Cardiac Biomarkers in Sports Cardiology
Abstract
:1. Introduction
2. Vascular Adaptation in Athletes
3. Early Imaging Biomarker, Stressed Heart Morphology (SHM) as the Conjunctive Point of Determination in Combined Physiologic Exercise and Pathologic Stress Stimuli
4. Cardiac Troponins
5. Myoglobin
6. CK-MB
7. NT-proBNP
8. D-Dimers
9. Other Biomarkers with Potential Use in Athlete Evaluation
Category | Normal range | References |
---|---|---|
Chronic stress and fatigue | [98,100,102] | |
Cortisol | 5–25 mcg/dL | |
Testosterone | 300–100 ng/dL (men) 15–70 ng/dL (women) | |
Markers of overtraining | ||
Lactate | 0.8–1.5 mmol/L | |
CK | 55–170 U/L (men) 30–145 U/L (women) | |
Creatinine | 0.7–1.3 mg/dL | |
Ammonia | 15–45 mcg/dL | |
LDH | 105–333 U/L | |
Uric acid | ||
Urea | 5–7 mmol/L | |
Hypoxanthine | 0.4–1.8 mcmol/L | |
Markers of cardiovascular risk | ||
Homocysteine | 5–15 mcmol/L | |
cTnI | <1.5 ng/mL | |
cTnT | <0.1 ng/mL | |
CK-MB | 10–20 U/L | |
Myoglobin | <110 ng/mL | |
NT-proBNP | <125 pg/ml | |
D-Dimers | <0.5 mcg/mL | |
Markers of oxidative stress | ||
Protein carbonyls | 0.3–0.36 nmol/mg | |
Superoxide dismutase | 165–240 U/mL | |
Glutathione peroxidase | 2.65–4.8 U/mL | |
Markers of inflammation | ||
C-reactive protein | <0.9 mg/dL | |
Interleukin-6 | <16 pg/mL | |
Leukocytes | 4500–11,000/mm3 |
10. The Current Place of Biomarkers in Sports Cardiology
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnett, T.A.; Kelly, A.S.; Young, D.R.; Perry, C.K.; Pratt, C.A.; Edwards, N.M.; Rao, G.; Vos, M.B. Sedentary Behaviors in Today’s Youth: Approaches to the Prevention and Management of Childhood Obesity: A Scientific Statement From the American Heart Association. Circulation 2018, 138, e142–e159. [Google Scholar] [CrossRef] [PubMed]
- Poorolajal, J.; Sahraei, F.; Mohamdadi, Y.; Doosti-Irani, A.; Moradi, L. Behavioral factors influencing childhood obesity: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J. Why Social Relationships Are Important for Physical Health: A Systems Approach to Understanding and Modifying Risk and Protection. Annu. Rev. Psychol. 2018, 69, 437–458. [Google Scholar] [CrossRef]
- Makar, O.; Siabrenko, G. Influence Of Physical Activity On Cardiovascular System and Prevention of Cardiovascular Diseases (Review). Georgian Med. News 2018, 285, 69–74. [Google Scholar]
- Jakovljevic, D.G. Physical activity and cardiovascular aging: Physiological and molecular insights. Exp. Gerontol. 2018, 109, 67–74. [Google Scholar] [CrossRef]
- Franklin, B.A.; Thompson, P.D.; Al-Zaiti, S.S.; Albert, C.M.; Hivert, M.F.; Levine, B.D.; Lobelo, F.; Madan, K.; Sharrief, A.Z.; Eijsvogels, T.M.H. Exercise-related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: Placing the risks into perspective-an update: A scientific statement from the American Heart Association. Circulation 2020, 141, e705–e736. [Google Scholar] [CrossRef] [PubMed]
- Poddębska, I.; Kosielski, P.; Gałczyński, S.; Wranicz, K.; Cygankiewicz, I.; Kaczmarek, K. ECG abnormalities in athletes as compare to healthy subjects. Pol. Merkur. Lekarski 2020, 48, 387–390. [Google Scholar]
- Sharma, S.; Drezner, J.A.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; La Gerche, A.; Ackerman, M.J.; Borjesson, M.; Salerno, J.C.; et al. International recommendations for electrocardiographic interpretation in athletes. Eur. Heart J. 2018, 39, 1466–1480. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Malhotra, A.; Sharma, S. Outcomes of Cardiac Screening in Adolescent Soccer Players. N. Engl. J. Med. 2018, 379, 2084. [Google Scholar] [CrossRef]
- Hevia, A.C.; Fernández, M.M.; Palacio, J.M.; Martín, E.H.; Castro, M.G.; Reguero, J.J. ECG as a part of the preparticipation screening programme: An old and still present international dilemma. Br. J. Sports Med. 2011, 45, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Fudge, J.; Harmon, K.G.; Owens, D.S.; Prutkin, J.M.; Salerno, J.C.; Asif, I.M.; Haruta, A.; Pelto, H.; Rao, A.L.; Toresdahl, B.G.; et al. Cardiovascular screening in adolescents and young adults: A prospective study comparing the Pre-participation Physical Evaluation Monograph 4th Edition and ECG. Br. J. Sports Med. 2014, 48, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Drezner, J.A.; Prutkin, J.M.; Harmon, K.G.; O’Kane, J.W.; Pelto, H.F.; Rao, A.L.; Hassebrock, J.D.; Petek, B.J.; Teteak, C.; Timonen, M.; et al. Cardiovascular screening in college athletes. J. Am. Coll Cardiol. 2015, 65, 2353–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drezner, J.A.; Owens, D.S.; Prutkin, J.M.; Salerno, J.C.; Harmon, K.G.; Prosise, S.; Clark, A.; Asif, I.M. Electrocardiographic Screening in National Collegiate Athletic Association Athletes. Am. J. Cardiol. 2016, 118, 754–759. [Google Scholar] [CrossRef]
- Price, D.E.; McWilliams, A.; Asif, I.M.; Martin, A.; Elliott, S.D.; Dulin, M.; Drezner, J.A. Electrocardiography-inclusive screening strategies for detection of cardiovascular abnormalities in high school athletes. Heart Rhythm 2014, 11, 442–449. [Google Scholar] [CrossRef]
- Rizzo, M.; Spataro, A.; Cecchetelli, C.; Quaranta, F.; Livrieri, S.; Sperandii, F.; Cifra, B.; Borrione, P.; Pigozzi, F. Structural cardiac disease diagnosed by echocardiography in asymptomatic young male soccer players: Implications for pre-participation screening. Br. J. Sports Med. 2012, 46, 371–373. [Google Scholar] [CrossRef]
- Ion, A.; Stafie, C.; Mitu, O.; Ciobanu, C.E.; Halitchi, D.I.; Costache, A.D.; Bobric, C.; Troase, R.; Mitu, I.; Huzum, B.; et al. Biomarkers Utility: At the Borderline between Cardiology and Neurology. J. Cardiovasc. Dev. Dis. 2021, 8, 139. [Google Scholar] [CrossRef]
- Joyner, M.J.; Green, D.J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. J. Physiol. 2009, 587, 5551–5558. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef]
- Majerczak, J.; Grandys, M.; Frołow, M.; Szkutnik, Z.; Zakrzewska, A.; Niżankowski, R.; Duda, K.; Chlopicki, S.; Zoladz, J.A. Age-Dependent Impairment in Endothelial Function and Arterial Stiffness in Former High Class Male Athletes Is No Different to That in Men With No History of Physical Training. J. Am. Heart Assoc. 2019, 8, e012670. [Google Scholar] [CrossRef]
- Yalcin, F.; Garcia, M.J. It Is Time to Focus on “Segmental Remodeling” with Validated Biomarkers as “Stressed Heart Morphology” in Prevention of Heart Failure. J. Clin. Med. 2022, 11, 4180. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Claessen, G.; Van de Bruaene, A.; Pattyn, N.; Van Cleemput, J.; Gewillig, M.; Bogaert, J.; Dymarkowski, S.; Claus, P.; Heidbuchel, H. Cardiac MRI: A new gold standard for ventricular volume quantification during high-intensity exercise. Circ. Cardiovasc. Imaging 2013, 6, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Dweck, M.R.; Prasher, S.; Shah, A.; Humphries, S.E.; Pennell, D.J.; Montgomery, H.E.; Payne, J.R. Left ventricular wall thickness and the presence of asymmetric hypertrophy in healthy young army recruits: Data from the LARGE heart study. Circ. Cardiovasc. Imaging 2013, 6, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grazioli, G.; Usín, D.; Trucco, E.; Sanz, M.; Montserrat, S.; Vidal, B.; Gutierrez, J.; Canal, R.; Brugada, J.; Mont, L.; et al. Differentiating hypertrophic cardiomyopathy from athlete’s heart: An electrocardiographic and echocardiographic approach. J. Electrocardiol. 2016, 49, 539–544. [Google Scholar] [CrossRef]
- Maron, B.J.; Doerer, J.J.; Haas, T.S.; Tierney, D.M.; Mueller, F.O. Sudden deaths in young competitive athletes: Analysis of 1866 deaths in the United States, 1980–2006. Circulation 2009, 119, 1085–1092. [Google Scholar] [CrossRef]
- Maron, B.J.; Shirani, J.; Poliac, L.C.; Mathenge, R.; Roberts, W.C.; Mueller, F.O. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996, 276, 199–204. [Google Scholar] [CrossRef]
- Caselli, S.; Maron, M.S.; Urbano-Moral, J.A.; Pandian, N.G.; Maron, B.J.; Pelliccia, A. Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2014, 114, 1383–1389. [Google Scholar] [CrossRef]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- McLellan, A.J.; Ellims, A.H.; Prabhu, S.; Voskoboinik, A.; Iles, L.M.; Hare, J.L.; Kaye, D.M.; Macciocca, I.; Mariani, J.A.; Kalman, J.M.; et al. Diffuse Ventricular Fibrosis on Cardiac Magnetic Resonance Imaging Associates with Ventricular Tachycardia in Patients With Hypertrophic Cardiomyopathy. J. Cardiovasc. Electrophysiol. 2016, 27, 571–580. [Google Scholar] [CrossRef]
- Briasoulis, A.; Mallikethi-Reddy, S.; Palla, M.; Alesh, I.; Afonso, L. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: A meta-analysis. Heart 2015, 101, 1406–1411. [Google Scholar] [CrossRef]
- O’Hanlon, R.; Grasso, A.; Roughton, M.; Moon, J.C.; Clark, S.; Wage, R.; Webb, J.; Kulkarni, M.; Dawson, D.; Sulaibeekh, L.; et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll Cardiol. 2010, 56, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schelbert, E.B.; Piehler, K.M.; Zareba, K.M.; Moon, J.C.; Ugander, M.; Messroghli, D.R.; Valeti, U.S.; Chang, C.C.; Shroff, S.G.; Diez, J.; et al. Myocardial Fibrosis Quantified by Extracellular Volume Is Associated With Subsequent Hospitalization for Heart Failure, Death, or Both Across the Spectrum of Ejection Fraction and Heart Failure Stage. J. Am. Heart Assoc. 2015, 4, e002613. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, R.; Betocchi, S.; Losi, M.A.; Tocchetti, C.G.; Aversa, M.; Miranda, M.; D’Alessandro, G.; Cacace, A.; Ciampi, Q.; Chiariello, M. Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation 2003, 108, 1455–1460. [Google Scholar] [CrossRef]
- Ho, C.Y.; López, B.; Coelho-Filho, O.R.; Lakdawala, N.K.; Cirino, A.L.; Jarolim, P.; Kwong, R.; González, A.; Colan, S.D.; Seidman, J.G.; et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 2010, 363, 552–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellims, A.H.; Taylor, A.J.; Mariani, J.A.; Ling, L.H.; Iles, L.M.; Maeder, M.T.; Kaye, D.M. Evaluating the utility of circulating biomarkers of collagen synthesis in hypertrophic cardiomyopathy. Circ. Heart Fail 2014, 7, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Kuusisto, J.; Kärjä, V.; Sipola, P.; Kholová, I.; Peuhkurinen, K.; Jääskeläinen, P.; Naukkarinen, A.; Ylä-Herttuala, S.; Punnonen, K.; Laakso, M. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart 2012, 98, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Zen, K.; Irie, H.; Doue, T.; Takamiya, M.; Yamano, T.; Sawada, T.; Azuma, A.; Matsubara, H. Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: Comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int. Heart J. 2005, 46, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Moreno, V.; Hernández-Romero, D.; Vilchez, J.A.; García-Honrubia, A.; Cambronero, F.; Casas, T.; González, J.; Martínez, P.; Climent, V.; de la Morena, G.; et al. Serum levels of high-sensitivity troponin T: A novel marker for cardiac remodeling in hypertrophic cardiomyopathy. J. Card. Fail. 2010, 16, 950–956. [Google Scholar] [CrossRef]
- Fang, L.; Ellims, A.H.; Moore, X.L.; White, D.A.; Taylor, A.J.; Chin-Dusting, J.; Dart, A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 2015, 13, 314. [Google Scholar] [CrossRef]
- Derda, A.A.; Thum, S.; Lorenzen, J.M.; Bavendiek, U.; Heineke, J.; Keyser, B.; Stuhrmann, M.; Givens, R.C.; Kennel, P.J.; Schulze, P.C.; et al. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int. J. Cardiol. 2015, 196, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Roncarati, R.; Viviani Anselmi, C.; Losi, M.A.; Papa, L.; Cavarretta, E.; Da Costa Martins, P.; Contaldi, C.; Saccani Jotti, G.; Franzone, A.; Galastri, L.; et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll Cardiol. 2014, 63, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katrukha, I.A. Human cardiac troponin complex. Structure and functions. Biochemistry 2013, 78, 1447–1465. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, J.; Stienen, G.J.M. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol. Rev. 2019, 99, 381–426. [Google Scholar] [CrossRef] [PubMed]
- Bódi, B.; Oláh, A.; Mártha, L.; Tóth, A.; Radovits, T.; Merkely, B.; Papp, Z. Exercise-induced alterations of myocardial sarcomere dynamics are associated with hypophosphorylation of cardiac troponin I. Rev. Cardiovasc. Med. 2021, 22, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Kosowski, M.; Młynarska, K.; Chmura, J.; Kustrzycka-Kratochwil, D.; Sukiennik-Kujawa, M.; Todd, J.A.; Jankowska, E.A.; Banasiak, W.; Reczuch, K.; Ponikowski, P. Cardiovascular stress biomarker assessment of middle-aged non-athlete marathon runners. Eur. J. Prev. Cardiol. 2019, 26, 318–327. [Google Scholar] [CrossRef]
- Samaha, E.; Avila, A.; Helwani, M.A.; Ben Abdallah, A.; Jaffe, A.S.; Scott, M.G.; Nagele, P. High-Sensitivity Cardiac Troponin After Cardiac Stress Test: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e008626. [Google Scholar] [CrossRef] [Green Version]
- Burtscher, M.; Niebauer, J. The cardiac troponin response during high-intensity interval training. Scand. J. Med. Sci. Sports 2019, 29, 158–159. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Baggish, A.L.; Chung, E.H.; George, K.; Kleiven, Ø.; Mingels, A.M.A.; Ørn, S.; Shave, R.E.; Thompson, P.D.; Eijsvogels, T.M.H. Exercise-Induced Cardiac Troponin Elevations: From Underlying Mechanisms to Clinical Relevance. Circulation 2021, 144, 1955–1972. [Google Scholar] [CrossRef]
- Bjørkavoll-Bergseth, M.; Erevik, C.B.; Kleiven, Ø.; Eijsvogels, T.M.H.; Skadberg, Ø.; Frøysa, V.; Wiktorski, T.; Auestad, B.; Edvardsen, T.; Moberg Aakre, K.; et al. Determinants of Interindividual Variation in Exercise-Induced Cardiac Troponin I Levels. J. Am. Heart Assoc. 2021, 10, e021710. [Google Scholar] [CrossRef]
- Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc. 2011, 43, 1819–1827. [Google Scholar] [CrossRef]
- Marshall, L.; Lee, K.K.; Stewart, S.D.; Wild, A.; Fujisawa, T.; Ferry, A.V.; Stables, C.L.; Lithgow, H.; Chapman, A.R.; Anand, A.; et al. Effect of Exercise Intensity and Duration on Cardiac Troponin Release. Circulation 2020, 141, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.G.; Hull, J.H.; Rogers, J.; Pollock, N.; Dodd, M.; Haines, J.; Harris, S.; Loosemore, M.; Malhotra, A.; Pieles, G.; et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: A practical guide for sport and exercise medicine physicians. Br. J. Sports Med. 2020, 54, 1157–1161. [Google Scholar] [CrossRef]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L.; Asif, I.M.; Borchers, J.; Edenfield, K.M.; et al. SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.W.; Tucker, A.M.; Bloom, O.J.; Green, G.; DiFiori, J.P.; Solomon, G.; Phelan, D.; Kim, J.H.; Meeuwisse, W.; Sills, A.K.; et al. Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening. JAMA Cardiol. 2021, 6, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Małek, Ł.A.; Marczak, M.; Miłosz-Wieczorek, B.; Konopka, M.; Braksator, W.; Drygas, W.; Krzywański, J. Cardiac involvement in consecutive elite athletes recovered from COVID-19: A magnetic resonance study. J. Magn. Reson. Imaging 2021, 53, 1723–1729. [Google Scholar] [CrossRef]
- Chung, M.K.; Zidar, D.A.; Bristow, M.R.; Cameron, S.J.; Chan, T.; Harding, C.V.; Kwon, D.H.; Singh, T.; Tilton, J.C.; Tsai, E.J.; et al. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ. Res. 2021, 128, 1214–1236. [Google Scholar] [CrossRef]
- Hammadah, M.; Kim, J.H.; Tahhan, A.S.; Kindya, B.; Liu, C.; Ko, Y.A.; Al Mheid, I.; Wilmot, K.; Ramadan, R.; Alkhoder, A.; et al. Use of High-Sensitivity Cardiac Troponin for the Exclusion of Inducible Myocardial Ischemia: A Cohort Study. Ann. Intern. Med. 2018, 169, 751–760. [Google Scholar] [CrossRef]
- Walter, J.E.; Honegger, U.; Puelacher, C.; Mueller, D.; Wagener, M.; Schaerli, N.; Strebel, I.; Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; et al. Prospective Validation of a Biomarker-Based Rule Out Strategy for Functionally Relevant Coronary Artery Disease. Clin. Chem. 2018, 64, 386–395. [Google Scholar] [CrossRef]
- Lima, B.B.; Hammadah, M.; Kim, J.H.; Uphoff, I.; Shah, A.; Levantsevych, O.; Almuwaqqat, Z.; Moazzami, K.; Sullivan, S.; Ward, L.; et al. Relation of High-sensitivity Cardiac Troponin I Elevation with Exercise to Major Adverse Cardiovascular Events in Patients with Coronary Artery Disease. Am. J. Cardiol. 2020, 136, 1–8. [Google Scholar] [CrossRef]
- Fan, J.; Ma, J.; Xia, N.; Sun, L.; Li, B.; Liu, H. Clinical Value of Combined Detection of CK-MB, MYO, cTnI and Plasma NT-proBNP in Diagnosis of Acute Myocardial Infarction. Clin. Lab. 2017, 63, 427–433. [Google Scholar] [CrossRef]
- Tota, Ł.; Piotrowska, A.; Pałka, T.; Morawska, M.; Mikuľáková, W.; Mucha, D.; Żmuda-Pałka, M.; Pilch, W. Muscle and intestinal damage in triathletes. PLoS ONE 2019, 14, e0210651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamera, T.; Spieszny, M.; Klocek, T.; Kostrzewa-Nowak, D.; Nowak, R.; Lachowicz, M.; Buryta, R.; Ficek, K.; Eider, J.; Moska, W.; et al. Post-Effort Changes in Activity of Traditional Diagnostic Enzymatic Markers in Football Players’ Blood. J. Med. Biochem. 2015, 34, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Gros, G.; Wittenberg, B.A.; Jue, T. Myoglobin’s old and new clothes: From molecular structure to function in living cells. J. Exp. Biol. 2010, 213, 2713–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokokawa, T.; Hashimoto, T.; Iwanaka, N. Caffeine increases myoglobin expression via the cyclic AMP pathway in L6 myotubes. Physiol. Rep. 2021, 9, e14869. [Google Scholar] [CrossRef]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- Nieman, D.C.; Zwetsloot, K.A.; Simonson, A.J.; Hoyle, A.T.; Wang, X.; Nelson, H.K.; Lefranc-Millot, C.; Guérin-Deremaux, L. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients 2020, 12, 2382. [Google Scholar] [CrossRef]
- Lam, F.C.; Khan, T.M.; Faidah, H.; Haseeb, A.; Khan, A.H. Effectiveness of whey protein supplements on the serum levels of amino acid, creatinine kinase and myoglobin of athletes: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 130. [Google Scholar] [CrossRef]
- Tota, Ł.M.; Wiecha, S.S. Biochemical profile in mixed martial arts athletes. PeerJ 2022, 10, e12708. [Google Scholar] [CrossRef]
- Maenhout, T.M.; Vermassen, T.; Dalewyn, L.; Buyzere, M.L.; Delanghe, J.R. Exercise Induced Myoglobinuria is Determined by Haptoglobin Polymorphism. Clin. Lab. 2021, 67, 1105–1109. [Google Scholar] [CrossRef]
- Bjørnsen, T.; Wernbom, M.; Paulsen, G.; Berntsen, S.; Brankovic, R.; Stålesen, H.; Sundnes, J.; Raastad, T. Frequent blood flow restricted training not to failure and to failure induces similar gains in myonuclei and muscle mass. Scand. J. Med. Sci. Sports 2021, 31, 1420–1439. [Google Scholar] [CrossRef]
- Safdar, B.; Bezek, S.K.; Sinusas, A.J.; Russell, R.R.; Klein, M.R.; Dziura, J.D.; D’Onofrio, G. Elevated CK-MB with a normal troponin does not predict 30-day adverse cardiac events in emergency department chest pain observation unit patients. Crit. Pathw. Cardiol. 2014, 13, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Symanski, J.D.; McMurray, R.G.; Silverman, L.M.; Smith, B.W.; Siegel, A.J. Serum creatine kinase and CK-MB isoenzyme responses to acute and prolonged swimming in trained athletes. Clin. Chim. Acta 1983, 129, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, P.; Kala, R.; Rehunen, S. CK and CK-MB in skeletal muscle of athletes and in serum after thoracic contusion in sport. J. Sports Med. Phys. Fit. 1984, 24, 21–25. [Google Scholar]
- Jaffe, A.S.; Garfinkel, B.T.; Ritter, C.S.; Sobel, B.E. Plasma MB creatine kinase after vigorous exercise in professional athletes. Am. J. Cardiol. 1984, 53, 856–858. [Google Scholar] [CrossRef] [PubMed]
- Apple, F.S.; Tesch, P.A. CK and LD isozymes in human single muscle fibers in trained athletes. J. Appl. Physiol. 1989, 66, 2717–2720. [Google Scholar] [CrossRef]
- Sahadeo, P.A.; Dym, A.A.; Berry, L.B.; Bahar, P.; Singla, A.; Cheta, M.; Bhansali, R.; LaVine, S.; Laser, J.; Richman, M. The Best of Both Worlds: Eliminating Creatine Kinase-Muscle/Brain (CK-MB) Testing in the Emergency Department Leads to Lower Costs Without Missed Clinical Diagnoses. Cureus 2021, 13, e15150. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Li, R.; Yang, F.Y.; Xi, L. Natriuretic peptide family as diagnostic/prognostic biomarker and treatment modality in management of adult and geriatric patients with heart failure: Remaining issues and challenges. J. Geriatr. Cardiol. 2018, 15, 540–546. [Google Scholar]
- Vassalle, C.; Masotti, S.; Lubrano, V.; Basta, G.; Prontera, C.; Di Cecco, P.; Del Turco, S.; Sabatino, L.; Pingitore, A. Traditional and new candidate cardiac biomarkers assessed before, early, and late after half marathon in trained subjects. Eur. J. Appl. Physiol. 2018, 118, 411–417. [Google Scholar] [CrossRef]
- Roca, E.; Nescolarde, L.; Lupon, J.; Barallat, J.; Januzzi, J.L.; Liu, P.; Cruz Pastor, M.; Bayes-Genis, A. The dynamics of cardiovascular biomarkers in non-elite marathon runners. J. Cardiovasc. Transl. Res. 2017, 10, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Cocking, S.; Landman, T.; Benson, M.; Lord, R.; Jones, H.; Gaze, D.; Thijssen, D.H.J.; George, K. The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise. Scand. J. Med. Sci. Sports 2017, 27, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Pearson, M.J.; King, N.; Smart, N.A. Effect of exercise therapy on established and emerging circulating biomarkers in patients with heart failure: A systematic review and metaanalysis. Open Heart 2018, 5, e000819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limkakeng, A.T.; Leahy, J.C.; Griffin, S.M.; Lokhnygina, Y.; Jaffa, E.; Christenson, R.H.; Newby, L.K. Provocative biomarker stress test: Stress-delta N-terminal pro-B type natriuretic peptide. Open Heart 2018, 5, e000847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrone, M.A.; Macrini, M.; Maregnani, A.; Ammirabile, M.; Clerico, A.; Bernardini, S.; Romeo, F. The effects of a 50 km ultramarathon race on high sensitivity cardiac troponin I and NT-proBNP in highly trained athletes. Minerva Cardioangiol. 2020, 68, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Lippi, G.; Susta, D.; Barassi, A.; D’Eril, G.M.; Dogliotti, G.; Corsi, M.M. NT-proBNP concentrations in mountain marathoners. J. Strength Cond. Res. 2010, 24, 1369–1372. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; D’Eril, G.M.; Barassi, A.; Lippi, G. N-terminal proB-type natriuretic peptide (NT-proBNP) concentrations in elite rugby players at rest and after active and passive recovery following strenuous training sessions. Clin. Chem. Lab. Med. 2008, 46, 247–249. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, A.; Lewis, J.G.; Gill, N.; Draper, N.; Gieseg, S.P. No relationship exists between urinary NT-proBNP and GPS technology in professional rugby union. J. Sci. Med. Sport 2017, 20, 790–794. [Google Scholar] [CrossRef]
- Scharhag, J.; Meyer, T.; Auracher, M.; Müller, M.; Herrmann, M.; Gabriel, H.; Herrmann, W.; Kindermann, W. Exercise-induced increases in NT-proBNP are not related to the exercise-induced immune response. Br. J. Sports Med. 2008, 42, 383–385. [Google Scholar] [CrossRef]
- King, G.; Almuntaser, I.; Murphy, R.T.; La Gerche, A.; Mahoney, N.; Bennet, K.; Clarke, J.; Brown, A. Reduced right ventricular myocardial strain in the elite athlete may not be a consequence of myocardial damage. “Cream masquerades as skimmed milk”. Echocardiography 2013, 30, 929–935. [Google Scholar] [CrossRef]
- Jin, H.; Liu, Y.; Schweikert, B.; Hahman, H.; Wang, L.; Imhof, A.; Muche, R.; König, W.; Steinacker, J.M. Serial Changes in Exercise Capacity, NT-proBNP, and Adiponectin in Patients with Acute Coronary Syndrome before and after Phase II Rehabilitation as well as at the 12-Month Follow-Up. Cardiol. Res. Pract. 2022, 2022, 6538296. [Google Scholar] [CrossRef]
- Koch, V.; Biener, M.; Müller-Hennessen, M.; Vafaie, M.; Staudacher, I.; Katus, H.A.; Giannitsis, E. Diagnostic performance of D-dimer in predicting venous thromboembolism and acute aortic dissection. Eur. Heart J. Acute Cardiovasc. Care 2020, 10, 559–566. [Google Scholar] [CrossRef]
- Almorad, A.; Ohanyan, A.; Pintea Bentea, G.; Wielandts, J.Y.; El Haddad, M.; Lycke, M.; O’Neill, L.; Morissens, M.; De Keyzer, E.; Nguyen, T.; et al. D-dimer blood concentrations to exclude left atrial thrombus in patients with atrial fibrillation. Heart 2021, 107, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.J.; Maier, C.L.; Duncan, A.; Guarner, J. Assessment of Coagulation and Hemostasis Biomarkers in a Subset of Patients With Chronic Cardiovascular Disease. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211032292. [Google Scholar] [CrossRef] [PubMed]
- Ferenchick, G.S.; Hirokawa, S.; Mammen, E.F.; Schwartz, K.A. Anabolic-androgenic steroid abuse in weight lifters: Evidence for activation of the hemostatic system. Am. J. Hematol. 1995, 49, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.S.; Goldfarb, A.H.; Hegde, S. Clotting and fibrinolytic activity change during the 1 h after a submaximal run. Med. Sci. Sports Exerc. 2001, 33, 887–892. [Google Scholar] [CrossRef]
- Weiss, C.; Egermann, M.; Bärtsch, P. Exercise-induced activation of coagulation in subjects with activated protein C resistance. Blood Coagul. Fibrinolysis 2004, 15, 317–321. [Google Scholar] [CrossRef]
- Korsten-Reck, U.; Winterer, J.; König, D.; Dickhuth, H.H. Pulmonary embolism as a cause of a reduced performance capacity of endurance trained men—Report of 2 cases. Dtsch. Med. Wochenschr. 2010, 135, 1596–1600. [Google Scholar] [CrossRef]
- Radišić Biljak, V.; Vidranski, V.; Ružić, L.; Simundic, A.M.; Vidranski, T. Women in sports: The applicability of common national reference intervals for inflammatory and coagulation biomarkers (HemSter Study). Biochem. Med. 2021, 31, 010702. [Google Scholar] [CrossRef]
- Palacios, G.; Pedrero-Chamizo, R.; Palacios, N.; Maroto-Sánchez, B.; Aznar, S.; González-Gross, M. Biomarkers of physical activity and exercise. Nutr. Hosp. 2015, 31 (Suppl. 3), 237–244. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, J.; Krasińska, B.; Kusy, K. Hypoxanthine as a predictor of performance in highly trained athletes. Int. J. Sports Med. 2013, 34, 1079–1086. [Google Scholar] [CrossRef]
- Hira, H.S.; Samal, P.; Kaur, A.; Kapoor, S. Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann. Saudi Med. 2014, 34, 308–313. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Kusy, K.; Słomińska, E.; Krasiński, Z.; Zieliński, J. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status. J. Strength Cond. Res. 2020, 34, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ali, Z. Normal Ranges for Acute Phase Reactants (Interleukin-6, Tumour Necrosis Factor-alpha and C-reactive Protein) in Umbilical Cord Blood of Healthy Term Neonates at the Mount Hope Women’s Hospital, Trinidad. West Indian Med. J. 2014, 63, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, B.; Izzo, V.; Terracciano, D.; Ranieri, A.; Mazzaccara, C.; Fimiani, F.; Cesaro, A.; Gentile, L.; Leggiero, E.; Pero, R.; et al. Laboratory medicine: Health evaluation in elite athletes. Clin. Chem. Lab. Med. 2019, 57, 1450–1473. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, A.; Xi, L. Utility of cardiac biomarkers in sports medicine: Focusing on troponin, natriuretic peptides, and hypoxanthine. Sports Med. Health Sci. 2020, 2, 65–71. [Google Scholar] [CrossRef]
- Vilela, E.M.; Bettencourt-Silva, R.; Nunes, J.P.; Ribeiro, V.G. BNP and NT-proBNP elevation after running--a systematic review. Acta Cardiol. 2015, 70, 501–509. [Google Scholar] [CrossRef]
- Sedaghat-Hamedani, F.; Kayvanpour, E.; Frankenstein, L.; Mereles, D.; Amr, A.; Buss, S.; Keller, A.; Giannitsis, E.; Jensen, K.; Katus, H.A.; et al. Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury—A metaanalysis of 45 studies. Clin. Chem. 2015, 61, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Garbutt, G.; Lopes, P.; Tunstall Pedoe, D. Effects of prolonged strenuous exercise (marathon running) on biochemical and haematological markers used in the investigation of patients in the emergency department. Br. J. Sports Med. 2004, 38, 292–294. [Google Scholar] [CrossRef] [Green Version]
- Costache, A.D.; Roca, M.; Honceriu, C.; Costache, I.I.; Leon-Constantin, M.M.; Mitu, O.; Miftode, R.Ș.; Maștaleru, A.; Iliescu-Halițchi, D.; Halițchi-Iliescu, C.O.; et al. Cardiopulmonary Exercise Testing and Cardiac Biomarker Measurements in Young Football Players: A Pilot Study. J. Clin. Med. 2022, 11, 2772. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Azizi, M.; Samadi, A.; Talebi, N.; Gatterer, H.; Burtscher, M. Impact of a Soccer Game on Cardiac Biomarkers in Adolescent Players. Pediatr. Exerc. Sci. 2018, 30, 90–95. [Google Scholar] [CrossRef]
- Joo, C.H. Development of a non-damaging high-intensity intermittent running protocol. J. Exerc. Rehabil. 2015, 11, 112–118. [Google Scholar] [CrossRef]
- Radzimiński, Ł.; Jastrzębski, Z.; López-Sánchez, G.F.; Szwarc, A.; Duda, H.; Stuła, A.; Paszulewicz, J.; Dragos, P. Relationships between Training Loads and Selected Blood Parameters in Professional Soccer Players during a 12-Day Sports Camp. Int. J. Environ. Res. Public Health 2020, 17, 8580. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Kwak, Y.S. Changes of cardiac biomarkers after ultradistance and standard-distance triathlon. J. Exerc. Rehabil. 2019, 15, 254–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakir, E.; Senel, O.; Arslanoglu, E. The Effect of Cold Water Immersion on Cardiac Troponin T and Myoglobin Levels. Neuro Endocrinol. Lett. 2019, 40, 22–28. [Google Scholar] [PubMed]
- Costache, A.D.; Costache, I.I.; Miftode, R.Ș.; Stafie, C.S.; Leon-Constantin, M.M.; Roca, M.; Drugescu, A.; Popa, D.M.; Mitu, O.; Mitu, I.; et al. Beyond the Finish Line: The Impact and Dynamics of Biomarkers in Physical Exercise-A Narrative Review. J. Clin. Med. 2021, 10, 4978. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, J.; Kong, X.; Wang, S.; Meng, L.; Wang, Y. The effects of CPET-guided cardiac rehabilitation on the cardiopulmonary function, the exercise endurance, and the NT-proBNP and hscTnT levels in CHF patients. Am. J. Transl. Res. 2021, 13, 7104–7114. [Google Scholar]
- Banfi, G.; Melegati, G.; Barassi, A.; d’Eril, G.M. Effects of the whole-body cryotherapy on NTproBNP, hsCRP and troponin I in athletes. J. Sci. Med. Sport 2009, 12, 609–610. [Google Scholar] [CrossRef]
Phenocopy Condition | References |
---|---|
AMPK mediated glycogen storage | [28] |
Amyloidosis | |
Anderson–Fabry disease | |
Danon disease | |
Friedreich ataxia | |
Kearns–Sayre syndrome | |
Myotonic dystrophy | |
Neimann–Pick disease | |
Noonan/LEOPARD syndromes (Rasopathies) | |
Pompe disease | |
Refsum disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costache, A.-D.; Leon-Constantin, M.-M.; Roca, M.; Maștaleru, A.; Anghel, R.-C.; Zota, I.-M.; Drugescu, A.; Costache, I.-I.; Chetran, A.; Moisă, Ș.-M.; et al. Cardiac Biomarkers in Sports Cardiology. J. Cardiovasc. Dev. Dis. 2022, 9, 453. https://doi.org/10.3390/jcdd9120453
Costache A-D, Leon-Constantin M-M, Roca M, Maștaleru A, Anghel R-C, Zota I-M, Drugescu A, Costache I-I, Chetran A, Moisă Ș-M, et al. Cardiac Biomarkers in Sports Cardiology. Journal of Cardiovascular Development and Disease. 2022; 9(12):453. https://doi.org/10.3390/jcdd9120453
Chicago/Turabian StyleCostache, Alexandru-Dan, Maria-Magdalena Leon-Constantin, Mihai Roca, Alexandra Maștaleru, Răzvan-Constantin Anghel, Ioana-Mădălina Zota, Andrei Drugescu, Irina-Iuliana Costache, Adriana Chetran, Ștefana-Maria Moisă, and et al. 2022. "Cardiac Biomarkers in Sports Cardiology" Journal of Cardiovascular Development and Disease 9, no. 12: 453. https://doi.org/10.3390/jcdd9120453
APA StyleCostache, A. -D., Leon-Constantin, M. -M., Roca, M., Maștaleru, A., Anghel, R. -C., Zota, I. -M., Drugescu, A., Costache, I. -I., Chetran, A., Moisă, Ș. -M., Huzum, B., Mitu, O., Cumpăt, C., Honceriu, C., & Mitu, F. (2022). Cardiac Biomarkers in Sports Cardiology. Journal of Cardiovascular Development and Disease, 9(12), 453. https://doi.org/10.3390/jcdd9120453