Enhanced Detection of Cardiac Surgery-Associated Acute Kidney Injury by a Composite Biomarker Panel in Patients with Normal Preoperative Kidney Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiac Procedure Protocol
2.3. Blood Samples Collection
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Neutrophil Gelatinase-Associated Lipocalin
4.2. Cystatin C
4.3. Creatinine
4.4. Combined Model
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conlon, P.J.; Stafford-Smith, M.; White, W.D.; Newman, M.F.; King, S.; Winn, M.P.; Landolfo, K. Acute Renal Failure Following Cardiac Surgery. Nephrol. Dial. Transplant. 1999, 14, 1158–1162. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10344355 (accessed on 17 October 2018). [CrossRef] [PubMed] [Green Version]
- Hobson, C.E.; Yavas, S.; Segal, M.S.; Schold, J.D.; Tribble, C.G.; Layon, A.J.; Bihorac, A. Acute Kidney Injury Is Associated With Increased Long-Term Mortality after Cardiothoracic Surgery. Circulation 2009, 119, 2444–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.; Gammelager, H.; Mikkelsen, M.; Hjortdal, V.; Layton, J.; Johnsen, S.; Christiansen, C. Post-operative acute kidney injury and five-year risk of death, myocardial infarction, and stroke among elective cardiac surgical patients: A cohort study. Crit. Care. 2013, 17, R292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huen, S.C.; Parikh, C.R. Predicting Acute Kidney Injury after Cardiac Surgery: A Systematic Review. Ann. Thorac. Surg. 2012, 93, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term Risk of Mortality and Other Adverse Outcomes after Acute Kidney Injury: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2009, 53, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuguchi, K.A.; Huang, C.-C.; Shempp, I.; Wang, J.; Shekar, P.; Frendl, G. Predicting kidney disease progression in patients with acute kidney injury after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 155, 2455–2463.e5. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute Dialysis Quality Initiative workgroup, Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care. 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadim, M.K.; Forni, L.G.; Bihorac, A.; Hobson, C.; Koyner, J.L.; Shaw, A.; Arnaoutakis, G.J.; Ding, X.; Engelman, D.T.; Gasparovic, H.; et al. Cardiac and Vascular Surgery–Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. J. Am. Heart Assoc. 2018, 7, e008834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, F.; Zibert, J.; Bahovec, A.; Pollari, F.; Sirch, J.; Fittkau, M.; Bertsch, T.; Czerny, M.; Santarpino, G.; Fischlein, T.; et al. Improved creatinine-based early detection of acute kidney injury after cardiac surgery, Interact. Cardiovasc. Thorac. Surg. 2021, 33, 19–26. [Google Scholar] [CrossRef]
- Kalisnik, J.M.; Bauer, A.; Vogt, F.A.; Stickl, F.J.; Zibert, J.; Fittkau, M.; Bertsch, T.; Kounev, S.; Fischlein, T. Artificial intelligence-based early detection of acute kidney injury after cardiac surgery. Eur. J. Cardio-Thoracic Surg. 2022, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Luo, Q.; Wang, L.; Han, L. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: A meta-analysis. Eur. J. Cardio-Thoracic Surg. 2016, 49, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Doi, K.; Urata, M.; Katagiri, D.; Inamori, M.; Murata, S.; Hisagi, M.; Ono, M.; Matsubara, T.; Ishii, T.; Yahagi, N.; et al. Plasma neutrophil gelatinase-associated lipocalin in acute kidney injury superimposed on chronic kidney disease after cardiac surgery: A multicenter prospective study. Crit. Care. 2013, 17, R270. [Google Scholar] [CrossRef] [Green Version]
- Kališnik, J.M.; Hrovat, E.; Hrastovec, A.; Žibert, J.; Jerin, A.; Skitek, M.; Santarpino, G.; Klokocovnik, T. Creatinine, Neutrophil Gelatinase-Associated Lipocalin, and Cystatin C in Determining Acute Kidney Injury after Heart Operations Using Cardiopulmonary Bypass. Artif. Organs. 2017, 41, 481–489. [Google Scholar] [CrossRef]
- Svensson, A.S.; Kovesdy, C.P.; Kvitting, J.-P.E.; Rosén, M.; Cederholm, I.; Szabó, Z. Comparison of serum cystatin C and creatinine changes after cardiopulmonary bypass in patients with normal preoperative kidney function. Int. Urol. Nephrol. 2013, 45, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Kidher, E.; Harling, L.; Ashrafian, H.; Naase, H.; Chukwuemeka, A.; Anderson, J.; Francis, D.P.; Athanasiou, T. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J. Cardiothorac. Surg. 2014, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Kalisnik, J.M.; Fischlein, T.; Santarpino, G. Cardiac surgery–associated neutrophil gelatinase–associated lipocalin score for postoperative acute kidney injury: What is the clinical implication? J. Thorac. Cardiovasc. Surg. 2017, 154, 938. [Google Scholar] [CrossRef] [Green Version]
- Meersch, M.; Schmidt, C.; Hoffmeier, A.; van Aken, H.; Wempe, C.; Gerss, J.; Zarbock, A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med. 2017, 43, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Luckraz, H.; Giri, R.; Wrigley, B.; Nagarajan, K.; Senanayake, E.; Sharman, E.; Beare, L.; Nevill, A. Reduction in acute kidney injury post cardiac surgery using balanced forced diuresis: A randomized, controlled trial. Eur. J. Cardiothorac. Surg. 2021, 59, 562. [Google Scholar] [CrossRef]
- Husain-Syed, F.; Ferrari, F.; Sharma, A.; Danesi, T.H.; Bezerra, P.; Lopez-Giacoman, S.; Samoni, S.; de Cal, M.; Corradi, V.; Virzì, G.M.; et al. Preoperative Renal Functional Reserve Predicts Risk of Acute Kidney Injury after Cardiac Operation. Ann. Thorac. Surg. 2018, 105, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Haase-Fielitz, A.; Haase, M.; Devarajan, P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: A critical evaluation of current status. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2014, 51, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Haase-Fielitz, A.; Bellomo, R.; Devarajan, P.; Story, D.; Matalanis, G.; Dragun, D.; Haase, M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—A prospective cohort study. Crit. Care Med. 2009, 37, 553–560. [Google Scholar] [CrossRef]
- Parikh, C.R.; Devarajan, P.; Zappitelli, M.; Sint, K.; Thiessen-Philbrook, H.; Li, S.; Kim, R.W.; Koyner, J.L.; Coca, S.G.; Edelstein, C.L.; et al. TRIBE-AKI Consortium, Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Pediatric Cardiac Surgery. J. Am. Soc. Nephrol. 2011, 22, 1737–1747. [Google Scholar] [CrossRef] [Green Version]
- de Geus, H.R.H.; Ronco, C.; Haase, M.; Jacob, L.; Lewington, A.; Vincent, J.-L. The cardiac surgery–associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J. Thorac. Cardiovasc. Surg. 2016, 151, 1476–1481. [Google Scholar] [CrossRef] [Green Version]
- Kiessling, A.-H.; Dietz, J.; Reyher, C.; Stock, U.A.; Beiras-Fernandez, A.; Moritz, A. Early postoperative serum cystatin C predicts severe acute kidney injury following cardiac surgery: A post-hoc analysis of a randomized controlled trial. J. Cardiothorac. Surg. 2014, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lu, B.; Sheng, X.; Jin, N. Cystatin C in Prediction of Acute Kidney Injury: A Systemic Review and Meta-analysis. Am. J. Kidney Dis. 2011, 58, 356–365. [Google Scholar] [CrossRef]
- McIlroy, D.R.; Farkas, D.; Matto, M.; Lee, H.T. Neutrophil Gelatinase–Associated Lipocalin Combined With Delta Serum Creatinine Provides Early Risk Stratification for Adverse Outcomes after Cardiac Surgery. Crit. Care Med. 2015, 43, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, X.; Xie, B.; Huang, R.; Yan, Y.; Liu, S.; Zhu, M.; Lu, R.; Qian, J.; Ni, Z.; et al. Early serum cystatin C-enhanced risk prediction for acute kidney injury post cardiac surgery: A prospective, observational, cohort study. Biomarkers 2019, 25, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Bellomo, R.; Devarajan, P.; Ma, Q.; Bennett, M.R.; Möckel, M.; Matalanis, G.; Dragun, D.; Haase-Fielitz, A. Novel Biomarkers Early Predict the Severity of Acute Kidney Injury after Cardiac Surgery in Adults. Ann. Thorac. Surg. 2009, 88, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.K.; Wong, H.R.; Krawczeski, C.D.; Wheeler, D.S.; Manning, P.B.; Chawla, L.S.; Devarajan, P.; Goldstein, S.L. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J. Am. Coll. Cardiol. 2014, 64, 2753–2762. [Google Scholar] [CrossRef] [Green Version]
- de Loor, J.; Herck, I.; Francois, K.; van Wesemael, A.; Nuytinck, L.; Meyer, E.; Hoste, E.A.J. Diagnosis of cardiac surgery-associated acute kidney injury: Differential roles of creatinine, chitinase 3-like protein 1 and neutrophil gelatinase-associated lipocalin: A prospective cohort study. Ann. Intensive Care 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Neyra, J.A.; Hu, M.C.; Minhajuddin, A.; Nelson, G.E.; Ahsan, S.A.; Toto, R.D.; Jessen, M.E.; Moe, O.W.; Fox, A.A. Kidney Tubular Damage and Functional Biomarkers in Acute Kidney Injury Following Cardiac Surgery. Kidney Int. Rep. 2019, 4, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Perrotti, A.; Miltgen, G.; Chevet-Noel, A.; Durst, C.; Vernerey, D.; Bardonnet, K.; Davani, S.; Chocron, S. Neutrophil Gelatinase-Associated Lipocalin as Early Predictor of Acute Kidney Injury after Cardiac Surgery in Adults With Chronic Kidney Failure. Ann. Thorac. Surg. 2015, 99, 864–869. [Google Scholar] [CrossRef]
Non-AKI | AKI | p-Value | |
---|---|---|---|
n = 68 | n = 51 | ||
Demographic and preoperative characteristics | |||
Age (years) | 72.5 [62.9;79.0] | 75.4 [67.5;81.3] | 0.080 |
Male gender, n (%) | 44 (64.7%) | 31 (60.8%) | 0.805 |
BMI (kg/m2) | 27.0 [23.9;30.0] | 27.8 [24.7;30.3] | 0.309 |
Diabetes mellitus (non/oral/insulin) | 53/11/4 | 31/13/7 | 0.109 |
Arterial hypertension, n (%) | 53 (77.9%) | 44 (86.3%) | 0.357 |
Hypercholesterolemia, n (%) | 44 (64.7%) | 29 (56.9%) | 0.497 |
Left ventricular EF (%) | 60.0 [55.0;65.0] | 60.0 [55.0;61.5] | 0.238 |
ACEI or ARB | 41(60.3%) | 31(60.8%) | 1.000 |
Preoperative creatinine (µmol/L) | 80.0 [67.8;90.0] | 69.5 [54.8;90.8] | 0.085 |
Preoperative eGFR [mL/min/1.73 m2] | 101 [74.6;115] | 84.6 [68.5;99.9] | 0.193 |
Intraoperative and postoperative characteristics | |||
Combined surgery (AVR + CABG), n (%) | 11 (16.2%) | 16 (31.4%) | 0.102 |
CPB time (min) | 84.0 [65.0;113] | 100 [71.5;124] | 0.061 |
Cross-clamp time (min) | 62.0 [45.2;83.5] | 75.0 [55.0;97.0] | 0.029 |
Units of RBC transfusion | 0.00 [0.00;2.00] | 2.00 [1.00;4.00] | <0.001 |
Units of FFP transfusion | 0.00 [0.00;2.00] | 0.00 [0.00;3.00] | 0.104 |
Platelets transfusion, 0/1/2 (%) | 64/4/0 (94/6/0%) | 45/4/1 (90/8/2%) | 0.572 |
Respiratory support (h) | 12.0 [7.75;16.0] | 14.0 [8.00;20.5] | 0.206 |
Inotropes (h) | 0.00 [0.00;21.5] | 3.00 [0.00;46.5] | 0.247 |
ICU stay (days) | 3.00 [1.00;4.00] | 4.00 [1.00;8.50] | 0.018 |
Hospital stay (days) | 8.17 [6.25;12.1] | 9.19 [7.00;20.0] | 0.106 |
Non-AKI | AKI | p-Value | ||
---|---|---|---|---|
n = 68 | n = 51 | |||
NGAL (µg/L) | Preoperative | 60.0 [36;105] | 87.0 [59;117] | 0.085 |
End of CPB | 144 [114;190] | 196 [156;260] | 0.002 | |
2 h after CPB | 122 [88;186] | 177 [154;224] | <0.001 | |
Δ [%] | Δ1 (End of CPB—preoperative) | 140 [64;249] | 134 [68;229] | 0.899 |
Δ2 (2 h after CPB—End of CPB) | −14.55 [−30;3] | −4.09 [−18;13] | 0.065 | |
CysC (µg/L) | Preoperative | 795 [683;922] | 857 [716;1175] | 0.125 |
End of CPB | 740 [632;886] | 851 [723;998] | 0.024 | |
2 h after CPB | 748 [649;914] | 857 [677;1086] | 0.031 | |
Δ [%] | Δ1 (End of CPB—Preoperative) | −0.53 [−20;15] | 3.18 [−14;23] | 0.317 |
Δ2 (2 h post CPB—End of CPB) | −1.36 [−19;13] | −2.36 [−16;16] | 0.740 | |
Creatinine (µmol/L) | Preoperative | 80.0 [68;90] | 69.5 [55;91] | 0.085 |
End of CPB | 71.0 [60;87] | 81.5 [65;96] | 0.128 | |
2 h after CPB | 79.0 [69;92] | 87.0 [70;100] | 0.291 | |
Δ [%] | Δ1 (End of CPB -preoperative) | −3.37 [−18;7] | 8.53 [−7;28] | <0.001 |
Δ2 (2 h post CPB- End of CPB) | 11.5 [3;21] | 7.94 [0;19] | 0.512 |
NGAL Model | CysC Model | Creatinine Model | Combined Model |
---|---|---|---|
PreopNGAL, NGAL end of CPB *, NGAL 2 h after CPB, Δ1 and Δ2 | PreopCysC *, CysC end of CPB, CysC 2 h after CPB, Δ1 * and Δ2 | PreopCREAT, CREAT end of CPB *, CREAT 2 h after CPB, Δ1 * and Δ2 | CysC end of CPB *, CysC Δ1 *, NGAL 2 h after CPB *, CREAT Δ1 * |
AUC (%): 63 | AUC (%): 59 | AUC (%): 71 | AUC (%): 77 |
Sensitivity: 74% | Sensitivity: 78% | Sensitivity: 76% | Sensitivity: 77% |
Specificity: 45% | Specificity: 38% | Specificity: 51% | Specificity: 68% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisnik, J.M.; Steblovnik, K.; Hrovat, E.; Jerin, A.; Skitek, M.; Dinges, C.; Fischlein, T.; Zibert, J. Enhanced Detection of Cardiac Surgery-Associated Acute Kidney Injury by a Composite Biomarker Panel in Patients with Normal Preoperative Kidney Function. J. Cardiovasc. Dev. Dis. 2022, 9, 210. https://doi.org/10.3390/jcdd9070210
Kalisnik JM, Steblovnik K, Hrovat E, Jerin A, Skitek M, Dinges C, Fischlein T, Zibert J. Enhanced Detection of Cardiac Surgery-Associated Acute Kidney Injury by a Composite Biomarker Panel in Patients with Normal Preoperative Kidney Function. Journal of Cardiovascular Development and Disease. 2022; 9(7):210. https://doi.org/10.3390/jcdd9070210
Chicago/Turabian StyleKalisnik, Jurij Matija, Klemen Steblovnik, Eva Hrovat, Ales Jerin, Milan Skitek, Christian Dinges, Theodor Fischlein, and Janez Zibert. 2022. "Enhanced Detection of Cardiac Surgery-Associated Acute Kidney Injury by a Composite Biomarker Panel in Patients with Normal Preoperative Kidney Function" Journal of Cardiovascular Development and Disease 9, no. 7: 210. https://doi.org/10.3390/jcdd9070210
APA StyleKalisnik, J. M., Steblovnik, K., Hrovat, E., Jerin, A., Skitek, M., Dinges, C., Fischlein, T., & Zibert, J. (2022). Enhanced Detection of Cardiac Surgery-Associated Acute Kidney Injury by a Composite Biomarker Panel in Patients with Normal Preoperative Kidney Function. Journal of Cardiovascular Development and Disease, 9(7), 210. https://doi.org/10.3390/jcdd9070210