Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal and Bacterial Strains Used and Culture Conditions
2.2. Recombinant Expression of Plant Defensins Using Pichia Pastoris
2.3. Fungal and Bacterial Growth Inhibition Assays
2.4. Alignment of Defensin Sequences
2.5. Beta-Glucan and Chitin-Binding Assays
2.6. Lipid-Binding Assays
2.7. Confocal Microscopy
2.7.1. Site-Specific Labelling of Ppdef1 with 5FAM
2.7.2. Treatment of Vacuole-Stained Yeast Cells with FAM-Labelled Ppdef1
2.7.3. Treatment of T. rubrum Hyphae with TAMRA-Labelled Ppdef1 for Visualisation of ROS Production or Permeabilization with SYTOX Green
2.8. Membrane Permeabilization of Ppdef1
2.9. Detection of Reactive Oxygen Species Using Flow Cytometry
2.10. Detection of Reactive Oxygen Species Using Flow Cytometry in the Presence of Ascorbic Acid
2.11. Screening of the S. cerevisiae Non-Essential Gene Deletion Set
2.12. Detection of Mitochondrial Hyperpolarisation Using Flow Cytometry
3. Results
3.1. Broad Spectrum Antifungal Activity of Ppdef1
3.2. Sequence Analysis
3.3. Lipid-Binding Analysis
3.4. Confocal Microscopy to Visualise Intracellular Ppdef1
3.5. Membrane Permeabilization
3.6. ROS Detection
3.7. Screening the Non-Essential S. cerevisiae Deletion Collection
3.8. Strains with Deletions in Genes with Mitochondrial Function Are Resistant to Ppdef1
3.9. Ppdef1 Induces the Hyperpolarization of the Mitochondrial Membrane
3.10. Ppdef1 Binds to the Surface and Permeabilizes the Plasma Membrane of Trichophyton rubrum
3.11. Ppdef1 Induces ROS Production in T. rubrum
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marmiroli, N.; Maestri, E. Plant peptides in defense and signaling. Peptides 2014, 56, 30–44. [Google Scholar] [CrossRef] [PubMed]
- De Beer, A.; Vivier, M.A. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res. Notes 2011, 4, 459. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Carvalho, A.; Moreira Gomes, V. Plant defensins and defensin-like peptides-biological activities and biotechnological applications. Curr. Pharm. Des. 2011, 17, 4270–4293. [Google Scholar] [CrossRef] [PubMed]
- Lay, F.; Anderson, M. Defensins-components of the innate immune system in plants. Curr. Protein Pept. Sci. 2005, 6, 85–101. [Google Scholar] [CrossRef] [PubMed]
- García-Olmedo, F.; Molina, A.; Alamillo, J.M.; Rodríguez-Palenzuéla, P. Plant defense peptides. Pept. Sci. 1998, 47, 479–491. [Google Scholar] [CrossRef]
- van der Weerden, N.L.; Anderson, M.A. Plant defensins: Common fold, multiple functions. Fungal Biol. Rev. 2013, 26, 121–131. [Google Scholar] [CrossRef]
- Kaewklom, S.; Wongchai, M.; Petvises, S.; Hanpithakphong, W.; Aunpad, R. Structural and biological features of a novel plant defensin from Brugmansia × candida. PLoS ONE 2018, 13, e0201668. [Google Scholar] [CrossRef]
- Parisi, K.; Shafee, T.M.; Quimbar, P.; van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. The evolution, function and mechanisms of action for plant defensins. Semin. Cell Dev. Biol. 2019, 88, 107–118. [Google Scholar] [CrossRef]
- Poon, I.K.; Baxter, A.A.; Lay, F.T.; Mills, G.D.; Adda, C.G.; Payne, J.A.; Phan, T.K.; Ryan, G.F.; White, J.A.; Veneer, P.K. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 2014, 3, e01808. [Google Scholar] [CrossRef]
- Shahmiri, M.; Bleackley, M.R.; Dawson, C.S.; van der Weerden, N.L.; Anderson, M.A.; Mechler, A. Membrane binding properties of plant defensins. Phytochemistry 2023, 209, 113618. [Google Scholar] [CrossRef]
- Bleackley, M.R.; Payne, J.A.; Hayes, B.M.; Durek, T.; Craik, D.J.; Shafee, T.M.; Poon, I.K.; Hulett, M.D.; van der Weerden, N.L.; Anderson, M.A. Nicotiana alata defensin chimeras reveal differences in the mechanism of fungal and tumor cell killing and an enhanced antifungal variant. Antimicrob. Agents Chemother. 2016, 60, 6302–6312. [Google Scholar] [CrossRef] [PubMed]
- Cools, T.L.; Struyfs, C.; Cammue, B.P.; Thevissen, K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 2017, 12, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, A.F.; Vasconcelos, É.A.; Pelegrini, P.B.; Grossi de Sa, M.F. Antifungal defensins and their role in plant defense. Front. Microbiol. 2014, 5, 116. [Google Scholar] [CrossRef] [PubMed]
- Vriens, K.; Cammue, B.P.; Thevissen, K. Antifungal plant defensins: Mechanisms of action and production. Molecules 2014, 19, 12280–12303. [Google Scholar] [CrossRef] [PubMed]
- Thevissen, K.; de Mello Tavares, P.; Xu, D.; Blankenship, J.; Vandenbosch, D.; Idkowiak-Baldys, J.; Govaert, G.; Bink, A.; Rozental, S.; De Groot, P.W. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol. Microbiol. 2012, 84, 166–180. [Google Scholar] [CrossRef]
- Parisi, K.; Doyle, S.R.; Lee, E.; Lowe, R.G.; van der Weerden, N.L.; Anderson, M.A.; Bleackley, M.R. Screening the Saccharomyces cerevisiae nonessential gene deletion library reveals diverse mechanisms of action for antifungal plant defensins. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- van der Weerden, N.L.; Lay, F.T.; Anderson, M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 2008, 283, 14445–14452. [Google Scholar] [CrossRef]
- Shafee, T.; Anderson, M.A. A quantitative map of protein sequence space for the cis-defensin superfamily. Bioinformatics 2019, 35, 743–752. [Google Scholar] [CrossRef]
- Shafee, T.M.; Lay, F.T.; Hulett, M.D.; Anderson, M.A. The defensins consist of two independent, convergent protein superfamilies. Mol. Biol. Evol. 2016, 33, 2345–2356. [Google Scholar] [CrossRef]
- Sagaram, U.S.; El-Mounadi, K.; Buchko, G.W.; Berg, H.R.; Kaur, J.; Pandurangi, R.S.; Smith, T.J.; Shah, D.M. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry. PLoS ONE 2013, 8, e82485. [Google Scholar] [CrossRef]
- Lobo, D.S.; Pereira, I.B.; Fragel-Madeira, L.; Medeiros, L.N.; Cabral, L.M.; Faria, J.; Bellio, M.; Campos, R.C.; Linden, R.; Kurtenbach, E. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 2007, 46, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Kerenga, B.K.; McKenna, J.A.; Harvey, P.J.; Quimbar, P.; Garcia-Ceron, D.; Lay, F.T.; Phan, T.K.; Veneer, P.K.; Vasa, S.; Parisi, K. Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Front. Microbiol. 2019, 10, 795. [Google Scholar] [CrossRef] [PubMed]
- Lay, F.T.; Mills, G.D.; Poon, I.K.; Cowieson, N.P.; Kirby, N.; Baxter, A.A.; van der Weerden, N.L.; Dogovski, C.; Perugini, M.A.; Anderson, M.A. Dimerization of plant defensin NaD1 enhances its antifungal activity. J. Biol. Chem. 2012, 287, 19961–19972. [Google Scholar] [CrossRef] [PubMed]
- van der Weerden, N.L.; Parisi, K.; McKenna, J.A.; Hayes, B.M.; Harvey, P.J.; Quimbar, P.; Wevrett, S.R.; Veneer, P.K.; McCorkelle, O.; Vasa, S.; et al. The Plant Defensin Ppdef1 Is a Novel Topical Treatment for Onychomycosis. J. Fungi 2023, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Heard, S.C.; Wu, G.; Winter, J.M. Antifungal natural products. Curr. Opin. Biotechnol. 2021, 69, 232–241. [Google Scholar] [CrossRef]
- Safronova, V.; Bolosov, I.; Panteleev, P.; Balandin, S.; Ovchinnikova, T. Therapeutic Potential and Prospects of Application of Peptides in the Era of the Global Spread of Antibiotic Resistance. Russ. J. Bioorg. Chem. 2023, 49, 435–447. [Google Scholar] [CrossRef]
- Van der Weerden, N.; Hayes, B.; McKenna, J.; Weaver, S.; Turner, R.; Brown, M.; Bleackley, M.; Anderson, M. The plant defensin HXP124 has the potential to be a new safe and effective topical treatment for onychomycosis. In Medical Mycology; Oxford University Press: Oxford, UK, 2018; p. S56. [Google Scholar]
- Lay, F.T.; Brugliera, F.; Anderson, M.A. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003, 131, 1283–1293. [Google Scholar] [CrossRef]
- Hayes, B.M.; Bleackley, M.R.; Wiltshire, J.L.; Anderson, M.A.; Traven, A.; van der Weerden, N.L. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob. Agents Chemother. 2013, 57, 3667–3675. [Google Scholar] [CrossRef]
- Shafee, T.; Robinson, A.J.; van der Weerden, N.; Anderson, M.A. Structural homology guided alignment of cysteine rich proteins. Springerplus 2016, 5, 27. [Google Scholar] [CrossRef]
- Bleackley, M.R.; Dawson, C.S.; Payne, J.A.; Harvey, P.J.; Rosengren, K.J.; Quimbar, P.; Garcia-Ceron, D.; Lowe, R.; Bulone, V.; van der Weerden, N.L. The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. Cell Surf. 2019, 5, 100026. [Google Scholar] [CrossRef]
- Harris, K.S.; Durek, T.; Kaas, Q.; Poth, A.G.; Gilding, E.K.; Conlan, B.F.; Saska, I.; Daly, N.L.; van der Weerden, N.L.; Craik, D.J. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat. Commun. 2015, 6, 10199. [Google Scholar] [CrossRef]
- Vida, T.A.; Emr, S.D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 1995, 128, 779–792. [Google Scholar] [CrossRef]
- van der Weerden, N.L.; Hancock, R.E.; Anderson, M.A. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J. Biol. Chem. 2010, 285, 37513–37520. [Google Scholar] [CrossRef]
- Winzeler, E.A.; Shoemaker, D.D.; Astromoff, A.; Liang, H.; Anderson, K.; Andre, B.; Bangham, R.; Benito, R.; Boeke, J.D.; Bussey, H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285, 901–906. [Google Scholar] [CrossRef]
- Smith, A.M.; Durbic, T.; Oh, J.; Urbanus, M.; Proctor, M.; Heisler, L.E.; Giaever, G.; Nislow, C. Competitive genomic screens of barcoded yeast libraries. JoVE (J. Vis. Exp.) 2011, 54, e2864. [Google Scholar] [CrossRef]
- Robinson, M.D.; Grigull, J.; Mohammad, N.; Hughes, T.R. FunSpec: A web-based cluster interpreter for yeast. BMC Bioinform. 2002, 3, 35. [Google Scholar] [CrossRef]
- Thevissen, K.; François, I.E.; Takemoto, J.Y.; Ferket, K.K.; Meert, E.M.; Cammue, B.P. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2003, 226, 169–173. [Google Scholar] [CrossRef]
- Thevissen, K.; Cammue, B.P.; Lemaire, K.; Winderickx, J.; Dickson, R.C.; Lester, R.L.; Ferket, K.K.; Van Even, F.; Parret, A.H.; Broekaert, W.F. A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc. Natl. Acad. Sci. USA 2000, 97, 9531–9536. [Google Scholar] [CrossRef]
- Sathoff, A.E.; Velivelli, S.; Shah, D.M.; Samac, D.A. Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 2019, 109, 402–408. [Google Scholar] [CrossRef]
- Spelbrink, R.G.; Dilmac, N.; Allen, A.; Smith, T.J.; Shah, D.M.; Hockerman, G.H. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 2004, 135, 2055–2067. [Google Scholar] [CrossRef]
- Nagiec, M.M.; Nagiec, E.E.; Baltisberger, J.A.; Wells, G.B.; Lester, R.L.; Dickson, R.C. Sphingolipid synthesis as a target for antifungal drugs: Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 1997, 272, 9809–9817. [Google Scholar] [CrossRef] [PubMed]
- Sant, D.; Tupe, S.; Ramana, C.V.; Deshpande, M. Fungal cell membrane—Promising drug target for antifungal therapy. J. Appl. Microbiol. 2016, 121, 1498–1510. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.C. Roles for sphingolipids in Saccharomyces cerevisiae. In Sphingolipids as Signaling and Regulatory Molecules; Springer: New York, NY, USA, 2010; pp. 217–231. [Google Scholar]
- Johnson, K.M.; Chen, X.; Boitano, A.; Swenson, L.; Opipari, A.W.; Glick, G.D. Identification and validation of the mitochondrial F1F0-ATPase as the molecular target of the immunomodulatory benzodiazepine Bz-423. Chem. Biol. 2005, 12, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Zorova, L.; Popkov, V.; Plotnikov, E.; Silachev, D.; Pevzner, I.; Jankauskas, S.; Zorov, S.; Babenko, V.; Zorov, D. Functional significance of the mitochondrial membrane potential. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2018, 12, 20–26. [Google Scholar] [CrossRef]
- Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; Gomes, V.M.; Carvalho, A.d.O. The toxic effect of Vu-Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can. J. Microbiol. 2018, 64, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Rodríguez, J.J.; López-Gómez, R.; Salgado-Garciglia, R.; Ochoa-Zarzosa, A.; López-Meza, J.E. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7. Biomed. Pharmacother. 2016, 82, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Aerts, A.M.; François, I.E.; Meert, E.M.; Li, Q.-T.; Cammue, B.P.; Thevissen, K. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Microb. Physiol. 2007, 13, 243–247. [Google Scholar] [CrossRef]
- Wu, X.-Z.; Cheng, A.-X.; Sun, L.-M.; Sun, S.-J.; Lou, H.-X. Plagiochin E, an antifungal bis (bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 770–777. [Google Scholar] [CrossRef]
- Marx, F.; Binder, U.; Leiter, E.; Pócsi, I. The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell. Mol. Life Sci. 2008, 65, 445–454. [Google Scholar] [CrossRef]
- Vandenbosch, D.; Braeckmans, K.; Nelis, H.J.; Coenye, T. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 2010, 65, 694–700. [Google Scholar] [CrossRef]
- Aerts, A.M.; Bammens, L.; Govaert, G.; Carmona-Gutierrez, D.; Madeo, F.; Cammue, B.P.; Thevissen, K. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front. Microbiol. 2011, 2, 47. [Google Scholar] [CrossRef] [PubMed]
- Struyfs, C.; Cools, T.L.; De Cremer, K.; Sampaio-Marques, B.; Ludovico, P.; Wasko, B.M.; Kaeberlein, M.; Cammue, B.P.; Thevissen, K. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183255. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Lipke, P.N.; Ovalle, R. Cell wall architecture in yeast: New structure and new challenges. J. Bacteriol. 1998, 180, 3735–3740. [Google Scholar] [CrossRef]
- Hayes, B.M.; Bleackley, M.R.; Anderson, M.A.; van der Weerden, N.L. The plant defensin NaD1 enters the cytoplasm of Candida albicans via endocytosis. J. Fungi 2018, 4, 20. [Google Scholar] [CrossRef]
Pathogen | Ppdef1 IC50 (µg/mL) | NaD1 IC50 (µg/mL) | ZmD32 IC50 (µg/mL) | NbD6 IC50 (µg/mL) | NaD2 IC50 (µg/mL) |
---|---|---|---|---|---|
Trichophyton rubrum | 4.6 | 7.9 | - | 22.5 | >64.0 |
Trichophyton mentagrophytes | 8.4 | 6.5 | - | 13.4 | 25.8 |
Candida albicans | 3.4 | 12.2 | 3.9 | 1.6 | - |
Candida tropicalis | 1.9 | 2.7 | 0.7 | 2.1 | 5.8 |
Candida glabrata | 15.4 | 13.8 | 6.5 | 1.9 | 23.2 |
Candida auris | 1.3 | - | 3.6 | 2.4 | - |
Candida krusei | 3.0 | - | 3.5 | 2.0 | - |
Cryptococcus neoformans | 2.7 | 8.8 | - | 7.1 | 4.2 |
Cryptococcus gattii | 38.9 | 9.0 | - | 19.5 | 20.0 |
Aspergillus niger | 42.7 | 11.1 | - | 44.5 | 50.0 |
Microsporum fulvum | 7.1 | 22.3 | - | 11.9 | 37.9 |
Saccharomyces cerevisiae | 8.8 | 19.0 | 19.7 | 19.7 | - |
Fusarium graminearum | 24.7 | 2.7 | 5.5 | - | 10.5 |
Fusarium oxysporum | 7.7 | - | - | 19.5 | 26.3 |
Escherichia coli | >200 | 38.0 | 5.5 | - | - |
Staphylococcus aureus | >200 | 26.5 | 8.2 | - | - |
Pseudomonas aeruginosa | >200 | 22.8 | 9.3 | - | - |
Bacillus subtilis | >200 | 10.6 | 2.2 | - | - |
Systematic Name | Gene | Fitness Score | Gene Description |
---|---|---|---|
YGR143W | SKN1 | 3.82 | Protein involved in sphingolipid biosynthesis |
YDR298C * | ATP5 | 3.38 | Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase |
YMR098C * | ATP25 | 3.22 | Mitochondrial protein required for the stability of Oli1p |
YDR072C | IPT1 | 3.00 | Inositolphosphotransferase; involved in synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C), the most abundant sphingolipid |
YPL057C | SUR1 | 2.45 | Mannosylinositol phosphorylceramide (MIPC) synthase catalytic subunit |
YMR072W * | ABF2 | 2.22 | Mitochondrial DNA-binding protein |
YKL016C * | ATP7 | 2.08 | Subunit d of the stator stalk of mitochondrial F1F0 ATP synthase |
YPL271W * | ATP15 | 1.82 | Epsilon subunit of the F1 sector of mitochondrial F1F0 ATP synthase |
YNR020C * | ATP23 | 1.81 | Putative metalloprotease of the mitochondrial inner membrane |
YER087W * | AIM10 | 1.60 | Protein with similarity to tRNA synthetases |
YGR150C * | CCM1 | 1.43 | Mitochondrial 15S rRNA-binding protein |
YMR038C * | CCS1 | 1.40 | Copper chaperone for superoxide dismutase Sod1p; involved in oxidative stress protection; located in mitochondrial inner membrane |
YMR062C * | ARG7 | 1.39 | Mitochondrial ornithine acetyltransferase |
YBL099W * | ATP1 | 1.26 | Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase |
YLR370C * | ARC18 | 1.24 | Subunit of the ARP2/3 complex |
YMR064W * | AEP1 | 1.23 | Protein required for expression of the mitochondrial OLI1 gene which encodes subunit 9 of F1-F0 ATP synthase |
YDL069C * | CBS1 | 1.17 | Mitochondrial translational activator of the COB mRNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, K.; McKenna, J.A.; Lowe, R.; Harris, K.S.; Shafee, T.; Guarino, R.; Lee, E.; van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1. J. Fungi 2024, 10, 54. https://doi.org/10.3390/jof10010054
Parisi K, McKenna JA, Lowe R, Harris KS, Shafee T, Guarino R, Lee E, van der Weerden NL, Bleackley MR, Anderson MA. Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1. Journal of Fungi. 2024; 10(1):54. https://doi.org/10.3390/jof10010054
Chicago/Turabian StyleParisi, Kathy, James A. McKenna, Rohan Lowe, Karen S. Harris, Thomas Shafee, Rosemary Guarino, Eunice Lee, Nicole L. van der Weerden, Mark R. Bleackley, and Marilyn A. Anderson. 2024. "Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1" Journal of Fungi 10, no. 1: 54. https://doi.org/10.3390/jof10010054
APA StyleParisi, K., McKenna, J. A., Lowe, R., Harris, K. S., Shafee, T., Guarino, R., Lee, E., van der Weerden, N. L., Bleackley, M. R., & Anderson, M. A. (2024). Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1. Journal of Fungi, 10(1), 54. https://doi.org/10.3390/jof10010054