Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Storage of C. sublineola Isolates
2.2. Fungal DNA Extraction, Restriction Site-Associated Sequencing (RAD-Seq), and Phylogeny Reconstruction
Population Structure and Cluster Analysis
2.3. Host Differentials and Isolates Used for Pathotype Determination
2.4. Greenhouse Experiment
2.5. Disease Assessment and Data Analysis
3. Results
3.1. Genetic Diversity of C. sublineola
3.2. Virulence of C. sublineola Isolates
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frederiksen, R.; Odvody, G. Compendium of Sorghum Diseases, 2nd ed.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2000; ISBN 978-0-89054-240-8. [Google Scholar]
- Kangama, C.O. Importance of Sorghum bicolor in African’s cultures. J. Agric. Environ. Sci. 2017, 6, 134–137. [Google Scholar] [CrossRef]
- Hossain, S.; Islam, N.; Rahman, M.; Mostofa, M.G.; Khan, A.R. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Abreha, K.B.; Ortiz, R.; Carlsson, A.S.; Geleta, M. Understanding the sorghum–Colletotrichum sublineola interactions for enhanced host resistance. Front. Plant Sci. 2021, 12, 641969. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.M.; Hawkes, C. Leveraging the potential of sorghum as a healthy food and resilient crop in the South African food system. Front. Sustain. Food Syst. 2022, 6, 786151. [Google Scholar] [CrossRef]
- Khalid, W.; Ali, A.; Arshad, M.S.; Afzal, F.; Akram, R.; Siddeeg, A.; Kousar, S.; Rahim, M.A.; Aziz, A.; Maqbool, Z.; et al. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: A review on the efficacy against chronic disorders. Int. J. Food Prop. 2022, 25, 1045–1062. [Google Scholar] [CrossRef]
- Sirany, T.; Tadele, E.; Aregahegn, H.; Wale, D. Economic potentials and use dynamics of sorghum food system in Ethiopia: Its implications to resolve food deficit. Adv. Agric. 2022, 2022, 4580643. [Google Scholar] [CrossRef]
- Prasad, V.B.R.; Govindaraj, M.; Djanaguiraman, M.; Djalovic, I.; Shailani, A.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A.; Prasad, P.V.V. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. Int. J. Mol. Sci. 2021, 22, 9826. [Google Scholar] [CrossRef]
- Thakur, R.P.; Mathur, K. Anthracnose. In Compendium of Sorghum Diseases; Frederiksen, R.A., Odvody, G.N., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2000; pp. 10–12. [Google Scholar]
- Acharya, B.; O’Quinn, T.N.; Everman, W.; Mehl, H.L. Effectiveness of fungicides and their application timing for management of sorghum foliar anthracnose in the Mid-Atlantic United States. Plant Dis. 2019, 103, 2804–2811. [Google Scholar] [CrossRef]
- Cota, L.V.; Souza, A.G.C.; Costa, R.V.; Silva, D.D.; Lanza, F.E.; Aguiar, F.M.; Figueiredo, J.E.F. Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil. J. Phytopathol. 2017, 165, 479–485. [Google Scholar] [CrossRef]
- Waniska, R.D.; Venkatesha, R.T.; Chandrashekar, A.; Krishnaveni, S.; Bejosano, F.P.; Jeoung, J.; Jayaraj, J.; Muthukrishnan, S.; Liang, G.H. Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. J. Agric. Food Chem. 2001, 49, 4732–4742. [Google Scholar] [CrossRef]
- Erpelding, J. Field Evaluation of Anthracnose Resistance for Sorghum Germplasm from the Sikasso Region of Mali. Open Agric. J. 2008, 2, 113–120. [Google Scholar] [CrossRef]
- Koima, I.N.; Kilalo, D.C.; Orek, C.O.; Wagacha, J.M.; Nyaboga, E.N. Identification and Characterization of Colletotrichum Species Causing Sorghum Anthracnose in Kenya and Screening of Sorghum Germplasm for Resistance to Anthracnose. J. Fungi 2023, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Cruet-Burgos, C.M.; Prom, L.K.; Knoll, J.E.; Stutts, L.R.; Vermerris, W. The inheritance of anthracnose (Colletotrichum sublineola) resistance in sorghum differential lines QL3 and IS18760. Sci. Rep. 2021, 11, 20525. [Google Scholar] [CrossRef] [PubMed]
- Pande, S.; Mughogho, L.K.; Bandyopadhyay, R.; Karunakar, R.I. Variation in pathogenicity and cultural characteristics of sorghum isolates of Colletotrichum graminicola in India. Plant Dis. 1991, 75, 778–783. [Google Scholar] [CrossRef]
- Moore, J.W.; Ditmore, M.; TeBeest, D.O. Pathotypes of Colletotrichum sublineolum in Arkansas. Plant Dis. 2008, 92, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Prom, L.K.; Perumal, R.; Erattaimuthu, S.R.; Little, C.R.; No, E.G.; Erpelding, J.E.; Rooney, W.L.; Odvody, G.; Magill, C. Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur. J. Plant Pathol. 2012, 133, 671–685. [Google Scholar] [CrossRef]
- Guthrie, P.; Magill, C.W.; Frederiksen, R.A.; Odvody, G. Random amplified polymorphic DNA markers: A system for identifying and differentiating isolates of Colletotrichum graminicola. Phytopathology 1992, 82, 832–835. [Google Scholar] [CrossRef]
- Vaillancourt, L.J.; Hanau, R.M. Genetic and morphological comparisons of Glomerella (Colletotrichum) isolates from maize and from sorghum. Experim. Mycol. 1992, 16, 219–229. [Google Scholar] [CrossRef]
- Rosewich, U.L.; Pettway, R.E.; McDonald, B.A.; Duncan, R.R.; Frederiksen, R.A. Genetic structure and temporal dynamics of a Colletotrichum graminicola population in a sorghum disease nursery. Phytopathology 1998, 88, 1087–1093. [Google Scholar] [CrossRef]
- Valèrio, H.; Rèsende, M.; Weikert-Oliveira, R.; Casela, C. Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia 2005, 159, 449–459. [Google Scholar] [CrossRef]
- Chala, A.; Tronsmo, A.; Brurberg, M. Genetic differentiation and gene flow in Colletotrichum sublineolum in Ethiopia, the centre of origin and diversity of sorghum, as revealed by AFLP analysis. Plant Pathol. 2011, 60, 474–482. [Google Scholar] [CrossRef]
- Xavier, K.V.; Mizubuti, E.S.G.; Queiroz, M.V.; Chopra, S.; Vaillancourt, L. Genotypic and pathogenic diversity of Colletotrichum sublineola isolates from sorghum (Sorghum bicolor) and Johnson grass (S. halepense) in the south eastern United States. Plant Dis. J. 2018, 102, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Chala, A. Genetic diversity of Colletotrichum sublineolum isolates from a single field in Southern Ethiopia and evidence for the existence of MAT2 genotypes in different parts of the Country. Ethiop. J. Sci. 2013, 36, 9–16. [Google Scholar]
- Casela, C.R.; Ferreira, A.S. A proposed system of classification of races of Colletotrichum graminicola, causal agent of anthracnose on sorghum (Sorghum bicolor). Fitopatol. Bras. 1987, 12, 337–344. [Google Scholar]
- Ali, M.; Warren, H. Physiological races of Colletotrichum graminicola on sorghum. Plant Dis. 1987, 71, 402–404. [Google Scholar] [CrossRef]
- Cardwell, K.F.; Hepperly, P.R.; Frederiksen, R.A. Pathotypes of Colletotrichum graminicola and seed transmission of sorghum anthracnose. Plant Dis. 1989, 73, 255–257. [Google Scholar] [CrossRef]
- Casela, C.R.; Ferreira, A.S.; Schaffert, R.E. Physiological races of Colletotrichum graminicola, in Brazil. In Sorghum and Millets Diseases: A Second World Review; de Milliano, W.A.J., Frederiksen, R.A., Bengston, G.D., Eds.; International Crops Research Institute for the Semi-Arid Tropics: Pancheru, India, 1992; pp. 209–212. [Google Scholar]
- Thakur, R.P.; Mathur, K.; Rao, V.P.; Chandra, S.; Sivaramakrishnan, S.; Kannan, S.; Hiremath, R.V.; Tailor, H.C.; Kushwaha, U.S.; Dwivedi, R.R.; et al. Pathogenic and genetic characterization of six Indian populations of Colletotrichum sublineolum, the causal agent of sorghum anthracnose. Indian Phytopathol. 1998, 51, 338–348. [Google Scholar]
- Marley, P.S.; Thakur, R.P.; Ajayi, O. Variation among foliar isolates of Colletotrichum sublineolum of sorghum in Nigeria. Field Crop. Res. 2001, 69, 133–142. [Google Scholar] [CrossRef]
- Costa, R.V.; Zambolim, L.; Cota, L.V.; Silva, D.D.; Parreira, D.F.; Lanza, F.E.; Souza, A.C.G. Pathotypes of Colletotrichum sublineolum in rsponse to sorghum populations with different levels of genetic diversity in Sete Lagoas-MG. J. Phytopathol. 2015, 163, 543–553. [Google Scholar] [CrossRef]
- Arnfield, J. Köppen Climate Classification. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 16 October 2023).
- Baroncelli, R.; Sanz-Martín, J.M.; Rech, G.E.; Sukno, S.A.; Thon, M.R. Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announc. 2014, 2, e00540-14. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; VonHoldt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A Cluster Matching and Permutation Program for Dealing with Label Switching and Multimodality in Analysis of Population Structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A high-capacity genotyping and sequencing analysis pipeline. PLoS ONE 2014, 9, e90346. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011, 39, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Prom, L.K.; Perumal, R.; Erpelding, J.E.; Isakeit, T.; Montez Garcia, N.; Magill, C. A picturial technique for mass screning of sorghum germplasm for anthracnose (Colletotrichum sublineolum) resistance. Open Agric. J. 2009, 3, 20–25. [Google Scholar] [CrossRef]
- FAO. Global Agriculture. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agricculture.pdf (accessed on 17 January 2023).
- Daszkiewicz, T. Food Production in the Context of Global Developmental Challenges. Agriculture 2022, 12, 832. [Google Scholar] [CrossRef]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef]
- Prom, L.K.; Cuevas, H.; Isakeit, T.; Magill, C. Screening sorghum accessions for resistance against anthracnose and grain mold through inoculating with pathogens. J. Experim. Agric. Intern. 2020, 42, 73–83. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K.; Erpelding, J.E.; Brotons, V. Assessment of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm. Plant Breed. 2014, 133, 234–242. [Google Scholar] [CrossRef]
- Guo, Z.; Luo, C.-X.; Wu, H.-J.; Peng, B.; Kang, B.-S.; Liu, L.-M.; Zhang, M.; Gu, Q.-S. Colletotrichum Species Associated with Anthracnose Disease of Watermelon (Citrullus lanatus) in China. J. Fungi 2022, 8, 790. [Google Scholar] [CrossRef] [PubMed]
- Montri, P.; Taylor, P.W.J.; Mongkolporn, O. Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis. 2009, 93, 17–20. [Google Scholar] [CrossRef] [PubMed]
- da Costa, R.V.; Cota, L.V.; da Silva, D.D.; Parreira, D.F.; Casela, C.R.; Landau, E.C.; Figueiredo, J.E.F. Races of Colletotrichum graminicola pathogenic to maize in Brazil. Crop. Prot. 2014, 56, 44–49. [Google Scholar] [CrossRef]
- Tsedaley, B.; Adugna, G.; Lemessa, F.; Prom, L.K. Pathogenic variability of Colletotrichum sublineolum isolates on sorghum differentials under greenhouse conditions in Jimma, Ethiopia. Arch. Phytopathol. Plant Prot. 2021, 54, 2464–2482. [Google Scholar] [CrossRef]
- Riegel, R.; Véliz, D.; von Baer, I.; Quitral, Y.; Muñoz, M. Genetic diversity and virulence of Colletotrichum lupini isolates collected in Chile. Plant Pathol. 2010, 35, 144–152. [Google Scholar]
- Curland, R.D.; Gao, L.; Bull, C.T.; Vinatzer, B.A.; Dill-Macky, R.; Van Eck, L.; Ishimaru, C.A. Genetic diversity and virulence of wheat and barley strains of Xanthomonas translucens from the Upper Midwestern United States. Phytopathology 2018, 108, 443–453. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Rokas, A. Copy number variation in fungi and its implications for wine yeast genetic diversity and adaptation. Front. Microbiol. 2018, 9, 288. [Google Scholar] [CrossRef]
- Taylor, J.W.; Branco, S.; Gao, C.; Hann-Soden, C.; Montoya, L.; Sylvain, I.; Gladieux, P. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol. Spectr. 2017, 5, 635–655. [Google Scholar] [CrossRef]
Sorghum Differentials Tested | Number of Pathotypes Identified | Reference |
---|---|---|
BTx378, SC326-6, SC283, BTx623, Brandes, SC112-14, BTx398, RTx2536, Theis | 16 | [26] |
IS4225, IS8361, Br64, 954206, 954130, 954062 | 3 | [27] |
RTx2536, BTx398, TAM428, RTx430, SC414-12E, BTx378, SC326-6, QL3 (IND) | 8 | [28] |
IS643, IS854, IS914, IS1006, IS1022, IS2058, IS2596, IS3089, IS3589, IS5511, IS6958, IS7142, IS7775, IS8024, IS8283, IS9600, IS12467, IS12664C, IS17141, IS17804, IS18433, IS18442, IS18521, IS18531, IS18615, IS18680, IS18688, IS18758, IS18760, UChV-2 | 9 | [16] |
RTx2536, BTx398, BTx623, Brandes, SC112-14, Theis, BTx378, SC326-6, SC283 | 8 groups designated with letters (A–H) with 32 races in each group | [29] |
IS8354, IS2508, IS18758, IS3738, IS6928, IS18760, IS3552, IS854, IS1006, IS18442, IS6958, IS12467, IS17141, IRAT204, ICSV247, A2267-2 | 6 | [30] |
KVS8, BES, IS3758, IS6926, IRAT204, IS6958, IS18442, A2267-2 | 7 | [31] |
RTx2536, BTx398, TAM428, SC414-12E, BTx378, SC326-6, SC328C, QL3 (IND) | 13 | [17] |
RTx2536, SC748-5, BTx398, TAM428, RTx430, Brandes, SC112-14, Theis, BTx378, SC326-6, SC283, BTx623, SC328C, SC414-12E, PI570841, PI570726, PI569979, IS18760 | 17 | [18] |
PU932247, BTx378, PUGP24, Pop.BRP3R9, Tx614, CMSXS169 IPB8030, SC326-6, BTx623) | 68 | [32] |
Bailey, Chinese Amber, Cowper, Dale, Yellow milo, Honey, N100, Orange, Planter, Simon, Della, and Keller | 12 | [24] |
Code for the Isolate | Year of Collection | Total | Location and Coordinates | Climate |
---|---|---|---|---|
FSP182 | 2006 | 11 | College Station, TX, USA 30°36′99″ N–96°18′31.20″ W | Subtropical and temperate |
FSP4, 5, 15, 36, 48, 53 | 2011 | |||
FSP236, 237 | 2012 | |||
FSP302, 303 | 2016 | |||
FSP158, 159, 161, 163–168, 170, 172, 173 | 2006 | 60 | Isabela, PR, USA 18°30′2.81″ N–67°01′27.66″ W | Tropical |
FSP125–135, 139, 140, 142–147, 150–152, 154, 155 | 2010 | |||
FSP61, 62, 66, 67, 80, 87, 91, 92, 94, 95, 102-104, 108, 109 | 2011 | |||
FSP68, 70–74, 76, 78, 225 | 2012 | |||
FSP195-210 | 2012 | 16 | Mayaguez, PR, USA 18°12′4.84″ N–67°8′42.56″ W | Tropical |
FSP213, 220 | 2012 | 2 | Pioneer Seeds field, Georgia 31°42′53.68″ N–83°15′9.54″ W | Humid Subtropical |
FSP244–246, 248–255 | 2013 | 11 | Corozal, PR, USA 18°20′27.82″ N–66°19′0.62″ W | Tropical |
FSP256–259, 261, 263 | 2013 | 6 | Wharton, TX, USA 29°18′41.90″ N–96°06′9.86″ W | Humid subtropical and temperate |
FSP265, 267–270, 272 | 2013 | 6 | Winterville, NC, USA 35°31′44.58″ N–77°24′3.87″ W | Humid subtropical |
FSP276–281 | 2014 | 16 | Cairo, GA, USA 30°52′39.04″ N–84°12′7.70″ W | Humid subtropical |
FSP292–301 | 2015 | |||
FSP282–291 | 2015 | 10 | Tifton, GA, USA 31°27′28.79″ N–83°30′21.59″ W |
Source | DF | Sum of Squares | Mean Square | Pr. > F |
---|---|---|---|---|
Isolate a | 29 | 29.57 | 1.02 | <0.0001 *** |
Differential b | 17 | 252.12 | 14.83 | <0.0001 *** |
Isolate × differential | 493 | 231.96 | 0.47 | <0.0001 *** |
Pathotype Designation | Sorghum Differential Lines | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolate | BTx623 | TAM428 | PI570841 | SC326-6 | RTx2536 | SC328C | Theis | IS18760 | BTx398 | SC414-12E | PI569979 | PI570726 | BTx378 | SC283 | QL3 (IND) | BRandes | SC748-5 | SC112-14 | |
200 | 9 | S | S | S | S | S | S | R | S | S | S | R | R | S | S | R | R | R | R |
70 | 3 | S | S | S | R | R | S | S | S | S | S | R | S | R | R | S | R | R | R |
248 | 16 | S | S | S | S | R | S | S | R | S | R | S | R | R | S | R | R | R | R |
280 | 23 | S | S | S | S | S | R | R | S | S | R | R | S | S | R | R | R | R | R |
277 | 20 | S | S | S | S | S | R | S | S | R | R | R | S | S | R | R | R | R | R |
237 | 13 | S | S | S | S | S | S | S | R | R | R | S | R | R | R | S | R | R | R |
244 | 14 | S | S | S | S | S | S | S | R | S | R | S | R | R | R | R | R | R | R |
267 | 18 | S | S | S | S | S | R | R | S | S | S | R | R | R | R | R | R | R | R |
276 | 19 | S | S | S | S | S | R | S | S | R | R | R | R | S | R | R | R | R | R |
198 | 7 | S | S | S | S | S | S | R | S | R | S | R | R | R | R | R | R | R | R |
199 | 8 | S | S | S | R | S | S | S | S | R | R | R | R | R | R | R | R | R | R |
252 | 17 | S | S | S | S | R | S | R | R | S | R | S | R | R | R | R | R | R | R |
213 | 12 | S | S | S | S | S | R | S | R | R | R | S | R | R | R | R | R | R | R |
201 | 10 | S | S | S | S | S | S | R | R | R | S | R | R | R | R | R | R | R | R |
279 | 22 | S | S | S | S | R | R | R | R | S | R | R | R | S | R | R | R | R | R |
278 | 21 | S | S | S | S | S | R | R | R | R | R | R | S | R | R | R | R | R | R |
182 | 6 | S | S | S | R | R | S | R | R | R | S | R | R | R | R | R | R | R | R |
71 | 4 | S | S | S | R | R | S | S | R | R | R | R | R | R | R | R | R | R | R |
284 | 25 | S | S | S | R | S | R | R | R | R | R | R | R | R | S | R | R | R | R |
281 | 24 | S | S | S | S | R | R | R | R | R | R | R | S | R | R | R | R | R | R |
299 | 27 | S | S | S | S | R | R | R | R | R | R | S | R | R | R | R | R | R | R |
36 | 1 | S | S | S | S | R | R | R | R | R | S | R | R | R | R | R | R | R | R |
289 | 26 | S | R | S | S | R | R | R | R | R | R | S | R | R | R | R | R | R | R |
245 | 15 | S | S | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
250 | 15 | S | S | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
53 | 2 | S | S | R | R | R | R | S | R | R | R | R | R | R | R | R | R | R | R |
76 | 5 | S | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
92 | 5 | S | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
265 | 5 | S | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
208 | 11 | S | S | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prom, L.K.; Ahn, E.J.S.; Perumal, R.; Cuevas, H.E.; Rooney, W.L.; Isakeit, T.S.; Magill, C.W. Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials. J. Fungi 2024, 10, 3. https://doi.org/10.3390/jof10010003
Prom LK, Ahn EJS, Perumal R, Cuevas HE, Rooney WL, Isakeit TS, Magill CW. Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials. Journal of Fungi. 2024; 10(1):3. https://doi.org/10.3390/jof10010003
Chicago/Turabian StyleProm, Louis K., Ezekiel Jin Sung Ahn, Ramasamy Perumal, Hugo E. Cuevas, William L. Rooney, Thomas S. Isakeit, and Clint W. Magill. 2024. "Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials" Journal of Fungi 10, no. 1: 3. https://doi.org/10.3390/jof10010003
APA StyleProm, L. K., Ahn, E. J. S., Perumal, R., Cuevas, H. E., Rooney, W. L., Isakeit, T. S., & Magill, C. W. (2024). Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials. Journal of Fungi, 10(1), 3. https://doi.org/10.3390/jof10010003