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Abstract: Aspergillus montevidensis is an important domesticated fungus that has been applied to
produce many traditional fermented foods under high osmotic conditions. However, the detailed
mechanisms of tolerance to osmotic stress remain largely unknown. Here, we construct a target-
deleted strain (∆LeuRS) of A. montevidensis and found that the ∆LeuRS mutants grew slowly and
suppressed the development of the cleistothecium compared to the wide-type strains (WT) under
salt-stressed and non-stressed conditions. Furthermore, differentially expressed genes (p < 0.001)
governed by LeuRS were involved in salt tolerance, ABC transporter, amino acid metabolism, sugar
metabolism, and the reproduction process. The ∆LeuRS strains compared to WT strains under short-
and long-term salinity stress especially altered accumulation levels of metabolites, such as amino
acids and derivatives, carbohydrates, organic acids, and fatty acids. This study provides new insights
into the underlying mechanisms of salinity tolerance and lays a foundation for flavor improvement
of foods fermented with A. montevidensis.

Keywords: leucyl-tRNA synthetase; transcriptome; metabolome; Aspergillus montevidensis; osmotic
tolerance

1. Introduction

The filamentous fungi Aspergillus is a complex group of ascomycetes comprising about
340 officially recognized species, many of which are widely used in food fermentation [1].
Among Aspergillus species, A. montevidensis is an important domesticated fungus that has
been used to produce or isolate from fermented and ripened katsuobushi [2]. A. amstelodami
(the anamorph of A. montevidensis) is commonly isolated from meju, a brick of fermented
dried soybeans, and frequently occurs in fermented cocoa beans [3,4]. Furthermore, these
species dominate the microbial community involved in post-fermented Chinese dark teas,
including Pu-erh tea, Fu brick tea, and Liupao tea [5–7]. During the production processes
of these foods, high osmolarity conditions enhance the dominance of A. montevidensis,
which can result in improved quality and taste of fermented foods. Therefore, it is of great
significance to understand the osmophilic mechanism of A. montevidensis.

We previously found that A. montevidensis is highly dependent on the fine regulation
of morphological, transcriptional, and metabolic responses to manage osmotic stress toler-
ance [8]. Under salinity stress, A. montevidensis widely developed yellow fruiting bodies
(cleistothecia), which are known as ‘golden flowers’ in Chinese brick tea, and hypha growth
was obviously promoted [9]. Salinity-induced mycelia significantly expressed hundreds
of genes that controlled cellular processes, such as oxidative stress response, amino acid
transport and metabolism, glycolysis and TCA cycles, and fatty acid β-oxidation, for the in-
tracellular accumulation of a variety of amino acids, soluble sugars, and fatty acids. Among
these significantly expressed genes, a unigene encoding leucyl-tRNA synthetase (LeuRS),
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which routinely catalyzes the specific attachment of leucine to tRNALeu in protein synthe-
sis [10], robustly increased its expression by a factor of 11.52 [8], suggesting that LeuRS
could influence osmotic stress tolerance and the reproduction process of A. montevidensis.

Sexual and asexual development in Aspergillus species is a highly complex biological
process which is affected by both environmental factors and complex intrinsic signals [11].
Extensive studies in A. nidulans showed that the sexual cycle was influenced by many
environmental variables, such as light, pH values, temperature, and atmospheric gases [12].
To date, at least 78 genes are required for the modulation of the sexual process of Aspergillus.
However, there are 20 regulators controlling hundreds of genes, which are involved in
asexual development of A. nidulans [13]. These sex-related genes are linked to perception
of environmental signals, signal transduction, transcriptional activators, and maturation of
ascospores and conidiophores [11].

Recent studies have shown many previously unknown functions of LeuRS; for example,
it serves as a leucine sensor for the mTORC1 signaling pathway in eukaryotes, which
subsequently regulates protein synthesis, cell growth, ribosome biogenesis, nutrient uptake,
and autophagy [14–16]. LeuRS also mediates tolerance to glucose starvation and norvaline-
induced stress in yeast and mammals [17,18]. Here, we found that deletion of LeuRS
in A. montevidensis influenced mycelial growth rate, antioxidant capacity, significantly
suppressed the formation of cleistothecia, and prompted conidial development under
salt stress. ∆LeuRS mutants changed expression patterns of multiple genes for substance
transport, as well as amino acid and sugar metabolism, etc. Together, our findings highlight
that LeuRS plays a key role in the salinity tolerance of A. montevidensis.

2. Materials and Methods
2.1. Fungal Strains and Culture Conditions

The wide-type A. montevidensis (no: CGMCC 3.15762) used in this study was main-
tained routinely on yeast peptone dextrose agar slants (YPD: 1% yeast extract, 2% tryptone,
2% glucose, 1.5% agar, pH 6.5), supplemented with the final NaCl concentration (1.5 M).
The morphological and growth rates of the WT and ∆LeuRS mutants were examined on
YPD media with 0 M and 1.5 M NaCl at 28 ◦C. The WT and mutants were statically cultured
in YPD liquid medium with 1.5 M NaCl at 28 ◦C for 14 days (long-term salt stress, WT_LS
and ∆LeuRS_LS). These strains were also grown in YPD liquid medium without salt at
28 ◦C for 14 days and then stressed by the addition of salt (1.5 M) for 1 h (short-term salt
stress, WT_SS and ∆LeuRS_SS). Control samples (WT_C and ∆LeuRS_C) were obtained
from 14-day cultures untreated with salt. Salt-treated and untreated cultures were washed
twice with a pre-chilled PBS solution. Mycelia were collected using centrifugation at 4 ◦C,
12,000 rpm for 10 min, and used in the examination of transcriptome, metabolome, and
antioxidant enzyme activity (catalase, CAT; superoxide dismutase, SOD) [19].

2.2. Constructs for LeuRS Knockdown and Fungal Transformation

We sequenced the whole genome of A. montevidensis and found a 3501-bp single-copy
gene, which encodes LeuRS [8,20]. The LeuRS gene of A. montevidensis (WT) was eliminated
by homologous recombination. Briefly, the flanking fragments upstream and downstream
(around 1500 bp) of the LeuRS gene were amplified from the wide-type strain, with the spe-
cific primer pairs LeuRS1/1F-1R (LeuRS1/1F (PstI): 5′-GCCTGCAGTCCCGATCTTTCACAG
ACTG-3′; LeuRS1/1R (XbaI): 5′-TCTCTAGACCGAAGAACTTGGGGTACTT-3′) and LeuRS2/
2F-2R (LeuRS2/2F (SpeI): 5′-ACACTAGTGATGCTACTCGTATCGCTTT-3′; LeuRS2/2R
(EcoRV): 5′-AGGATATCGGAACAGACATAGCGGTTTG-3′), respectively. The amplified
DNA fragments were digested by PstI and XbaI, and SpeI and EcoRV, respectively, and
then ligated into the plasmid pPK2 at the corresponding restriction sites. The construct
pPK2-LeuRS1-Sur-LeuRS2 was transformed into the wide-type strain according to Agrobac-
terium tumefaciens-mediated transformation [21]. Transformants were selected on YPD agar
containing 100µg/mL of chlorimuron. The colonies were confirmed using PCR amplifica-
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tion using the primer pairs (LeuRS-YZ5f: 5′-CCGTTTTCGCTTTGGATGAG-3′; LeuRS-YZ3r:
5′-TGACTCCTGACTCATACTGC-3′) and sequenced.

2.3. Transcriptome Sequencing and Data Analysis

RNA extraction and library preparation of salt-treated and untreated cultures were
performed as described by Ding et al. [8]. The cDNA libraries were sequenced on an
Illumina Novaseq 6000 platform and 150-bp paired-end reads were generated. The raw
data were processed by removing adaptor sequences, low quality reads, and reads with
unknown nucleotides > 5%. High-quality read assembly was performed using Trinity
software (v2.4.0) [22]. With three biological replicates, transcriptomic sequencing generated
383,214,494 and 399,020,304 clean reads for the three comparison groups (18 libraries). Clean
reads were assigned to the reference genome (accesssion number JAJFZZ000000000) [20].
The RPKM (reads per kb per million reads) of each unigene was calculated to analyze the
expression level of genes between samples. Genes with a false discovery rate (FDR) < 0.001
and |log2 ratio| ≥ 1 were identified as differentially expressed genes (DEGs) [23]. Princi-
pal component analysis (PCA) was performed using the R package (version 4.0.0). DEG
enrichment analysis was performed in different databases using BLASTx, including NCBI
nonredundant protein (NR), Gene Ontology (GO), Swissprot, KOG, and the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) with E < 10−5. The FPKM values of DEGs were used
in a heatmap analysis. The biochemical pathways of DEGs were further implemented by
KEGG mapping using the cluster Profiler (v3.4.4) [24].

2.4. UHPLC-Q-TOF/MS of Metabolites and Data Analysis

The salinity-treated and non-treated freeze-dried fungal mycelia (0.1 g) of the WT
and the mutant strains (∆LeuRS) were extracted with methanol-acetonitrile-water (2:2:1,
v/v), which contained internal standard mixtures labeled with isotopes. The samples
were vortexed, sonicated in an ice water bath for 4 min, incubated at −40 ◦C for 1 h,
and then centrifuged at 4 ◦C for 15 min (12,000 rpm) to collect the supernatants. The
extraction process was repeated three times. The supernatants were pooled and filtered
through a 0.22-µm filter. Meanwhile, a quality control (QC) sample was prepared by mixing
equal volumes of each extraction, and was injected to monitor the stability of the system.
Metabolites were analyzed using an UHPLC system (Vanquish, Thermo Fisher Scientific,
Pleasanton, CA, USA) with a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 µm)
coupled with a Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo Fisher). The
mobile phase consisted of water (pH 9.75) (containing 25 mmol/L ammonium acetate and
25 mmol/L ammonia hydroxide) and acetonitrile. The autosampler temperature was 4 ◦C
and the injection volume was 3 µL. The elution gradient was carried out as follows: 0 min,
5% B; 3 min, 20% B; 9 min, 95% B; 13 min, 95% B; 13.1 min, 5% B; and 16 min, 5% B. A mass
scan range of m/z 70–1000 was performed for full-scan analysis. The ESI source conditions
were established as follows: sheath gas flow rate 30 arb, aux gas flow rate 25 arb, capillary
temperature 350 ◦C, full MS resolution 60,000, collision energy 10/30/60, and spray voltage
3.6 (positive) or −3.2 kV (negative), respectively. The raw mass data were converted into
mzXML format using ProteoWizard software (v3.0.9134). XCMS software (v3.7.1) was
applied for peak extraction, peak alignment, and peak matching. Metabolites were then
annotated using BiotreeDB (v2.1) software.

2.5. Statistical Analysis

All experiments were conducted in independent triplicates, and data are reported
as the mean value± SD (standard deviation). Student’s t-test was performed to examine
the significant differences in metabolites between groups (p < 0.05) by using SPSS 26.0
software (SPSS Inc., Chicago, IL, USA). Differential metabolites with absolute log2FC ≥ 1
and p < 0.05 were selected for further analysis. Orthogonal projections to latent structures
discriminant analysis (OPLS-DA) using SIMCA 14.1 [25] were conducted to screen charac-
teristic components contributing to group discrimination. Differential metabolites were
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selected by the statistically significant variable importance threshold in projection values ≥1
and p-values < 0.05. Significantly different data sets in transcriptomic and metabolomics
analysis were used to generate metabolite-transcript pathways by KEGG mapping.

2.6. Accession Number(s)

The raw sequence data have been submitted to the National Center for Biotech-
nology Information (NCBI) Sequence Read Archive (SRA) under BioSample accessions:
SRR24694851 to SRR24694851.

3. Results
3.1. LeuRS Influences Mycelial Growth, Cleistothecium Formation, and Stress Tolerance of
A. montevidensis

∆LeuRS mutants were verified using PCR amplification and sequencing (Figure S1).
Mycelial growth showed a morphological difference between the WT strain and the LeuRS
mutant on the YPD medium supplemented with or without NaCl. The WT strain had
yellow colonies, while the ∆LeuRS colonies were white under salinity or non-salt stress for
14 days (Figure 1). The WT strain also produced a large number of yellow-colored spherical
cleistothecia (Figure 1b,c), while the formation of cleistothecium was strongly inhibited in
the LeuRS mutant (Figure 1e,f). The deletion of LeuRS resulted in a significant reduction
(p < 0.001) of the growth rates of the hyphal compared to WT strains under salinity or non-
salt conditions (Figure 1k). Salt stress causes oxidative stress in living cells [26]. Therefore,
we examined the antioxidative activities of the LeuRS mutant and the WT strain. CAT
activity in the ∆LeuRS cultures induced with or without NaCl was significantly (p < 0.05)
lower than in WT, and SOD activity in mutant samples suffering from long-term salinity
stress was obviously lower compared to the corresponding WT group (Figure 1l). These
results indicated that LeuRS plays a crucial role in the regulation of mycelial growth,
antioxidative enzyme activities, and sexual development of A. montevidensis.

3.2. Transcriptome Profiles of the LeuRS Mutant and the WT Strain

We matched unigene sequences with the NR, Swiss-prot, KEGG, and KOG databases
using blastx (E < 10−5). Of these, a total of 7165 unigenes were functionally annotated. PCA
indicated that all biological replicates were grouped together, and PC1 and PC2 captured
60% of the variance in the data. This represents the difference in gene expression profiles
between the WT strain and the ∆LeuRS mutant (Figure 2a). We identified significantly
differentially expressed unigenes (DEGs) using FDR < 0.001 and the |log2 ratio| ≥ 1
as the threshold. Among the genes significantly expressed up, there were 82 DEGs in
the ∆LeuRS_SS/∆LeuRS_C and 1107 in the ∆LeuRS_LS/∆LeuRS_C, with 50 DEGs shared
by these two groups (Figure 2b). There were 153 DEGs in the WT_SS/WT_C and 881
in the WT_LS/WT_C, with 62 co-occurred DEGs (Figure 2c). Among the significantly
down-expressed genes, there were 79 DEGs in the ∆LeuRS_SS/∆LeuRS_C and 796 in the
∆LeuRS_LS/∆LeuRS_C, with 51 common DEGs (Figure 2d). There were 576 DEGs in
the WT_SS/WT_C and 1070 in the WT_LS/WT_C, with 370 common DEGs (Figure 2e).
Furthermore, more DEGs responded to long-term saline conditions than to short-term
treatment, but the majority of genes in response to short-term treatment also responded to
long-term salt stress (Figure 2b,d,e). Our results showed that LeuRS was of significance in
mediating gene expression in A. montevidensis in response to change in salinity.
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of WT (g,h) and ΔLeuRS (i,j) grown on YPD without NaCl. Growth rates (k) and antioxidant activ-
ities (l) of WT and ΔLeuRS mutants (*, p < 0.05, **, p < 0.01, *** p < 0.001, ****, p < 0.0001, ns, p > 0.05). 
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Figure 1. Morphological characteristics, growth rates, and antioxidative activities of the wide-type
A. montevidensis (WT) and ∆LeuRS mutant grown on YPD with and without 1.5 M NaCl at 28 ◦C
for 14 days. Under saline conditions, colony morphology of WT (a) and ∆LeuRS mutant (d), in situ
observation of the microscopic morphological characteristics of WT (b) and mutant (e), cleistothecia
of WT (c) and conidial heads of ∆LeuRS (f). Colonial characteristics and microscopic characteristics of
WT (g,h) and ∆LeuRS (i,j) grown on YPD without NaCl. Growth rates (k) and antioxidant activities
(l) of WT and ∆LeuRS mutants (*, p < 0.05, **, p < 0.01, *** p < 0.001, ****, p < 0.0001, ns, p > 0.05).
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3.3. Analysis of DEGs

KEGG pathway analysis of DEGs revealed that more metabolic processes in ∆LeuRS and
WT were influenced by long-term salt stress than short-term saline shock (Figure 3). For exam-
ple, many DEGs up-regulated (p < 0.05) in ∆LeuRS_LS/∆LeuRS_C participated in 13 path-
ways (fructose and mannose metabolism, tyrosine metabolism, alanine, aspartate and gluta-
mate metabolism, arginine and proline metabolism, ABC transporters, etc.). However, a few
DEGs were associated with three pathways in ∆LeuRS_SS/∆LeuRS_C. Furthermore, the
number of DEGs expressed up, involved in alanine, aspartate, and glutamate metabolism
and nitrogen metabolism, increased in ∆LeuRS as stress continued. The DEGs descending
in expression were mainly related (p < 0.05) to four KEGG pathways (biosynthesis of amino
acids, peroxisome, butanoate metabolism, etc.) in ∆LeuRS_LS/∆LeuRS_C. Similarly, many
DEGs up-regulated in WT_LS/WT_C were strongly enriched in (p < 0.05) ribosome bio-
genesis, pentose and glucuronate interconversions, and sphingolipid metabolism, while a
few genes participated in oxidative phosphorylation in WT_SS/WT_C. And the decreased
DEGs in WT_LS/WT_C were enriched (p < 0.05) in 11 pathways, which were indispensable
to starch and sucrose metabolism, glycine, serine and threonine metabolism, and arginine
and proline metabolism, etc. (Figure 3d).
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3.4. DEGs Significantly Related to ABC Transporters, Nitrogen and Carbon Metabolism,
and Reproduction

To understand the transcriptional changes of DEGs of ∆LeuRS and WT in response to
salt stress, response-specific DEGs were selected for heatmap analysis (Figure 4, Table S1).
We found that most DEGs in ∆LeuRS_C, ∆LeuRS_SS, and ∆LeuRS_LS exhibited distinct ex-
pression patterns, compared to their transcriptional levels in the corresponding WT samples.
For example, the expression two unigenes encoding ABC transporters was dramatically
decreased in ∆LeuRS_C and ∆LeuRS_SS and increased in ∆LeuRS_LS, while the reverse
trend was shown in WT_C, WT_SS, and WT_LS. Genes homologous to adenylosuccinate
synthase, aspartate aminotransferase, and 1-pyrroline-5-carboxylate dehydrogenase (which
were involved in alanine, aspartate, and glutamate metabolism) exhibited lower expression
levels in mutants than in WT strains with different osmotic conditions. Gene-coding en-
zymes such as ornithine carbamoyltransferase, glutamate dehydrogenase, arginase, and
argininosuccinate lyase, which control arginine biosynthesis, were strongly down-regulated
in ∆LeuRS groups, while these had high transcriptional levels in WT. Similar expression
patterns of genes were also observed in tryptophan metabolism. Genes related to sugar
metabolism and glyoxylate and dicarboxylate metabolism, such as malate dehydroge-
nase, 6-phosphogluconate dehydrogenase, and glycine hydroxymethyltransferase were
increased in expression in the three treatment groups of ∆LeuRS but strongly inhibited
in WT. We found that some regulatory factors, which regulate amino acid metabolism,
sexual reproduction, and tolerance to osmotic stress, were down-regulated in mutants. For
example, several genes encoding Zn (II) 2 Cys6 (C6) transcription factors exhibited lower
expression levels in ∆LeuRS against them in WT. Genes (such as MAT1, Ste20, and VeA)
involved in sexual reproduction were obviously suppressed in ∆LeuRS compared to those
in WT. Similarly, mitogen-activated protein kinase (HOG1) was also negatively regulated
in ∆LeuRS. We observed that ∆LeuRS_LS augmented the expression of many genes more
than ∆LeuRS_C and ∆LeuRS_SS. In addition, we also compared the expression changes of
DEGs in ∆LeuRS with them in WT under the same osmotic stress conditions. We found that
most DEGs of ∆LeuRS were down-regulated in expression and that the expression levels of
many genes increased as the osmotic conditions continued. Our findings demonstrated
that LeuRS mediated many cellular processes (substance transport, amino acid and sugar
metabolism, and reproduction) of the fungus under salt stress.

3.5. Analysis of Differential Metabolites

Untargeted UHPLC-Q-TOF/MS analysis identified a total of 366 compounds, and
PCA revealed significant differences in metabolites responsible for separation between
the ∆LeuRS and WT groups (Figure S2), indicating that these two samples had sub-
stantially different metabolite profiles. We identified 72 discriminatory metabolites of
∆LeuRS_SS/∆LeuRS_C, 77 of ∆LeuRS_LS/∆LeuRS_C, 92 of WT_SS/WT_C, and 91 of
WT_LS/WT_C, based on a VIP threshold of ≥1 (Table S2). We further detected 23 and
43 compounds which were only identified in ∆LeuRS_SS/∆LeuRS_C and WT_SS/WT_C, re-
spectively. Unique metabolites in ∆LeuRS_SS/∆LeuRS_C, such as N-acetyl-L-phenylalanine
(log2FC = −1.6), 2-hydroxybutyric acid (log2FC = −2.2), and gentisic acid (log2FC = −2.9)
were down-regulated (Figure 5a). Among the special substances in WT_SS/WT_C, the
relative abundances of sucrose (log2FC = 2.2), 4-hydroxycinnamic acid (log2FC = 3.3),
and kynurenic acid (log2FC = 12.0) increased, which are related to starch and sucrose
metabolism, tyrosine metabolism, and tryptophan metabolism, respectively (Table S3).
However, substances, such as 4-hydroxyproline (log2FC = −1.1), L-methionine
(log2FC = −1.6), L-phenylalanine (log2FC = −1.5), and L-tryptophan (log2FC = −1.6) de-
creased their levels in WT_SS/WT_C, which participate in arginine and proline metabolism,
cysteine and methionine metabolism, phenylalanine, tyrosine and tryptophan biosyn-
thesis, and tryptophan metabolism (Table S3). The majority of common molecules in
∆LeuRS_SS/∆LeuRS_C and WT_SS/WT_C decreased (Figure 5b). Furthermore, we ob-
served that D-Mannose 1-phosphate (log2FC = −3.7), gluconic acid (log2FC = −2.6),
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and gluconolactone (log2FC = −3.7) decreased more in ∆LeuRS_SS/∆LeuRS_C than in
WT_SS/WT_C, suggesting that sugar metabolism was enhanced in ∆LeuRS_SS. In particu-
lar, WT_SS/WT_C strongly down-regulated 4-hydroxyphenylpyruvate (log2FC = −14.3)
but increased 4-hydroxycinnamic acid (log2FC = 3.3), indicating that carbon flow from 4-
hydroxyphenylpyruvate to 4-hydroxycinnamic acid in tyrosine metabolism could improve
the salt tolerance of WT strains.
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Moreover, we identified 32 and 46 compounds that occurred specially in ∆LeuRS_LS/
∆LeuRS_C and WT_LS/WT_C, respectively. Pyruvic acid (log2FC = 1.0), 4-hydroxycinnamic
acid (log2FC = 2.2), and 3-hydroxyphenylacetic acid (log2FC = 2.9) in ∆LeuRS_LS/∆LeuRS_C
were respectively related to alanine, aspartate and glutamate metabolism, and tyrosine
metabolism (Figure 5c, Table S3). The characteristic compounds in WT_LS/WT_C, such
as dulcitol, sucrose, and D-mannose 1-phosphate increased their relative contents from
log2FC = 1.0 to log2FC = 1.9, indicating that sugar metabolism was slowed for salt adap-
tation. 2-Ketobutyric acid (log2FC = 1.1), N-(2-furoyl) glycine (log2FC = 2.6), and 3-
methyladipic acid (log2FC = 3.9) were up-regulated in this group, which were associ-
ated with glycine, serine and threonine metabolism, and alanine, aspartate, and glu-
tamate metabolism (Table S3). However, DEGs of these pathways in WT_LS/WT_C
were down-regulated (Figure 3d). These suggested that glycine, serine and threonine
metabolism, and alanine, aspartate, and glutamate metabolism could be decelerated in
the fungus in response to long-term salinity. In comparison with ∆LeuRS_LS/∆LeuRS_C,
m-coumaric acid (log2FC = −4.9) decreased in WT_LS/WT_C. Among the co-occurring
compounds, the sugars were more negatively regulated in ∆LeuRS_LS/∆LeuRS_C than
in WT_LS/WT_C (Figure 5d). However, WT_LS increased its relative abundances of
kynurenic acid (log2FC = 11.8) in tryptophan metabolism and decreased the levels of 4-
hydroxyphenylpyruvate (log2FC = −14.2) in tyrosine metabolism.
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4. Discussion

A. montevidensis is commonly used in the production of traditional fermented
foods [4,7]. During fermentation processes, the transcriptional responses of A. montev-
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idensis to osmotic conditions are necessary for the flavor formation of foods. To reveal
the functions of LeuRS (which were strikingly expressed higher in A. montevidensis under
osmotic stress), we constructed a knockout mutant of LeuRS and found that the deletion
of LeuRS inhibited growth both in the presence and absence of NaCl and deactivated
the formation of cleistothecium compared to the WT strain (Figure 1). We also found
another LeuRS (which was designated as mLeuRS, encoding a mitochondrial leucyl-tRNA
synthetase) in the fungus. The average FPKM values of mLeuRS were higher in ∆LeuRS_C
(25.7 FPKM) and ∆LeuRS_SS (24.9 FPKM) than in WT_C (5.0 FPKM) and WT_SS (6.2 FPKM),
but lower in ∆LeuRS_LS (5.2 FPKM) compared to WT_LS (11.1 FPKM). This could be the
reason why the knockout of LeuRS in the fungus did not cause lethality. Transcriptomic and
metabolomic analyses revealed that LeuRS are closely related to ABC transporters, amino
acid metabolism, carbohydrate metabolism, and sexual development of A. montevidensis.

Here, we observed that DEGs associated with ATP-binding cassette (ABC) transporters
were down-regulated in ∆LeuRS, while they were obviously increased in WT samples
(Figure 4, Table S1). Long-term saline induction increased the transcriptional levels of
ABC transporters in mutants. Extensive research showed that ABC transporters are evolu-
tionarily conserved integral membrane proteins responsible for the allocation of a wide
variety of substrates, including ions, sugars, amino acids, polypeptides, complex lipids,
toxic metabolites, and even toxins [27,28]. Previous reports also indicated that the specific
upregulation of some ABC transporters was involved in cell osmo-stress tolerance [29,30].

Specific regulation of amino acid metabolism is crucial to controlling cell growth
and proliferation, and osmotic adjustment of all living organisms [8,31,32]. As expected,
34 significant DEGs between ∆LeuRS and WT groups under short- and long-term salt stress
were associated with the metabolism pathways of many amino acids (Table S1). We found
that many up-expressed genes of ∆LeuRS mutants with short- and long-term saline stresses,
compared to controls (∆LeuRS_C), were significantly enriched in four KEGG pathways of
amino acid metabolism (alanine, aspartate, and glutamate metabolism, arginine and proline
metabolism, and tryptophan metabolism, etc.). In contrast, the decreased expression of
DEGs between the WT_LS vs. WT_C groups were mainly enriched in alanine, aspartate, and
glutamate metabolism, and arginine and proline metabolism. Furthermore, we observed
that ∆LeuRS_LS up-expressed DEGs in mitophagy (Figure 3a), suggesting that the recycling
of nutrients to avoid carbon and nitrogen starvation may be an important survival strategy
for the fungus with long-term cultivation under osmotic stress.

We found that ∆LeuRS mutants exposed to salt stress increased the expression of genes
encoding glutamine synthetase and aspartate carbamoyl transferase, which were associated
with alanine, aspartate, and glutamate metabolism. These proteins were up-regulated in
salt-induced plants [33,34]. However, ∆LeuRS with or without salt significantly inhibited
the transcription of gene-encoding enzymes such as aspartate aminotransferase, succinate-
semialdehyde dehydrogenase, and 1-pyrroline-5-carboxylate dehydrogenase. Previous re-
ports showed that up-expression of aspartate aminotransferase and 1-pyrroline-5-carboxylate
dehydrogenase was important for the survival of plants under saline conditions [33,35]. Fur-
thermore, we observed that WT strains under long-term saline conditions increased the levels
of some amino acids and organic acids (e.g., DL-phenylalanine, N-(2-furoyl) glycine, and
3-methyladipic acid) (Figure 5), which could contribute to the salt adaptation of the fungus.

Previous studies indicated that the activation of arginine and proline metabolism con-
fers enhanced stress tolerance in different eukaryotes [8,36]. However, little is known about
the regulatory mechanism of the pathway. Here, we found that DEGs were significantly
enriched in arginine and proline metabolism (Figure 4, Table S1). The expression of genes
encoding ornithine decarboxylase and the S-adenosylmethionine decarboxylase proenzyme
increased in ∆LeuRS_LS and WT_LS, compared to their controls. These genes participated
in the biosynthesis of polyamines, which can improve plant tolerance to salinity by scav-
enging free radicals [37]. A gene-encoding D-amino acid oxidase was up-expressed in
∆LeuRS_LS/∆LeuRS_C, which accelerates the process of proline transformation into 1-
pyrroline-2-carboxylate in proline metabolism. A previous study showed that the increase
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in D-amino-acid oxidase activity was correlated with the heat tolerance of fungi [38]. Inter-
estingly, the expression of all genes (such as carbamoyl-phosphate synthase, arginase, and
argininosuccinate synthase) in the ornithine cycle was strongly down-regulated in ∆LeuRS
groups, while they maintained high transcriptional levels in WT samples. In addition, two
gene-encoding arginase and argininosuccinate synthase in mutants were fully blocked. The
deletion of carbamoyl-phosphate synthase in Colletotrichum gloeosporioides led to a slow
growth rate and an extreme sensitivity to high osmotic stress [39]. Up-regulation of arginase
could alleviate damage to plants caused by salinity [40]. These suggested that LeuRS could
mediate the ornithine cycle in the fungal adaptation to salinity. Moreover, we observed
that some genes in tryptophan metabolism also maintained relatively low expression in
LeuRS_C and LeuRS_SS, but they were enhanced in LeuRS_LS. A similar case in the plant
showed that activation of the phenylalanine, tyrosine, and tryptophan pathways improved
osmoprotective ability [41]. ∆LeuRS under salt stress specially modulated the metabolic
flow of some amino acids, which might rescue mutant defects in terms of salt tolerance.

Sugar metabolism has been shown to play a key role in maintaining osmotic home-
ostasis and intracellular energy balance through carbon partitioning in microbes [42]. Here,
we observed that many DEGs in ∆LeuRS maintained relatively low expression, which
encoded enzymes involved in the glycolysis/glucoseogenesis, citrate cycle, and glyoxylate
and dicarboxylate metabolism (Table S1). Hexokinases control the first step of all major
pathways of glucose utilization and therefore influence the extent and direction of glucose
flux within the cell. The expression of hexokinases promoted tolerance to drought and salt
stress in plants [43]. Increased expression levels of enolase and malate dehydrogenase in
∆LeuRS could promote the fungus to overcome salt. These genes were also up-regulated
in halophytes exposed to hypersaline stress [44,45]. In addition, activation of glyoxylate
and dicarboxylate metabolism was shown in sesames for tolerance to salinity [46]. Mu-
tants under long-term salinity stress markedly increased the expression of genes coding
catalase (which catalyzes the dismutation of H2O2 into H2O and O2) but almost abolished
the expression of (S) -2-hydroxy acid oxidase (which transforms glycolate into H2O2 and
glyoxylate), suggesting that the elimination of reactive oxygen species is important for
fungal osmoadaptation. And the salt-induced WT samples up-regulated many compatible
sugars (e.g., sucrose, D-mannose, and D-mannose 1-phosphate) (Figure 5), suggesting that
soluble sugars could act as osmoprotectants in the fungus.

We found that some genes encoding transcription factors (such as the Zn (II) 2 Cys6
(C6) transcription factor, BrlA, and HOG1), maintained relative low expression in ∆LeuRS
(Table S1). C6-like transcription factors regulated the metabolism of branched-chain
amino acids (leucine, isoleucine, and valine) in A. fumigatus and sexual development
in N. crassa [47,48]. BrlA, a central regulator, activates the conidial developmental pathway
of A. nidulans [13]. And activation of the HOG1-mediated pathway promotes osmotic
tolerance and influences sexual reproduction of fungi [49,50]. In addition, ∆LeuRS varied
the expression levels of other reproduction-related genes in aspergilli. The core ‘velvet’
proteins (VeA, VelB, and LaeA) play a pivotal role in light and dark regulation of sex-
ual development [51]. The removal of VeA increased the sensitivities to high osmolarity,
oxidation stress, and triggered the production of fungal conidia [52]. Collectively, our
results suggested that LeuRS modulated the metabolism of some amino acids and fungal
reproduction by regulating the activities of relative transcription factors.

5. Conclusions

We constructed the ∆LeuRS mutant and characterized the cellular function of LeuRS in
A. montevidensis under osmolarity conditions. Our results demonstrated that the deletion of
LeuRS influenced the expression of multiple genes of the halophilic fungus. We observed that
the mutants varied the expression levels of many genes that govern reproduction processes
in the fungus (Figure 6a). We found that DEGs of ∆LeuRS mutants and WT strains were
significantly enriched in KEGG pathways such as ABC transporters, alanine, aspartate and
glutamate metabolism, arginine and proline metabolism, ornithine cycle, and sugar metabolism
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(Figure 6b). Metabolomic analyses showed that a range of metabolites varied significantly in
this pairwise comparison, such as amino acids, sugars, and organic acids. The findings will help
reveal the osmoadaptation strategies of A. montevidensis under high saline conditions.
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