1.129–2.005 |
80 years of age and above | 1.658 | 0.001 | 1.223–2.247 |
CKD stage according to GFR | |||
G 3a | 1 | ||
G 3b | 0.945 | 0.429 | 0.82–1.088 |
G 4 | 1.162 | 0.227 | 0.911–1.481 |
G 5 | 1.345 | 0.106 | 0.939–1.926 |
CKD stage according to albuminuria | |||
A1 | 1 | ||
A2 | 0.982 | 0.929 | 0.657–1.468 |
A3 | 1.767 | 0.143 | 0.824–3.789 |
missing | 0.797 | 0.019 | 0.658–0.964 |
Diabetes | |||
no | 1 | ||
yes | 1.093 | 0.245 | 0.941–1.27 |
Hypertension | |||
no | 1 | ||
yes | 1.249 | 0.010 | 1.055–1.479 |
Cardiovascular disease (excluding acute myocardial infarction) | |||
no | 1 | ||
yes | 1.077 | 0.264 | 0.946–1.227 |
Acute myocardial infarction prior to CKD | |||
no | 1 | ||
yes | 2.615 | <0.001 | 2.241–3.05 |
Educational level | |||
short | 1 | ||
medium | 0.788 | 0.024 | 0.641–0.968 |
long | 1.004 | 0.992 | 0.499–2.019 |
missing | 0.833 | 0.087 | 0.676–1.027 |
Occupational status | |||
active | 1 | ||
not active | 1.221 | 0.134 | 0.94–1.587 |
other/missing | 0.718 | 0.403 | 0.33–1.561 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampmann, J.D.; Heaf, J.G.; Mogensen, C.B.; Petersen, S.R.; Wolff, D.L.; Mickley, H.; Brandt, F. Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease—Results from the KidDiCo. J. Cardiovasc. Dev. Dis. 2022, 9, 387. https://doi.org/10.3390/jcdd9110387
Kampmann JD, Heaf JG, Mogensen CB, Petersen SR, Wolff DL, Mickley H, Brandt F. Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease—Results from the KidDiCo. Journal of Cardiovascular Development and Disease. 2022; 9(11):387. https://doi.org/10.3390/jcdd9110387
Chicago/Turabian StyleKampmann, Jan Dominik, James Goya Heaf, Christian Backer Mogensen, Sofie Ronja Petersen, Donna Lykke Wolff, Hans Mickley, and Frans Brandt. 2022. "Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease—Results from the KidDiCo" Journal of Cardiovascular Development and Disease 9, no. 11: 387. https://doi.org/10.3390/jcdd9110387
APA StyleKampmann, J. D., Heaf, J. G., Mogensen, C. B., Petersen, S. R., Wolff, D. L., Mickley, H., & Brandt, F. (2022). Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease—Results from the KidDiCo. Journal of Cardiovascular Development and Disease, 9(11), 387. https://doi.org/10.3390/jcdd9110387