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Abstract: The plant pathogenic fungus Cytospora is notoriously known for causing woody plant
canker diseases, resulting in substantial economic losses to biological forests and fruit trees worldwide.
Despite their strong negative ecological impact, the existing and prospective distribution patterns
of these plant pathogens in China, according to climate change, have received little attention. In
this study, we chose three widely dispersed and seriously damaging species, namely, Cytospora
chrysosperma, Cytospora mali, and Cytospora nivea, which are the most common species that damage the
Juglans regia, Malus domestica, Eucalyptus, Pyrus sinkiangensis, Populus spp., and Salix spp. in China. We
utilized ecological niche modeling to forecast their regional distribution in China under four climate
change scenarios (present, SSP 126, SSP 370, and SSP 585). The results show that temperature-related
climate factors limit the current distribution ranges of the three species. Currently, the three studied
species are highly suitable for northeast, northwest, north, and southwest China. Under future
climate scenarios, the distribution ranges of the three species are projected to increase, and the centers
of the adequate distribution areas of the three species are expected to shift to high-latitude regions.
The three species coexist in China, primarily in the northwest and north regions. The ecological
niches of C. chrysosperma and C. nivea are more similar. The distribution range of C. mali can reach
the warmer and wetter eastern region, whereas C. chrysosperma and C. nivea are primarily found
in drought-prone areas with little rainfall. Our findings can help farmers and planners develop
methods to avoid the spread of Cytospora spp. and calculate the costs of applying pesticides to reduce
contamination and boost yields.

Keywords: climate warming; fungal pathogens; habitat shifts; niche overlap; species distribution
model

1. Introduction

Plant pathogens have significant impacts on plant output all around the world [1].
Climate change can directly lead to plant production losses through agricultural meteoro-
logical disasters or indirectly through the impacts of plant pathogens [2]. Many studies
have found that climate change is a major driver of plant pathogen spatial pattern changes
and may improve plant pathogen overwintering survivability [3,4]. The distribution range
of many plant pathogens is expected to continue shifting toward high-latitude and high-
altitude locations [5,6]. Thus, understanding the spatial distribution patterns, population

J. Fungi 2024, 10, 38. https://doi.org/10.3390/jof10010038 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof10010038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0001-5575-0122
https://doi.org/10.3390/jof10010038
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof10010038?type=check_update&version=2


J. Fungi 2024, 10, 38 2 of 17

diversity, and compositions of plant pathogens affected by climate is critical for reducing
plant disease losses.

Members of the Cytospora genus are found worldwide and are frequently considered
endophytes, saprobes, or phytopathogens that can infect many hosts [7,8]. Cytospora
species are mostly connected with woody plant canker diseases such as plant infections.
Other diseases, such as Chinese jujube root rot and pomegranate collar rot, have also
been observed [9,10]. Wounds caused by biotic (insects and birds) and abiotic (wind,
drought, frost, rain, and hail) stress are the primary ways that Cytospora species infect
host plants [11–13], indicating that harsh circumstances are always favorable for these taxa
in China [14]. The genus Cytospora has 110 species, 31 of which have been identified in
China [15]. Among the numerous pathogens attacking important economic woody plants,
such as Juglans regia [16], Malus domestica [17,18], Eucalyptus [7], Pyrus sinkiangensis [17,18],
Populus spp. [19,20], and Salix spp. [13], Cytospora chrysosperma, C. nivea, and C. mali are
the most common species and cause severe economic and ecological losses, especially in
China [8,13,21]. Their occurrence, development, distribution, and prevalence are vital to
the long-term development of China’s forestry industry in the northeast, northwest, north,
and southwest [8,13].

Understanding the basic biological features of these three species may help us better
appreciate their dangers and the need to anticipate future suitable areas. The first species is
C. chrysosperma, which is thought to be the primary cause of Salicaceae canker disease, raising
quarantine concerns, particularly in China [8,22]. The species is a typical Cytospora species
with a wide host range across Europe, Asia, Africa, Australia, and America [7,14,23]. The
optimal growth temperature of C. chrysosperma is 28 ◦C [24]. The second species is C. mali;
like other Cytospora species, it is typically known as an opportunistic pathogen occurring
within a relatively narrow host range and mainly attacks economically important fruit
crops, such as Malus domestica and Pyrus sinkiangensis [15,25] in China and Japan. C. mali is
one of the few well-studied critical pathogens in the genus Cytospora concerning its biology,
infection, and populations. Previous research has shown that C. mali can survive in the
xylem for five years [26] and that the conidia can maintain their germination potential for
16 days at −15 ◦C, indicating that the species has strong environmental adaptability [27,28].
The optimal growth temperature of C. mali is 25 ◦C [24]. The third species is C. nivea, which,
like C. chrysosperma, is the second most common pathogenic fungus that mainly harms the
host of the Salicaceae family in Asia, Europe, and South America [13,29,30]. Meanwhile,
it can also harm Juglans regia [16], Malus domestica [18], and Pyrus sinkiangensis [17]. The
optimal growth temperature of C. nivea is 25 ◦C [24]. From the above, we speculate that
the distribution ranges, niche overlap, and climatic preferences may differ between these
species, but their geographical distributions and determinants have not yet been addressed.
Thus, additional disease management strategies are needed.

Global temperature change is widely acknowledged to significantly impact species dis-
tribution [6,31,32] and may increase fungal infections [6,33]. However, few studies [5,34,35]
have explored the dispersion of fungi on large spatial and temporal scales due to their
distinctive life cycles and development patterns. Determining the potential geographic
range of the Cytospora canker is crucial for field management decision making and surveil-
lance. GIS (Geographic information systems) and SDM (spatial data management) present
a possible solution to this problem [3]. They will expand across more species, geographic
regions, and research topics [5,36].

Currently, niche models like the Maxent (Maximum Entropy) model [37], ENFA
(Ecological Niche Factor Analysis) model [38], CLIMEX (Climate Change Experiment) [39],
and GARP (Genetic Algorithm for Rule-set Production) model [40] and GLMs (Generalized
Linear Models) [41] are widely used to simulate and predict the appropriate areas of
fungal diseases [5,42–44]. The Maxent modeling approach is widely utilized among these
models due to its superior predictive performance [5,45,46]. It is effective even when few
occurrence records are known and the association between climatic and environmental
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elements is unpredictable [6,44,47]. Therefore, we used the Maxent model to analyze the
potential distribution of the chosen species.

Given that C. chrysosperma, C. mali, and C. nivea have been linked to woody plant
canker diseases, elucidating their ecological and physiological characteristics, such as
distribution ranges, habitat shifts, niche overlap, and climatic preferences, would aid in
disease prediction and the consideration of their controls. Therefore, the following problems
are addressed in this study: (1) determining the key environmental parameters impacting
C. chrysosperma, C. mali, and C. nivea distributions; (2) calculating the core distribution for
each species to estimate their appropriate areas under present and future climatic scenarios
and evaluating their migration propensity; and (3) computing and comparing species’ niche
overlap. We hope our findings will be valuable to policymakers in developing measures to
combat Cytospora canker disease.

2. Materials and Methods
2.1. Occurrence Records

All georeferenced occurrence records in our study were obtained from three differ-
ent sources: (1) GBIF (The Global Biodiversity Information Facility) (https://www.gbif.
org/); (2) relevant articles from the China National Knowledge Infrastructure (CNKI)
(https://www.cnki.net/), Web of Science (WOS) (https://www.webofscience.com/), and
Google Scholar (https://scholar.google.com.hk); and (3) GPS, which was used to gather
135 C. chrysosperma, 34 C. mali, and 25 C. nivea occurrence points during fieldwork in
the Xinjiang Uygur Autonomous Region, China in 2019 and 2023. By ensuring that
no two occurrence data points were inside the same raster (~5 km2) [6,48], ENMTools
(https://github.com/danlwarren/ENMTools) was utilized to prevent spatial autocorre-
lation from impairing the model’s performance [48,49]. Ultimately, 374 global occurrence
data points for C. chrysosperma, 164 for C. mali, and 166 for C. nivea were retained by our
study (Figure 1 and Supplementary Table S1).
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2.2. Environmental Factor Variables

Numerous factors, such as the habitat’s climatic suitability, topography, land cover,
and dispersal history, are probably responsible for the spread of numerous fungi [5,21,50].
Since C. chrysosperma, C. mali, and C. nivea typically affect woody plants, we selected soil and
vegetation conditions as limiting ecological variables in this study. Supplementary Table S2
displays the selected environmental variables, which include 19 bioclimatic factors, three
topographical factors (aspect, slope, and altitude), one global land cover data point (~1 km),
and 11 topsoil factors (0–30 cm) with a 2.5 arc-min spatial resolution. These variables were
obtained from the World Climate website (http://www.worldclim.org), the Harmonized
World Soil Database (http://www.fao.org/soils-portal/), and the Global Maps website
(http://globalmaps.github.io). Future climate data were based on BCC-CSM2-MR data in
the Coupled Model Intercomparison Project Phase 6 (CMIP6), which is more appropriate
for Asia, particularly China [51,52]. To predict the future distributions of C. chrysosperma,
C. mali, and C. nivea in 2030, 2050, 2070, and 2090, three independent socioeconomic models
driven by CO2 and shared socioeconomic pathways (SSPs) 126, 370, and 585 were chosen
in this study.

The species distribution models (SDMs) may overfit due to multicollinearity amongst
bioclimatic variables [43]. To eliminate multivariate collinearity, we utilized ENMTools
to evaluate the correlation coefficients of the bioclimatic variables. Finally, we kept sev-
eral meaningful bioclimatic variables for each research species based on the correlation
coefficient of the bioclimatic variables (|r| > 0.8) and the contribution of each bioclimatic
variable (Supplementary Figure S1) [6,45,48].

2.3. Model Simulation, Optimization, and Evaluation

The regularization multiplier (RM) and feature classes (FCs) are the two most im-
portant parameters of the Maxent model, aside from occurrence records and associated
bioclimatic variables. A suitable combination of these elements can raise the sensitivity of
the model while lowering the risk of overfitting [45,53]. The Maxent model’s parameters
were calibrated using the R 3.6.3 “Kuennm” package to determine the ideal model tuning
settings for each research species. We examined 31 different FC combinations (L for linear,
Q for quadratic, H for hinge, P for product, and T for threshold), and the RM varied progres-
sively throughout a 0.1-unit interval from 0.1 to 4. With delta Akaike minimal information
criterion (AICc) values as low as possible (delta AICc = 0 or <2) [54,55], the best Maxent
models were identified. Finally, RMs of 0.4, 1.5, and 1.2 were chosen for C. chrysosperma,
C. mali, and C. nivea, respectively, along with feature combinations of LQP, LQH, and QT
(Table 1).

Table 1. Results of MaxEnt models with optimized parameters developed for three studied species.

C. chrysosperma C. mali C. nivea

n 374 164 166
RM 0.4 1.5 1.2
FC LQP LQH QT

ntrain 280 123 124
ntest 94 41 42

Train. AUC 0.9186 0.9892 0.9654
avg.test.AUC 0.921 0.987 0.946

AICc 10,614.12 3921.17 4564
delta.AICc 0 0 0

TSS 0.797 0.898 0.802
Note: n: number of species occurrences used in modelling; RM: regularization multiplier; FC: feature class; ntrain:
number of species occurrences used in training the model; ntest: number of species occurrences used in testing
the model; Train. AUC: area under the curve for training data; avg.test.AUC: area under the curve for testing data.
The AUC values are the means across 10 replicates.

http://www.worldclim.org
http://www.fao.org/soils-portal/
http://globalmaps.github.io
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Then, we adjusted the parameters of the Maxent and completed the modeling of the
studied species. Specifically, “Create response curves”, “Random seed”, “Do jackknife
to measure variable importance”, “Write plot data”, “Write background predictions”,
“Replicates 10”, “Replicated run type subsample”, “output file type ‘.asc’”, and “Output
format logistic” were the parameters set by the Maxent model. Training data accounted for
75% of the distribution data, with testing data making up the remaining 25%. The default
values for the other settings of the software were used. To assess the performance of the
model, we used the values of the true skill statistic and area under the receiver operating
characteristic (ROC) curve (AUC). AUC values vary from 0 to 1 [56]. A prediction is deemed
bad if it is less than 0.5, acceptable if it is between 0.5 and 0.7, good if it is between 0.7 and
0.9, and outstanding if it is between 0.9 and 1 [6,57]. TSS was rated as failed, <0.4; good,
0.4–0.75; and excellent, >0.75 [58,59]. In addition, the efficacy of the model was confirmed
in this study by contrasting the results with the field survey data.

2.4. Assessment of Current and Future Distribution Areas

ArcGIS 10.4.1 was used to visualize and further analyze the continuous habitat suit-
ability maps created for each study species. Based on the maximum test sensitivity plus
specificity (MTSPS) threshold [6,25,60], binary suitability maps (unsuitable and suitable
areas) for each study species were constructed. We developed four climate suitability cate-
gories for the three species, unsuitable, low suitable, medium suitable, and high suitable, to
interpret the prediction results more easily [6].

Changes in the distribution regions of species can be efficiently reflected by core
distribution migration [5]. Therefore, we employed SDMtoolbox (version 2.4) [61] to derive
the core distribution migration of three species under present and future concentration
scenarios and explain changes in the distribution of the appropriate species areas more
clearly. Core distribution migration results were obtained using SDMtoolbox (version 2.4)
by importing the “.asc” files produced under various concentration scenarios predicted by
the Maxent model into ArcGIS 10.4.1. After that, additional analysis was conducted on the
direction and distance of the core distribution migration [61]. Additionally, we calculated
the contraction and expansion of the potential range of C. chrysosperma, C. mali, and C. nivea
in China with climate change using SDMtoolbox (version 2.4).

2.5. Niche Overlap Analysis

ENMTools (version 1.3) was used to compare the ecological niches of our research
species to Maxent projections. Hellinger’s I and Schoener’s D values represented the degree
of niche overlap. D values range from 0 (no overlap) to 1 (more than 0.6 indicates signifi-
cant overlap) [48,62,63]. Additionally, we used ArcGIS 10.4.1 to identify the homologous
distribution areas of the three species and mapped the overlapping areas of the species
niches under various conditions [43,45].

3. Results
3.1. Model Performance and Variable Contribution

AUC and TSS values have frequently been employed to assess SDM model perfor-
mance [52,64]. The greater the value, the stronger the relationship between bioclimatic
factors and the expected distribution area, and the better the model works [65,66]. The
average AUC values for 10 repetitions for C. chrysosperma, C. mali, and C. nivea were 0.921,
0.987, and 0.946 (Figure 2), respectively. Their TSS values were 0.797, 0.898, and 0.802,
all exceeding 0.79 (Table 1 and Supplementary Figure S2), indicating that the optimized
Maxent model predicted the potential distribution well.
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C. mali and C. nivea, respectively.

Based on detailed jackknife testing and a percent contribution study, the main influ-
encing factors for the geographical distribution of the three research species are different
(Supplementary Figure S3). The most important bioclimatic variable in the predictions for
C. chrysosperma was the annual mean temperature (Bio 1, 64.4%). Other important biocli-
matic variables included land cover (8.6%), mean diurnal range (Bio 2, 7.9%), seasonality of
precipitation (Bio 15, 7.9%), and topsoil gravel content (T-grave, 7.6%), with a total contri-
bution rate of up to 96.4% (Supplementary Table S3). The mean temperature of the driest
quarter (Bio 9, 35.4%) had the highest mean contribution to the C. mali models, followed by
precipitation of the coldest quarter (Bio 19, 18.8%), precipitation of the warmest quarter
(Bio 18, 11.3%), land cover (11%), and temperature seasonality (Bio 4, 9.5%), with a total
contribution rate of up to 86% (Supplemental Table S3). The most significant environmental
variable that affected the AUC of the models for C. nivea was the mean temperature of the
coldest quarter (Bio 11, 67.7%). This was followed by the precipitation of the wettest month
(Bio 13, 9.2%), the mean diurnal range (Bio 2, 7.2%), and the topsoil TEB (5.4%), with a total
contribution rate of up to 89.5% (Supplementary Table S3).

For C. chrysosperma, the optimal ranges of the mean diurnal range (Bio 2), annual
mean temperature (Bio 1), land cover, and precipitation seasonality (Bio 15) were >1.9 ◦C,
−2.76–17.19 ◦C, >3.18, and 0–120.14 mm, respectively (Supplementary Figure S3A and
Supplementary Table S4). For C. mali, the optimal ranges of the precipitation of the
coldest quarter (Bio 19), mean temperature of the driest quarter (Bio 9), precipitation
of the warmest quarter (Bio 18), land cover, and temperature seasonality (Bio 4) were
>0–46.55 mm, >−10.46–9.17 ◦C, 8.57–927.25 mm, and 7.08–19.23, respectively (Supplemen-
tary Figure S3B and Supplementary Table S4). For C. nivea, the optimal ranges of the precip-
itation of the wettest month (Bio 13), mean temperature of the coldest quarter (Bio 11), and
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T-teb were 0–154.09 mm, >−13.64–4.75 ◦C, and 0–46.58, respectively (Supplementary Figure
S3C and Supplementary Table S4). In addition, the range of the maximum probability of
factors of the three studied species is shown in Supplementary Table S4.

3.2. Current Distribution Regions of the Three Species

The prediction results of C. chrysosperma, C. mali, and C. nivea in China fit the known
distribution in native ranges, reflecting the detection efficiency of our models. Among
them, C. chrysosperma had the largest possible distribution area, covering approximately
36.2 × 105 km2, accounting for 37.7% of the Chinese land surface area. The high- and
medium-suitability areas primarily included Xinjiang, Gansu, Ningxia, Shaanxi, Sichuan,
Midwest Nei Monggol, south-central Shanxi, and north Henan, with sporadic distributions
in of Liaoning, Eastern Heilongjiang, Jilin, Shandong, Hebei, Qinghai, Xizang, Yunnan, and
Guizhou (Figure 3A and Supplementary Table S5). Meanwhile, C. mali had a relatively nar-
rower distribution range than C. chrysosperma. Specifically, C. mali covered approximately
32.4 × 105 km2, accounting for 33.8% of the Chinese land surface area. The high- and
medium-suitability areas primarily involved Gansu, Shaanxi, Shanxi, Hebei, Shandong,
Sichuan, Henan, and Tianjin, with sporadic distributions in Ningxia, Liaoning, Beijing, and
Xinjiang (Figure 3B and Supplementary Table S6). Moreover, C. nivea covers the smallest
possible distribution area of approximately 27.9 × 105 km2, accounting for 29.1%. The high-
and medium-suitability areas were mainly in Xinjiang, Gansu, Ningxia, and Shaanxi, with
sporadic distributions in Qinghai, Xizang, Shanxi, Hebei, and Nei Monggol (Figure 3C and
Supplementary Table S7).
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Figure 3. The current potential geographical distribution for three studied species in China.
(A–C) represent C. chrysosperma (no suitability p ≤ 0.2812; low suitability 0.2812 < p ≤ 0.4; medium
suitability 0.4 < p ≤ 0.6; high suitability p > 0.6, p = probability), C. mali (no suitability p ≤ 0.0887;
low suitability 0.0887 < p ≤ 0.4; medium suitability 0.4 < p ≤ 0.6; high suitability p > 0.6, p = prob-
ability) and C. nivea (no suitability p ≤ 0.1184; low suitability 0.1184 < p ≤ 0.4; medium suitability
0.4 < p ≤ 0.6; high suitability p > 0.6, p = probability), respectively.
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3.3. Future Distribution Changes of the Three Species

North Qinghai and most of Xinjiang, Gansu, Ningxia, Shaanxi, Nei Monggol, and
Sichuan are mainly possible distribution zones for C. chrysosperma with climate change
(Supplementary Figure S4). The medium-suitability habitat is predicted to expand as a
result of climate change. At the same time, the low- and high-suitability habitats will
generally decrease to varying degrees. The average suitable area (39.61%) would increase
under the 12 future climatic scenarios compared to the current time (37.75%) (Supplemental
Table S5). Although C. mali has a narrower range of acceptable habitats than C. chrysosperma,
it may adapt to wetter and warmer climates, such as those in Henan, Shandong, Jiangsu,
Hubei, Sichuan, and Guizhou (Supplementary Figure S5). In the 12 future climate scenarios,
the high-, medium-, and low-suitability habitats are expected to increase remarkably, and
the average suitable areas (44.29%) would increase compared with the current time (33.79%)
(Supplementary Table S6). The range of potentially suitable habitats for C. nivea was the
smallest, occurring only in Xinjiang, Gansu, Nei Monggol, Ningxia, Xizang, Shaanxi, and
Qinghai (Supplementary Figure S6). The high-, medium-, and low-suitability habitats are
predicted to expand due to climate change. The average suitable area (34.08%) would
increase compared with the current period (29.13%) (Supplementary Table S7).

Supplementary Figures S7–S9 and Tables S8–S10 illustrate the contraction and expan-
sion of the potential range of C. chrysosperma, C. mali, and C. nivea in China with climate
change. Although the extent of the possible range changes varied among the SSPs, all
the SSPs anticipated northward shifts in the prospective distributions of the three species.
C. chrysosperma migrated into high-latitude and high-altitude habitats. At the same time,
C. mali and C. nivea migrated to high latitudes and locations, but their tendency to migrate
to high altitudes was not great. The expansion area under a high-emission scenario for the
three studied species was larger than that under a low-emission scenario compared to the
current climatic conditions. The contraction area under a low-emission scenario was lower
than that under a high-emission scenario. The results indicate that future climate change
will considerably alter the range of appropriate habitats for the three species.

3.4. Comparisons of Overlapping Areas, Distribution Centroids, and Ecological Niches for the
Three Studied Species

The predictions of the Maxent model under the current climate conditions suggested
that the appropriate areas for the three studied species overlapped to varied degrees
with the suitable area (Figure 2). The overlapping area between C. chrysosperma and
C. nivea was the greatest (28.6 × 104 km2), followed by C. mali (24.9 × 104 km2). The
distribution centroids of C. chrysosperma, C. mali, and C. nivea were distributed in Qing-
hai (95.167233◦ N, 38.975466◦ E), Shanxi (111.386901◦ N, 36.032607◦ E), and Xinjiang
(88.912738◦ N, 38.976171◦ E), respectively, under the current climate change scenario
(Figure 4 and Table 2). Under various climate change scenarios, the centers of the appropri-
ate habitat areas of the three species were expected to shift to high-latitude regions.
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Figure 4. Centroid shifts of potential suitable area for three studied species under different climatic
scenarios in China. Red star indicates the centroids of the suitable habitats of each species under
current climate. Dots and triangles represent the centroids of the suitable habitats of each species
under different future climate scenarios. (A–C) represent C. chrysosperma, C. mali and C. nivea,
respectively.

Based on the predicted suitable habitat, we estimated the niche overlap index and
mapped the overlap of the potential distribution habitats of the three studied species in
China. According to Table 3, there was less niche overlap between C. chrysosperma and
C. mali (D = 0.6093, I = 0.8730) than between C. chrysosperma and C. nivea (D = 0.6848,
I = 0.8956). However, The range overlap between C. chrysosperma and C. nivea was higher
(0.9246) than that between C. chrysosperma and C. mali (0.5285). There was niche overlap
and separation for C. mali and C. nivea (D = 0.5488, I = 0.8342) (Table 2). In China, the
main niches of C. chrysosperma overlapped with the niches of C. mali and C. nivea. These
three species coexist mainly in the northwest and north regions. The niche of C. mali could
reach the warm and wet eastern region. In contrast, the niches of C. chrysosperma and
C. nivea mainly existed in drought with low rainfall areas in western China (Figure 5).
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Table 2. Centroid migration of suitable areas under future climatic conditions for target species.

Climate
Scenario Period

C. chrysosperma C. mali C. nivea

Centroid Coordinates
Direction

Migration Distance
(between Two

Adjacent Decades)/km

Centroid Coordinates
Direction

Migration Distance
(between Two

Adjacent Decades)/km

Centroid Coordinates
Direction

Migration Distance
(between Two

Adjacent Decades)/kmLongitude/◦E Latitude/◦N Longitude/◦E Latitude/◦N Longitude/◦E Latitude/◦N

Current 1970–2000 95.167233 38.975466 111.386901 36.032607 88.912738 38.976171

SSP126

2021–
2040/2030s 96.384066 39.277208 Northeast 121.2 112.219521 36.523203 Northeast 94.9 88.8893 39.451271 North 47.3

2041–
2060/2050s 95.031757 39.852458 North 87.9 109.422709 37.353043 Northwest 233.1 89.254026 39.630005 Northeast 72.8

2061–
2080/2070s 93.884674 39.677991 Northwest 142 111.562266 36.889047 North 89.9 89.63857 39.039926 East 70.3

2081–
2100/2090s 94.108974 39.599974 Northwest 119.5 112.715643 37.086877 Northeast 167.9 88.766862 39.619537 North 65.4

SSP370

2021–
2040/2030s 94.694191 39.439458 Northwest 64.9 111.993312 36.533684 Northeast 78.1 87.694677 39.260652 Northwest 120.9

2041–
2060/2050s 96.251491 39.65637 Northeast 124.5 110.404936 36.987467 Northwest 136.6 90.421173 39.58158 Northeast 157.5

2061–
2080/2070s 96.823543 40.015276 Northeast 190.1 110.302057 38.467943 Northwest 269.6 92.634879 39.851333 Northeast 369.5

2081–
2100/2090s 95.217266 40.065931 North 108 109.974273 39.039433 Northwest 334.7 92.541241 39.471202 Northeast 353.5

SSP585

2021–
2040/2030s 96.086851 39.460776 Northeast 101 111.449265 36.712647 North 70.4 92.446198 39.424921 Northeast 343.8

2041–
2060/2050s 95.797745 39.988979 Northeast 117.3 109.659796 37.813257 Northwest 247.1 88.884588 39.648996 North 66.8

2061–
2080/2070s 94.599344 39.759687 Northwest 95.1 111.468502 38.464054 North 248.2 90.324758 39.656755 Northeast 152.1

2081–
2100/2090s 93.923118 39.618821 Northwest 136 111.381883 39.413539 North 342.8 90.021173 39.851333 Northeast 137.7
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Table 3. Niche and range overlap of the potential distribution habitats of the three species.

Species
Niche Overlap (D) Niche Overlap (I) Range Overlap Niche

BreadthC. chrysosperma C. mali C. nivea C. chrysosperma C. mali C. nivea C. chrysosperma C. mali C. nivea

C. chrysosperma 1 0.6093 0.6848 1 0.8730 0.8956 1 0.5285 0.9246 0.49
C. mali - 1 0.5488 - 1 0.8342 - 1 0.0912 0.31
C. nivea - - 1 - - 1 - - 1 0.34

Note: D = Schoener’s D, I = Hellinger’s-based I.
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4. Discussion

Due to the unique growth features of fungi in comparison to other taxa such as animals
and plants, species distribution model (SDM) research on fungi began quite late and is
scarce [67]. However, with the rapid expansion of disciplines like statistics, computer
technology, and geographic information systems in recent years, fungi SDMs have notably
increased in the study of pathogenic microfungi, lichens, and macrofungi [5]. Although
there are many uses for fungi SDMs, the majority of them are grouped into three main
categories: (1) investigating environmental factors that influence occurrence, (2) forecasting
occurrence in specific regions, and (3) utilizing fungus as a model organism to investigate
ecological or methodological ideas [5]. For example, Ajene et al. [44] employed three
species distribution models (BIOCLIM, MaxEnt and Boosted Regression Trees) to predict the
current and future potential distribution of Candidatus Liberibacter asiaticus in Africa, and the
potential global distribution of Candidatus Liberibacter africanus, using long-term bioclimatic
variables. Ejaz et al. [47] utilized four SDMs (GLM, generalized linear model; GAM,
generalized additive model; GBM, generalized boosting model; and MaxEnt, maximal
entropy) to investigate the suitability of Fusarium spp. disease around the world under
climate change.
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Currently, there is little information on the prevalence and occurrence of Cytospora
canker in large-scale locations. During 2019–2023, our group conducted some work on the
epidemic dynamics of Cytospora canker in Xinjiang Uygur Autonomous Region, China,
focusing primarily on data gathering and field disease monitoring, laying the fundamental
work for constructing prediction models. In this work, we used Maxent to investigate the
possible habitat suitability of C. chrysosperma, C. mali, and C. nivea under present and future
climatic circumstances. The AUC values all exceeded 0.9, indicating excellent accuracy.
The climatic variables, particularly the temperature-related ones, are prominent factors for
the studied species when selecting their habitats, such as the annual mean temperature
(Bio 1), mean temperature of the coldest quarter (Bio 11), and mean temperature of the
driest quarter (Bio 9), followed by the precipitation factors. The topographical factors
(altitude, slope, and aspect) have weaker effects on species distribution. This could be
as a result of the three investigated species being impacted by environmental factors
disproportionately [68].

In general, the effects of terrain and soil factors on species distribution are frequently
limited to smaller spatial scales and have a stronger impact on pathogen host plants,
whereas climate factors, including temperature and precipitation, have the opposite ef-
fect [69]. Previous field investigations have indicated that the three examined species mostly
infect host plants via various wounds, temperature is the most important environmental
factor influencing the occurrence and prevalence of Cytospora canker disease, and precipi-
tation aids spore dispersal but has a minor impact [70]. Our findings demonstrated that
three of the examined species were highly adapted to the regions of north, northeast, and
northwest China, implying that the dry and cold circumstances in China are always good
for these taxa. The northern area of China, as is well known, has a temperate continental
climate and a temperate monsoon climate, with low annual rainfall, cold and dry winters,
and high summer temperatures, and wounds are prone to forming in this harsh climate
environment [71]. Furthermore, the ideal temperature for the three examined species is
25–28 ◦C [24], and strains cannot develop when the ambient temperature is below 5 ◦C
or above 35 ◦C [72]. Therefore, there are often two infection peaks for Cytospora canker
each year: one from March to May and another from September to October [24]. Infections
from November onward are extremely rare. This is in line with the finding that temper-
ature affects the distribution of the three species under study more so than precipitation.
Additionally, the models confirmed that C. chrysosperma was the most widely dispersed
species compared to C. mali and C. nivea, implying the greatest potential for harm within
the research area, consistent with the findings of previous resource surveys [13,15,19].
However, the predicted potential distributions of the three studied species were much
more comprehensive than currently documented. Therefore, additional survey efforts are
required to corroborate our findings.

Climate change has been documented as global warming and rising temperatures,
which could lead to the redistribution or extinction of species in the future [73,74]. Many
studies have shown that habitat migrations are primarily observed and expected to move
toward higher latitudes and altitudes under a warming climate [6,32]. Our results showed
a similar trend for C. chrysosperma. However, there is a trend for C. mali and C. nivea to
shift toward higher latitudes but not toward higher altitudes, suggesting that the altitude
either does not affect their distribution or has a minor impact. This may be because each
species has unique physiological properties. Thus, adaptations to future climates will
differ and depend on the ecological traits of the species. Additionally, the general trend
for suitable regions in China is increasing in all of the warming scenarios, and habitat
fragmentation is a crucial problem based on the range shift comparison of the present and
future (Supplementary Figures S6–S8 and Tables S8–S10). Unsuitable regions may become
suitable, whereas moderate and marginal areas may become ideal-suitability areas. This
indicates that China must deal with a more serious Cytospora canker crisis.

Niche breadth and niche overlap are essential indicators for describing the actual
ecological niche of a species, which, to some extent, reflects the characteristics of plants
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and their adaptability to the environment [75]. Niche breadth refers to the total utilization
of various environmental resources by species. In contrast, niche overlap is the degree of
similarity and competition between species in resource utilization [76]. In general, species
with wide ecological niches may be more resilient to climate change and more able to
adapt to it than species with narrow ecological niches [77]. C. chysosperma had the widest
niche breadth among the three species, followed by C. nivea. The niche and range overlaps
between C. chysosperma and C. nivea were high. Meanwhile, the geographical diffusion
centers of C. chysosperma and C. nivea were also relatively close. However, due to the
higher competitive ability of C. chysosperma than C. nivea, the potential diffusion range was
significantly higher than that of C. nivea. Although the niche overlap and range overlap of
C. chysosperma and C. mali were slightly lower than those of C. chysosperma and C. nivea, the
centroids of C. chysosperma and C. mali were far away (Figure 4 and Table 2). With climate
change, competition among these species may intensify as their harmful areas in China
increase, and spatial overlap is expected to increase.

The three studied species have different potential diffusion zones in northeast, north-
west, north, and southwest China. Therefore, it is necessary to develop corresponding
prevention and control measures for the potential diffusion characteristics and key diffu-
sion areas of each species to avoid unknown diffusion hazards. The border area between
Gansu, Xinjiang, and Qinghai must be given special attention because the current and
future core distributions of C. chrysosperma and C. nivea are located in this area. In the
future, the monitoring of C. nivea should be strengthened in north Xinjiang, central and east
Nei Monggol, central and west Xizang, and north Qinghai. The areas around Bohai Bay,
north Loess Plateau, north Qinghai, and north Xinjiang should focus on strengthening the
dynamic monitoring and quarantine of C. mali. The dynamic monitoring and quarantine
of C. chrysosperma should be strengthened in the western loess plateau, eastern, northeast,
and western Sichuan plateau, western Xizang, Tarim Basin, and Junggar Basin.

There are indeed some limitations to our study. First, the accuracy of species occurrence
data, especially from published sources, increases the forecasting uncertainty. Due to the
lack of latitude and longitude coordinates, precise distribution locations were determined
by searching for place names with coordinate positioning software, which may have
resulted in geographical mistakes. Second, the model was based on an ideal niche and did
not consider the effects of additional elements, such as the species self-diffusion ability,
sampling biases, uncertainties in identification and taxonomy, host conditions, species
interactions, human activities, variety type, medication frequency, and socioeconomic
structure. Third, prediction precision still has some limitations, although the individual
SDM model in this study demonstrated great prediction accuracy. The accuracy and
performance levels of SDMs vary considerably between approaches and species. Some
research has shown that approaches that integrate numerous individual models produce
robust estimates of the possible distributions of species, which can be used to increase
the model prediction accuracy. The causes mentioned above may result in discrepancies
between the expected and actual distributions. Therefore, future research must address
these issues that impact the precision of model predictions.

5. Conclusions

Based on the worldwide distribution records and bioclimatic data in this study, we
used the maximum entropy model (Maxent) to predict the potentially suitable areas of
C. chrysosperma, C. mali, and C. nivea in China. The findings revealed that temperature-
related climate factors limit the three species’ current distribution ranges. The three studied
species were highly suitable for northeast, northwest, north, and southwest China. Under
future climate scenarios, the distribution areas of the three species are expected to increase,
and the centers of the appropriate habitat areas of the three species will shift to high-
latitude regions. The three species coexist in China, primarily in the northwest and north
regions. The ecological niches of C. chrysosperma, C. nivea, and C. mali are more similar.
The distribution range of C. mali can reach the warmer and wetter eastern region, whereas
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C. chrysosperma and C. nivea are primarily found in drought-prone areas with little rainfall.
Our findings can help farmers and planners develop methods to avoid the spread of
Cytospora spp. and calculate the costs of applying pesticides to reduce contamination and
boost yields.
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mdpi.com/article/10.3390/jof10010038/s1: Figure S1 Correlation analysis of various environmental
factors. Figure S2 Jackknife test of variable importance Regularized training gain. Figure S3 Response
curves for predictors in MaxEne model. Figure S4 The future potential geographical distributions of C.
chrysosperma in China under future climatic conditions. Figure S5 The future potential geographical
distributions of C. mali in China under future climatic conditions. Figure S6 The future potential
geographical distributions of C. nivea in China under future climatic conditions. Figure S7 Adapt-
ability changes in C. chrysosperma under different future climate scenarios. Figure S8 Adaptability
changes in C. mali under different future climate scenarios. Figure S9 Adaptability changes in C. nivea
under different future climate scenarios. Table S1 Geographical distributions of C. chrysosperma, C.
mali and C. nivea species sampled in this study. Table S2 Environmental variables for current period
model analysis. Table S3 List of selected environmental variables for each species. Table S4 Key
climatic factors influencing habitat distributions of three species. Table S5 Dynamics of changes in
distribution area of C. chrysosperma under different climate scenarios. Table S6 Dynamics of changes
in distribution area of C. mali under different climate scenarios. Table S7 Dynamics of changes in
distribution area of C. nivea under different climate scenarios. Table S8 Percentage of distribution
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