Next Article in Journal
First Record of Flavocillium subprimulinum (Cordycipitaceae, Hypocreales) in Mexico: Morphological and Molecular Characterisation, Nematocidal Activity of Its Liquid Culture Filtrates against Haemonchus contortus and Protease Activity
Next Article in Special Issue
Six New Species of Agaricus (Agaricaceae, Agaricales) from Northeast China
Previous Article in Journal
Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1
Previous Article in Special Issue
Three New Species of Gongronella (Cunninghamellaceae, Mucorales) from Soil in Hainan, China Based on Morphology and Molecular Phylogeny
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China

1
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
2
Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
3
College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
4
Yunnan Forestry and Grassland Bureau, Kunming 650224, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2024, 10(1), 55; https://doi.org/10.3390/jof10010055
Submission received: 4 December 2023 / Revised: 5 January 2024 / Accepted: 5 January 2024 / Published: 8 January 2024
(This article belongs to the Special Issue Fungal Molecular Systematics)

Abstract

:
Three new wood-inhabiting fungal species, Cerioporus yunnanensis, Perenniporiopsis sinensis, and Sarcoporia yunnanensis, are proposed based on a combination of the morphological features and molecular evidence. Cerioporus yunnanensis is characterized by the pileate basidiomata having a fawn brown to black pileal surface, a dimitic hyphal system with clamped generative hyphae, and the presence of the fusoid cystidioles and cylindrical basidiospores (9–12.5 × 3.5–5 µm). Perenniporiopsis sinensis is distinct from the osseous pileus with verrucose, an orange-yellow to dark reddish-brown pileal surface with a cream margin, a trimitic hyphal system with clamped generative hyphae, and the presence of the fusiform cystidioles and ellipsoid basidiospores (9–11 × 5.5–6.5 µm). Sarcoporia yunnanensis is typical of the pileate basidiomata with a salmon to reddish-brown pileal surface, a monomitic hyphal system with clamped generative hyphae, and the presence of the ellipsoid basidiospores (4–5.5 × 2.5–4 µm). Sequences of ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 genes were used for the phylogenetic analyses using maximum likelihood, maximum parsimony, and Bayesian inference methods. The multiple genes with six loci analysis showed that the three new species nested within the order Polyporales, in which C. yunnanensis and P. sinensis nested into the family Polyporaceae, and S. yunnanensis grouped into the family Sarcoporiaceae.

1. Introduction

Fungi are eukaryotic microorganisms that play fundamental ecological roles as decomposers and mutualists of dead and living plants and animals, in which they drive carbon cycling in forest soils, mediate the mineral nutrition of plants, and alleviate the carbon limitations of other soil organisms [1,2]. Wood-inhabiting fungi form an ecologically important branch of the tree of life, based on their distinct and diverse characteristics [3]. Taxonomy and phylogeny of the Polyporales are updated continuously by mycologists with the frequent inclusion of data from DNA sequences [4,5]. In recent years, the mycologist revised the species and taxonomic status of the genus Cerioporus using ITS + nLSU + TEF1 datasets, while the research established the new genus Perenniporiopsis using ITS + nLSU + mt-SSU + TEF1 datasets and two new species have also been discovered and grouped in the genus Sarcoporia [6,7,8,9,10].
The genus Cerioporus Quél. (1886: 167), belonging to the family Polyporaceae (Polyporales, Basidiomycota), is typified by C. squamosus (Huds.) Quél. (1886: 167), and it is characterized by the polyporoid, chondrostereoid basidiomata with trametoid to fibroporioid habitus, hyphal system sarcomonomitic, sarcodimitic, or dimitic with arboriform sclerohyphae, generative hyphae clamped, skeletal hyphae hyaline to golden-brown, regularly branched, clavate basidia, four-spored with a basal clamp, cylindrical, navicular, fusiform or amygdaloid, and thin-walled basidiospores [10]. Based on the Index Fungorum (www.indexfungorum.org; accessed on 30 November 2023), the genus Cerioporus has 46 specific and registered names with 20 species that have been accepted worldwide [8,10]. The genus Perenniporiopsis C.L. Zhao (2017: 294), belonging to Polyporaceae (Polyporales, Basidiomycota), was typified by P. minutissima (Yasuda) C.L. Zhao (2017: 294), and it is characterized by pileate basidiomata, pileus solitary or imbricate, corky, becoming rigidly osseous upon drying, an orange-brown to dark reddish-brown pileal surface, hyphal system trimitic, generative hyphae hyaline, thin-walled, with clamp connections, skeletal and binding hyphae dominant, thick-walled, dextrinoid in Melzer’s reagent, oblong-ellipsoid, truncate, thick-walled, smooth, and basidiospores [9]. Based on the Index Fungorum, the genus Perenniporiopsis has one specific and registered name and currently one species has been accepted worldwide [9]. The genus Sarcoporia P. Karst. (1894: 15) belongs to Sarcoporiaceae (Polyporales, Basidiomycota), typified by S. polyspora P. Karst. (1894: 15), and it is typical of the annual, resupinate to effused-reflexed basidiomata, hyphal system monomitic with clamp connections, thin- to thick-walled, dextrinoid, and thick-walled basidiospores [6]. Based on the Index Fungorum, the genus Sarcoporia has four specific and registered names, and currently three species have been accepted worldwide [7].
Recently, the pioneering research on the Cerioporus, Perenniporiopsis, and Sarcoporia genera was significant for the molecular systematics of Polyporales [6,7,8,9,10]. The molecular phylogeny of all the polyporoid and lentinoid nodes was reconstructed using nLSU + ITS rDNA and TEF1 datasets, the data obtained from ITS + TEF + LSU coincide in support of the core Polyporaceae of ten clades corresponding to the generic level and Cerioporus contain generic units distinguished by polyporoid or lentinoid morphotypes, therefore, some nomenclatural innovations are given, which includes 12 synonymies of Cerioporus [8]. Since then, 16 new combinations of Cerioporus were made [10]. Phylogenetic analyses based on two datasets (ITS + nLSU and ITS + nLSU + mt-SSU + tef1) showed that specimens of Perenniporia minutissima (Yasuda) T. Hatt. and Ryvarden form a monophyletic well-supported clade within the core polyporoid clade, and proposed a new genus Perenniporiopsis [9]. Phylogenetic analyses based on two datasets (ITS + nLSU and 18S + LSU + RPB1) revealed two new species in the genus Sarcoporia [6,7].
Wood-inhabiting fungi are generally found in inverted wood and dead tree trunks, artificial wood products, secrete various biological enzymes that degrade the cellulose, hemicellulose, and lignin of the wood into simple inorganic substances, and play an important role in forest ecosystems as decomposers [2,3,5]. During the surveys of the wood-inhabiting fungi, we collected three new taxa of Polyporales from the Yunnan-Guizhou Plateau, China, that were not consistent with any known species. We presented the morphological characteristics and multigene molecular analyses with ITS, nLSU, mt-SSU, TEF1, RPB1, and RPB2 DNA markers that supported the taxonomy and phylogenetics of Cerioporus, Perenniporiopsis, and Sarcoporia species.

2. Materials and Methods

2.1. Sample Collection and Herbarium Specimen Preparation

Fresh basidiomata of the fungi growing on angiosperm branches were collected from the Qujing, Puer, and Honghe of Yunnan Province, China. The samples were photographed in situ and fresh macroscopic details were recorded. Photographs were taken by a Jianeng 80D camera (Tokyo, Japan). All of the photos were focus stacked and merged using Helicon Focus Pro 7.7.5 software. Specimens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China.

2.2. Morphology

Macromorphological descriptions are based on field notes and photos captured in the field and laboratory and follow the color terminology of Petersen [11]. Micromorphological data were obtained from the dried specimens following observation under a light microscope [12]. The following abbreviations were used: KOH = 5% potassium hydroxide water solution, CB+ = cyanophilous, CB = cotton clue, CB– = acyanophilous, IKI = Melzer’s reagent, IKI– = both inamyloid and indextrinoid, L = means spore length (arithmetic average for all spores), W = means spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) measured from a given number (b) of specimens).

2.3. DNA Extraction, PCR, and Sequencing

The EZNA HP Fungal DNA Kit (Omega Biotechnologies Co., Ltd., Kunming, China) was used to extract DNA with some modifications from the dried specimens. The ITS, nLSU, TEF1, mt-SSU, RPB1, and RPB2 regions were amplified with the ITS5/ITS4 [13], LR0R/LR7 [14], EF1-983F/EF1-2218R [15], MS1/MS2 [13], RPB1-Af/RPB1-Cf [16], and bRPB2-6F/bRPB2-7.1R [17] primer pairs, respectively. The polymerase chain reaction (PCR) procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s, and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for TEF1 was as follows: (1) initial denaturation at 94 °C for 2.5 min, (2) denaturation at 94 °C for 45 s, (3) annealing at 60 °C for 50 s (minus 1 C per cycle), (4) extension at 72 °C for 2 min, (5) repeat for 6 cycles starting at step 2, (6) denaturation at 94 °C for 30 s, (7) annealing at 55 °C for 50 s, (8) extension at 72 °C for 1.5 min, (9) repeat for 34 cycles starting at step 6, (10) leave at 72 °C for 5 min. The PCR procedure for mt-SSU was as follows: initial denaturation at 94 °C for 2 min, followed by 36 cycles at 94 °C for 45 s, 52 °C for 45 s, and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for RPB1 was as follows: (1) initial denaturation at 94 °C for 2 min, (2) denaturation at 94 °C for 40 s, (3) annealing at 60 °C for 40 s, (4) extension at 72 °C for 2 min, (5) repeat for 10 cycles starting at step 2, (6) denaturation at 94 °C for 45 s, (7) annealing at 55 °C for 1.5 min, (8) extension at 72 °C for 2 min, (9) repeat for 37 cycles starting at step 6, (10) leave at 72 °C for 10 min. The PCR procedure for RPB2 was as follows: (1) initial denaturation at 95 °C for 2.5 min, (2) denaturation at 95 °C for 30 s, (3) annealing at 52 °C for 1 min, (4) extension at 72 °C for 1 min (add 1 C per cycle), (5) repeat for 40 cycles starting at step 2, (6) extension at 72 °C for 1.5 min, (7) repeat for 40 cycles starting at step 6, (8) leave at 72 °C for 5 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited Company, Yunnan Province, China. All of the newly generated sequences were deposited in GenBank (Table 1), and the list of known species were obtained from a previous study [5].

2.4. Phylogenetic Analyses

The DNA sequences were aligned in MAFFT version 7 using the G-INS-i strategy [44]. The alignment was adjusted manually using AliView version 1.27 [45]. Sequence of Heterobasidion annosum (Fr.) Bref. retrieved from GenBank was used as an outgroup in ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 (Figure 1) analysis following a previous study [5]. Sequence of Trametes hirsuta (Wulfen) Lloyd retrieved from GenBank was used as an outgroup in ITS (Figure 2) analysis following a previous study [27]. Sequence of Pyrofomes demidoffii (Lév.) Kotl. and Pouzar retrieved from GenBank was used as an outgroup in ITS + nLSU (Figure 3) analysis following a previous study [9].
Maximum parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses were applied to the combined three datasets. Approaches to the phylogenetic analyses process was followed by Zhao and Wu [46]. MP analysis was performed in PAUP* version 4.0b10 [47]. All of the characters were equally weighted, and gaps were treated as missing data. Clade robustness was assessed using bootstrap (BT) analysis with 1000 replicates [48]. ML was inferred using RAxML-HPC2 through the Cipres Science Gateway (www.phylo.org (accessed on 28 November 2023)) [49].
MrModeltest 2.3 [50] was used to determine the best-fit evolution model for each dataset for Bayesian inference (BI), which was performed using MrBayes 3.2.7a with a GTR + I + G model of DNA substitution and a gamma distribution rate variation across sites [51]. Four Markov chains were run for two runs from random starting trees, for eight million generations (Figure 1), one million generations (Figure 2), and 0.85 million generations (Figure 3), and trees were sampled every 100 generations.

3. Results

3.1. Molecular Phylogeny

The dataset based on ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 (Figure 1) comprises sequences from 146 fungal specimens representing 106 species from GenBank. The dataset had an aligned length of 7249 characters, of which 2787 characters are constant, 841 are variable and parsimony-uninformative, and 3621 are parsimony-informative. Maximum parsimony analysis yielded five equally parsimonious trees (TL = 38,172, CI = 0.2339, HI = 0.7661, RI = 0.5087, RC = 0.1190).
The dataset based on ITS (Figure 2) comprises sequences from 23 fungal specimens representing 13 species from GenBank. The dataset had an aligned length of 631 characters, of which 354 characters are constant, 42 are variable and parsimony-uninformative, and 235 are parsimony-informative. Maximum parsimony analysis yielded two equally parsimonious trees (TL = 676, CI = 0.6080, HI = 0.3920, RI = 0.6989, RC = 0.4249).
The dataset based on ITS + nLSU (Figure 3) comprises sequences from 27 fungal specimens representing 23 species from GenBank. The dataset had an aligned length of 2009 characters, of which 1555 characters are constant, 157 are variable and parsimony-uninformative, and 297 are parsimony-informative. Maximum parsimony analysis yielded 1 equally parsimonious tree (TL = 1165, CI = 0.5279, HI = 0.4721, RI = 0.5420, RC = 0.2861).
The phylogenetic tree (Figure 1) inferred from ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 sequences revealed that Cerioporus yunnanensis and Perenniporiopsis sinensis nested into the family Polyporaceae, and Sarcoporia yunnanensis clustered into the family Sarcoporiaceae. The phylogram based on the ITS gene regions (Figure 2) indicated that C. yunnanensis divided into genus Cerioporus, in which it grouped with two taxa, C. scutellatus (Schwein.) Zmitr., and C. subtropicus (B.K. Cui, Hai J. Li and Y.C. Dai) Zmitr., and then closely clustered with C. tibeticus (B.K. Cui, Hai J. Li and Y.C. Dai) Zmitr. Based on ITS + nLSU gene regions (Figure 3), it revealed that P. sinensis grouped into genus Perenniporiopsis, in which it was retrieved as a sister to P. minutissima. Based on ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 gene regions (Figure 1), it revealed that S. yunnanensis divided into genus Sarcoporia, in which it grouped with S. longitubulata Vlasák and Spirin, and then clustered with S. polyspora P. Karst.

3.2. Taxonomy

Cerioporus yunnanensis Y. Yang and C.L. Zhao, sp. nov. Figure 4 and Figure 5.
MycoBank no.: 851226.
Holotype—China, Yunnan Province, Qujing, Zhanyi District, Lingjiao Town, Xiajia Village. GPS coordinates: 25°44′ N, 103°36′ E; altitude: 1950 m asl., on the fallen angiosperm branches, leg. C.L. Zhao, 7 March 2023, CLZhao 27270 (SWFC).
Etymologyyunnanensis (Lat.): Referring to the locality (Yunnan Province) of the type specimen.
Basidiomata—Annual, pileate, odorless when fresh, hard corky when dry. Pileus applanate to triquetrous, up to 2 cm long, 1 cm wide, and 5 mm thick at base. Pileal surface fawn brown to black, distinctly sulcate, and margin obtuse. Pore surface white when fresh, becoming white to cream when dry, sterile margin distinct, up to 1 mm wide, pores round, 2–3 per mm. Context cinnamon brown to fawn brown, corky, up to 2 mm thick. Tubes cream to brown, hard corky, distinctly stratified, up to 3 mm long.
Hyphal system—Dimitic; generative hyphae with clamp connections, thin-walled, colorless, 2–3 µm in diameter; skeletal hyphae dominant in context, thick-walled with a narrow lumen to subsolid, colorless, 2.5–4 µm in diameter; all hyphae occasionally branched, flexuous, interwoven, IKI–, CB–, tissues unchanged in KOH.
Hymenium—Cystidia absent, but fusoid cystidioles present, colorless, thin-walled, 17–30 × 5–8 µm; basidia clavate, with four sterigmata and a basal clamp connection, 21–35 × 6–10 µm; basidioles in shape similar to basidia, but slightly smaller.
Spores—Basidiospores cylindrical, colorless, thin-walled, smooth, with oil droplets inside, IKI–, CB–, (8–)9–12.5 × 3.5–5(–6) µm, L = 10.62 µm, W = 4.30 µm, Q = 2.47–2.61 (n = 60/2).
Additional specimen examined (paratype)—China, Yunnan Province, Qujing, Zhanyi District, Xiajia Village. GPS coordinates: 25°44′ N, 103°36′ E; altitude: 1950 m asl., on fallen angiosperm branches, leg. C.L. Zhao, 6 March 2023, CLZhao 27228 (SWFC).
Perenniporiopsis sinensis Y. Yang and C.L. Zhao, sp. nov. Figure 6 and Figure 7.
MycoBank no.: 851227.
Holotype—China, Yunnan Province, Puer, Jingdong County, Taizhong Village, Xujiaba, Ailaoshan Ecological Station. GPS coordinates: 24°23′ N, 100°53′ E; altitude: 1800 m asl., on the trunk of angiosperm, leg. C.L. Zhao, 23 August 2018, CLZhao 8315 (SWFC).
Etymologysinensis (Lat.): Referring to the locality (China) of the type specimen.
Basidiomata—Annual, pileus solitary or imbricate, osseous, without odor or taste when fresh, projecting up to 3 cm, 3 cm wide, and 1 cm thick at base. Pileal surface orange-yellow to dark reddish-brown, verrucose; margin cream, obtuse. Pore surface white when fresh, becoming pale yellowish- to yellowish-brown when dry, pores round, 4–6 per mm; Context cream, rigidly osseous, up to 7 mm thick; tubes pale cream to honey yellow, rigidly osseous, up to 3 mm long.
Hyphal system—Trimitic; generative hyphae with clamp connections, colorless, thin-walled; skeletal and binding hyphae colorless, thick-walled; dextrinoid in Melzer’s reagent, CB+, unchanged in KOH. In the context, generative hyphae infrequent, colorless, thin-walled, rarely branched, 1–2.5 µm in diameter; skeletal hyphae dominant, colorless, thick-walled with a distinct lumen, infrequently branched, interwoven, 3–4 µm in diameter; binding hyphae colorless, thick-walled with a narrow lumen, frequently branched, interwoven, 1–2 µm in diameter. In the hymenophoral tramal, generative hyphae infrequent, colorless, thin-walled, usually unbranched, 1–2.5 µm in diameter; skeletal hyphae dominant, colorless, thick-walled with a narrow lumen, infrequently branched, interwoven, 2–3.5 µm in diameter; binding hyphae colorless, thick-walled with a narrow lumen, frequently branched, interwoven, 1–2 µm in diameter.
Hymenium—Cystidia absent, but fusiform cystidioles present, colorless, thin-walled, 11–18.5 × 4.5–7 µm; basidia clavate, with four sterigmata and a basal clamp connection, 15–18 × 8.5–10 µm; basidioles in shape similar to basidia, but slightly smaller.
Spores—Basidiospores ellipsoid, truncate, colorless, thick-walled, smooth, dextrinoid in Melzer’s reagent, CB+, unchanged in KOH, (8.5–)9–11(–12) × (5–)5.5–6.5(–7) µm, L = 10.1 µm, W = 6.02 µm, Q = 1.62–1.68 (n = 60/2).
Additional specimen examined (paratype)—China, Yunnan Province, Puer, Jingdong County, Kongqueshan Forest Park. GPS coordinates: 24°23′ N, 100°53′ E; altitude: 1800 m asl., on fallen angiosperm branches, leg. C.L. Zhao, 22 August 2018, CLZhao 8278 (SWFC).
Sarcoporia yunnanensis Y. Yang and C.L. Zhao, sp. nov. Figure 8 and Figure 9.
MycoBank no.: 851228.
Holotype—China, Yunnan Province, Honghe, Pingbian County, Daweishan National Forest Park. GPS coordinates: 22°57′ N, 103°42′ E; altitude: 2100 m asl., on the fallen angiosperm branches, leg. C.L. Zhao, 8 June 2020, CLZhao 18778 (SWFC).
Etymologyyunnanensis (Lat.): Referring to the locality (Yunnan Province) of the type specimen.
Basidiomata—Annual, pileate, corky when fresh, brittle and hard when dry, odorless, and up to 4 cm long, 3 cm wide, and 1.5 cm thick. Pileal surface salmon to reddish-brown; margin cream, obtuse. Pore surface orange-yellow, pores angular, 2–4 per mm; context orange-brown, cottony, up to 1 cm thick; tubes pinkish-buff, up to 5 mm, extremely brittle and shattering easily when dry.
Hyphal system—Monomitic; generative hyphae with clamp connections, colorless, IKI–, CB–, tissues unchanged in KOH. Generative hyphae in the tube infrequent, colorless, thin-walled, easily collapsing, 1.5–3.5 µm in diameter. Generative hyphae in the context infrequent, colorless, thin-walled, 3–5 µm in diameter.
Hymenium—Cystidia and cystidoles absent; basidia clavate, with four short sterigmata and a basal clamp connection, 15.5–22.5 × 4–6 µm; basidioles in shape similar to basidia, but slightly smaller.
Spores—Basidiospores ellipsoid, colorless, thick-walled, smooth, dextrinoid, weakly cyanophilous, 4–5.5(–6) × 2.5–4(–4.5) µm, L = 4.84 µm, W = 3.31 µm, Q = 1.48 (n = 30/1).

4. Discussion

In the present study, three new species, Cerioporus yunnanensis, Perenniporiopsis sinensis and Sarcoporia yunnanensis are described based on phylogenetic analyses and morphological characteristics.
An outline of all genera of Basidiomycota, including three phylogenetic analyses with combined nLSU, SSU, 5.8S, RPB1, RPB2, and TEF1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina, revealed that the genera Cerioporus and Perenniporiopsis nested into the family Polyporaceae Fr. ex Corda (Polyporales, Agaricomycetes), and the genus Sarcoporia clustered into the family Sarcoporiaceae (Polyporales, Agaricomycetes) [4]. In the present study, based on the ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 data (Figure 1), Cerioporus yunnanensis and Perenniporiopsis sinensis nested into the family Polyporaceae, while Sarcoporia yunnanensis clustered into the family Sarcoporiaceae, and the present results are similar to the previous topology research. Our results of the phylogram inferred from the ITS data, showed that C. yunnanensis grouped into Cerioporus (Figure 2), in which it grouped with two taxa, C. scutellatus and C. subtropicus, and then closely grouped with C. tibeticus. Based on the ITS + nLSU topology (Figure 3), it was revealed that P. sinensis was retrieved as a sister species to P. minutissima. Based on the ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 topology (Figure 1), it was revealed that S. yunnanensis grouped with S. longitubulata and S. polyspora. However, morphologically, C. scutellatus is distinct from C. yunnanensis by smaller pores (3–5 per mm), cyanophilous skeletal hyphae, tissues turning black in KOH and smaller basidiospores (7.8–9.2 × 3–3.6 µm) [25]; C. subtropicus differs from C. yunnanensis by smaller pores (6–8 per mm), cyanophilous skeletal hyphae, tissues turning black in KOH and smaller basidiospores (6.8–8 × 2–2.7 µm) [25]; C. tibeticus is separated from C. yunnanensis by pileal surface with color as buff, yellowish-brown or cinnamon to black from margin towards the base, ash-grey, smaller pores (4–6 per mm), and narrower basidiospores (8–10.2 × 2.5–3 µm) [25]. Perenniporiopsis minutissima differs from P. sinensis by corky pileus, wider generative hyphae (2.5–4.5 µm), wider skeletal hyphae (4–6.5 µm), longer basidia (18.5–30 × 8–13 µm), and larger basidiospores (12–15 × 6.5–8 µm) [9]. Sarcoporia longitubulata is separated from S. yunnanensis by the reddish-brown pore surface, and the circular pores [7]; S. polyspora differs in its soft basidiomata having the cream hymenophore, shorter basidia (9.8–16.3 × 4.1–5.4 µm), and longer basidiospores (5.2–6.1 × 2.5–3.1 µm) [52].
Morphologically, Cerioporus choseniae (Vassilkov) Zmitr. and Kovalenko, C. corylinus (Mauri) Zmitr. and Kovalenko, C. glabrus (Ryvarden) Zmitr., C. leptocephalus (Jacq.) Zmitr. and C. melanocarpus (B.K. Cui, Hai J. Li and Y.C. Dai) Zmitr. are similar to C. yunnanensis by having cylindrical basidiospores. However, C. choseniae differs in its wider generative hyphae (3.3–6.4 µm) and inamyloid basidiospores [53]; C. corylinus is separated from C. yunnanensis by the centrally stipitate basidiomata, cream to ochraceous pileal surface, hexagonal, bigger pores (1–2 per mm), and smaller basidiospores (6–7.5 × 2–3 µm) [8]; C. glabrus differs in its pale brown to corky basidiomata, isodiametric, smaller pores (7–8 per mm), and smaller basidiospores (7–9 × 2–3 µm) [10]; C. leptocephalus differs from C. yunnanensis by the centrally stipitate basidiomata, pale buff pore surface and smaller pores (7–9 per mm) [8]; C. melanocarpus is distinct from C. yunnanensis by having pale yellowish-brown context, cyanophilous skeletal hyphae, ventricose cystidioles, and narrower basidiospores (8.8–11 × 3–4 µm) [25]. Sarcoporia neotropica Ryvarden are similar to S. yunnanensis by having ellipsoid basidiospores. However, S. neotropica differs from S. yunnanensis in the soft and fleshy basidiomata, white pore surface, wider generative hyphae (3–5 µm), and smaller basidia (12–15 × 5–7 µm) [6].
In ecological and biogeographical studies, wood-inhabiting fungi are an extensively studied group of Basidiomycota, in which Polyporales species are an important group, mainly found on hardwood, although a few species grow on coniferous wood [54,55,56,57,58,59,60]. Further studies should focus on the relationships between the host and Cerioporus, Perenniporiopsis, and Sarcoporia species. We believe more species of Polyporales will be found in the oriental realm, since wood-inhabiting fungi are a cosmopolitan group and they are rich in the oriental realm [61,62,63,64], and it is very possible that the same phenomenon occurs for Cerioporus, Perenniporiopsis, and Sarcoporia.

Author Contributions

Conceptualization, C.Z.; methodology, C.Z. and Y.Y.; software, C.Z. and H.Z.; validation, C.Z. and Y.Y.; formal analysis, C.Z. and Y.Y.; investigation, C.Z., Y.Y., Q.J., R.L. and A.M.; resources, C.Z. and H.W.; writing—original draft preparation, Y.Y., R.L. and Q.J.; writing—review and editing, C.Z., H.Z., A.M. and Y.Y.; visualization, C.Z. and Y.Y.; supervision, C.Z. and H.W.; project administration, C.Z. and H.W.; funding acquisition, C.Z. All authors have read and agreed to the published version of the manuscript.

Funding

The research was supported by the National Natural Science Foundation of China (Project No. 32170004, U2102220), High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), Forestry Innovation Programs of Southwest Forestry University (Grant No: LXXK-2023Z07), and the Research Project of Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology (TMKF2023A03).

Institutional Review Board Statement

Not applicable for studies involving humans or animals.

Informed Consent Statement

Not applicable for studies involving humans.

Data Availability Statement

Publicly available datasets were analyzed in this study. These data can be found here: [https://www.ncbi.nlm.nih.gov/ (accessed on 30 November 2023); https://www.mycobank.org/page/Simple%20names%20search (accessed on 30 November 2023)].

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed]
  2. James, T.Y.; Stajich, J.E.; Hittinger, C.T.; Rokas, A. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 2020, 74, 291–313. [Google Scholar] [CrossRef]
  3. Dai, Y.C.; Yang, Z.L.; Cui, B.K.; Wu, G.; Yuan, H.S.; Zhou, L.W.; He, S.H.; Ge, Z.W.; Wu, F.; Wei, Y.L.; et al. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 2021, 40, 770–805. [Google Scholar] [CrossRef]
  4. He, M.Q.; Zhao, R.L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.C.; Raspé, O.; Kakishima, M.; Sánchez-Ramírez, M.; et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef]
  5. Liu, S.; Chen, Y.Y.; Sun, Y.F.; He, X.L.; Song, C.G.; Si, J.; Liu, D.M.; Gates, G.; Cui, B.K. Systematic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Divers. 2023, 118, 1–94. [Google Scholar] [CrossRef]
  6. Ryvarden, L. Studies in neotropical polypores 32. Some new species from Costa Rica. Synop. Fungorum 2013, 30, 33–43. [Google Scholar]
  7. Vlasák, J.; Vlasák, J.J.; Kinnunen, J.; Spirin, V. Geographic distribution of Sarcoporia polyspora and S. longitubulata sp. nov. Mycotaxon 2015, 130, 279–287. [Google Scholar] [CrossRef]
  8. Zmitrovich, I.V.; Kovalenko, A.E. Lentinoid and Polyporoid Fungi, Two Generic Conglomerates Containing Important Medicinal Mushrooms in Molecular Perspective. Int. J. Med. Mushrooms 2016, 18, 23–38. [Google Scholar] [CrossRef]
  9. Wu, Z.Q.; Liu, W.L.; Wang, Z.H.; Zhao, C.L. Perenniporiopsis, a new polypore genus segregated from Perenniporia (Polyporales). Cryptogam. Mycol. 2017, 38, 285–299. [Google Scholar] [CrossRef]
  10. Zmitrovich, I.V. Conspectus systematis Polyporacearum v. 1.0. Folia Cryptogamica Petropolitana 2018, 6, 3–145. [Google Scholar]
  11. Petersen, J.H. Farvekort. The Danish Mycological Society’s Colour-Chart; Foreningen til Svampekundskabens Fremme: Greve, Denmark, 1996; pp. 1–6. [Google Scholar]
  12. Dai, Y.C.; Cui, B.K.; Si, J.; He, S.H.; Hyde, K.D.; Yuan, H.S.; Liu, X.Y. Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol. Prog. 2015, 14, 62. [Google Scholar] [CrossRef]
  13. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
  14. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
  15. Rehner, S.; Samuels, G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Microbiol. Res. 1994, 98, 625–634. [Google Scholar] [CrossRef]
  16. Matheny, P.B.; Liu, Y.J.; Ammirati, J.F.; Hallet, B.D. Using RPBI sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am. J. Bot. 2002, 89, 688–698. [Google Scholar] [CrossRef]
  17. Matheny, P.B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [Google Scholar] [CrossRef] [PubMed]
  18. Zhao, C.L.; Chen, H.; Song, J.; Cui, B.K. Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycol. Prog. 2015, 14, 38. [Google Scholar] [CrossRef]
  19. Zhao, C.L.; He, X.S.; Wanghe, K.Y.; Cui, B.K.; Dai, Y.C. Flammeopellis bambusicola gen. et. sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycol Prog. 2014, 13, 771–780. [Google Scholar] [CrossRef]
  20. Westphalen, M.C.; Motato-Vásquez, V.; Tomšovský, M.; Gugliotta, A.M. Additions to the knowledge of hydnoid Steccherinaceae: Cabalodontia, Etheirodon, Metuloidea, and Steccherinum. Mycologia 2021, 113, 791–806. [Google Scholar] [CrossRef]
  21. Zhou, J.L.; Zhu, L.; Chen, H.; Cui, B.K. Taxonomy and Phylogeny of Polyporus Group Melanopus (Polyporales, Basidiomycota) from China. PLoS ONE 2016, 11, e0159495. [Google Scholar] [CrossRef]
  22. Vu, D.; Groenewald, M.; Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
  23. Sotome, K.; Hattori, T.; Maekawa, N.; Matozaki, T. Melanoderma boninense, a new species of Melanoderma (Polyporales, Agaricomycota) from the Bonin Islands in Japan. Mycoscience 2019, 60, 177–183. [Google Scholar] [CrossRef]
  24. Matheny, P.B.; Wang, Z.J.; Binder, M.; Curtis, J.M.; Lim, Y.W.; Nilsson, R.H.; Hughes, K.W. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evo. 2007, 43, 430–451. [Google Scholar] [CrossRef] [PubMed]
  25. Li, H.J.; Cui, B.K.; Dai, Y.C. Taxonomy and multi-gene phylogeny of Datronia (Polyporales, Basidiomycota). Persoonia 2014, 32, 170–182. [Google Scholar] [CrossRef] [PubMed]
  26. Floudas, D.; Hibbett, D.S. Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol. 2015, 119, 679–719. [Google Scholar] [CrossRef] [PubMed]
  27. Cui, B.K.; Li, H.J.; Ji, X.; Zhou, J.L.; Song, J.; Si, J.; Yang, Z.L.; Dai, Y.C. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 2019, 97, 137–392. [Google Scholar] [CrossRef]
  28. Ortiz-Santana, B.; Lindner, D.L.; Miettinen, O.; Justo, A.; Hibbett, D.S. A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 2013, 105, 1391–1411. [Google Scholar] [CrossRef] [PubMed]
  29. Han, M.L.; Chen, Y.Y.; Shen, L.L.; Song, J.; Vlasák, J.; Dai, Y.C.; Cui, B.K. Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Divers. 2016, 80, 343–373. [Google Scholar] [CrossRef]
  30. Zhao, C.L.; Wu, F.; Dai, Y.C. Leifiporia rhizomorpha gen. et sp. nov. and L. eucalypti comb. nov. in Polyporaceae (Basidiomycota). Mycol. Prog. 2016, 15, 799–809. [Google Scholar] [CrossRef]
  31. Haight, J.E.; Nakasone, K.K.; Laursen, G.A.; Redhead, S.A.; Taylor, D.L.; Glaeser, J.A. Fomitopsis mounceae and F. schrenkii—Two new species from North America in the F. pinicola complex. Mycologia 2019, 111, 339–357. [Google Scholar] [CrossRef]
  32. Shen, L.L.; Chen, J.J.; Wang, M.; Cui, B.K. Taxonomy and multi-gene phylogeny of Haploporus (Polyporales, Basidiomycota). Mycol. Prog. 2016, 15, 731–742. [Google Scholar] [CrossRef]
  33. Song, J.; Sun, Y.F.; Ji, X.; Dai, Y.C.; Cui, B.K. Phylogeny and taxonomy of Laetiporus (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 2018, 37, 57–71. [Google Scholar] [CrossRef]
  34. Chen, C.C.; Chen, C.Y.; Wu, S.H. Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Divers. 2021, 111, 337–442. [Google Scholar] [CrossRef]
  35. Robledo, G.L.; Amalfi, M.; Castillo, G.; Rajchenberg, M.; Decock, C. Perenniporiella chaquenia sp. nov. and further notes on Perenniporiella and its relationships with Perenniporia (Poriales, Basidiomycota). Mycologia 2009, 101, 657–673. [Google Scholar] [CrossRef] [PubMed]
  36. Runnel, K.; Põldmaa, K.; Lõhmus, A. ‘Old-forest fungi’ are not always what they seem: The case of Antrodia crassa. Fungal Ecol. 2014, 9, 27–33. [Google Scholar] [CrossRef]
  37. Korhonen, A.; Seelan, J.S.S.; Miettinen, O. Cryptic species diversity in polypores: The Skeletocutis nivea species complex. MycoKeys 2018, 36, 45–82. [Google Scholar] [CrossRef]
  38. Lutzoni, F.; Kauff, F.; Cox, C.J.; McLaughlin, D.; Celio, G.; Dentinger, B.; Padamsee, M.; Hibbett, D.; James, T.Y.; Baloch, E.; et al. Assembling the fungal tree of life: Progress, classifcation, and evolution of subcellular traits. Am. J. Bot. 2004, 91, 1446–1480. [Google Scholar] [CrossRef] [PubMed]
  39. Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.-H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
  40. Zhao, C.L.; Cui, B.K.; Song, J.; Dai, Y.C. Fragiliporiaceae, a new family of Polyporales (Basidiomycota). Fungal Divers. 2014, 70, 115–126. [Google Scholar] [CrossRef]
  41. Wu, F.; Li, S.J.; Dong, C.H.; Dai, Y.C.; Papp, V. The genus Pachyma (syn. Wolfiporia) reinstated and species clarification of the cultivated medicinal mushroom “Fuling” in China. Front. Microbiol. 2020, 11, 590788. [Google Scholar] [CrossRef]
  42. Song, J.; Cui, B.K. Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol. Biol. 2017, 17, 102. [Google Scholar] [CrossRef]
  43. Zhao, C.L.; Cui, B.K. Three new Perenniporia (Polyporales, Basidiomycota) species from China based on morphological and molecular data. Mycoscience 2013, 54, 231–240. [Google Scholar] [CrossRef]
  44. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
  45. Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
  46. Zhao, C.L.; Wu, Z.Q. Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycol. Prog. 2017, 16, 93–100. [Google Scholar] [CrossRef]
  47. Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
  48. Felsenstein, J. Confidence intervals on phylogenetics: An approach using bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
  49. Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES Science Gateway: Enabling High-Impact Science for Phylogenetics Researchers with Limited Resources. Assoc. Comput. Mach. 2012, 39, 1–8. [Google Scholar] [CrossRef]
  50. Nylander, J.A.A. MrModeltest v2. In Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Upp-sala, Sweden, 2004. [Google Scholar]
  51. Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
  52. Baldoni, D.B.; Ortiz-Santana, B.; Coelho, G.; Antoniolli, Z.I.; Jacques, R.J.S. Sarcoporia polyspora (Basidiomycota, Polyporales): A rare wood-decay fungus newly recorded from South America. Nova Hedwigia 2015, 100, 177–187. [Google Scholar] [CrossRef]
  53. Thorn, R.G. Some polypores misclassified in Piptoporus. Karstenia 2000, 40, 181–187. [Google Scholar] [CrossRef]
  54. Dai, Y.C. A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience 2011, 52, 69–79. [Google Scholar] [CrossRef]
  55. Qu, M.H.; Wang, D.Q.; Zhao, C.L. A Phylogenetic and Taxonomic Study on Xylodon (Hymenochaetales): Focusing on Three New Xylodon Species from Southern China. J. Fungi 2022, 8, 35. [Google Scholar] [CrossRef] [PubMed]
  56. Wu, F.; Tohtirjap, A.; Fan, L.F.; Zhou, L.W.; Alvarenga, R.L.M.; Gibertoni, T.B.; Dai, Y.C. Global Diversity and Updated Phylogeny of Auricularia (Auriculariales, Basidiomycota). J. Fungi 2021, 7, 933. [Google Scholar] [CrossRef] [PubMed]
  57. Yuan, Y.; Wu, Y.D.; Wang, Y.R.; Zhou, M.; Qiu, J.Z.; Li, D.W.; Vlasák, J.; Liu, H.G.; Dai, Y.C. Two new forest pathogens in Phaeolus (Polyporales, Basidiomycota) on Chinese coniferous trees were confirmed by molecular phylogeny. Front. Microbiol. 2022, 13, 942603. [Google Scholar] [CrossRef] [PubMed]
  58. Luo, K.Y.; Chen, Z.Y.; Zhao, C.L. Phylogenetic and Taxonomic Analyses of Three New Wood-Inhabiting Fungi of Xylodon (Basidiomycota) in a Forest Ecological System. J. Fungi 2022, 8, 405. [Google Scholar] [CrossRef] [PubMed]
  59. Luo, K.Y.; Zhao, C.L. A Molecular Systematics and Taxonomy Research on Trechispora (Hydnodontaceae, Trechisporales): Concentrating on Three New Trechispora Species from East Asia. J. Fungi 2022, 8, 1020. [Google Scholar] [CrossRef] [PubMed]
  60. Zou, L.; Zhang, X.L.; Deng, Y.L.; Zhao, C.L. Four New Wood-Inhabiting Fungal Species of Peniophoraceae (Russulales, Basidiomycota) from the Yunnan-Guizhou Plateau, China. J. Fungi 2022, 8, 1227. [Google Scholar] [CrossRef]
  61. Wu, F.; Yuan, Y.; Chen, J.J.; Cui, B.K.; Zhou, M.; Dai, Y.C. Terrestriporiaceae fam. nov., a new family of Russulales (Basidiomycota). Mycosphere 2020, 11, 2755–2766. [Google Scholar] [CrossRef]
  62. Xiao, Y.P.; Wang, Y.B.; Hyde, K.D.; Eleni, G.; Sun, J.Z.; Yang, Y.; Meng, J.; Yu, H.; Wen, T.C. Polycephalomycetaceae, a new family of clavicipitoid fungi segregates from Ophiocordycipitaceae. Fungal Diver. 2023, 120, 1–76. [Google Scholar] [CrossRef]
  63. Zhao, C.L.; Qu, M.H.; Huang, R.X.; Karunarathna, S.C. Multi-Gene Phylogeny and taxonomy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). J. Fungi 2023, 9, 320. [Google Scholar] [CrossRef]
  64. Zhou, M.; Dai, Y.C.; Vlasák, J.; Yuan, Y. Molecular Phylogeny and Global Diversity of the Genus Haploporus (Polyporales, Basidiomycota). J. Fungi 2021, 7, 96. [Google Scholar] [CrossRef]
Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of three new species and related species in Polyporales based on ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50%, and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of three new species and related species in Polyporales based on ITS + nLSU + mt-SSU + TEF1 + RPB1 + RPB2 sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50%, and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Jof 10 00055 g001aJof 10 00055 g001b
Figure 2. Maximum parsimony strict consensus tree illustrating the phylogeny of the new species of Cerioporus based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50%, and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Figure 2. Maximum parsimony strict consensus tree illustrating the phylogeny of the new species of Cerioporus based on ITS sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50%, and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Jof 10 00055 g002
Figure 3. Maximum parsimony strict consensus tree illustrating the phylogeny of Perenniporiopsis and related species in Perenniporia s.l. based on ITS + nLSU sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50% and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Figure 3. Maximum parsimony strict consensus tree illustrating the phylogeny of Perenniporiopsis and related species in Perenniporia s.l. based on ITS + nLSU sequences. Branches are labeled with maximum likelihood bootstrap values ≥ 70%, parsimony bootstrap values ≥ 50% and Bayesian posterior probabilities ≥ 0.95. The new species are in bold.
Jof 10 00055 g003
Figure 4. Cerioporus yunnanensis (holotype): basidiomata on the substrate (A), character hymenophore (BD). Bars: (A) = 2 cm, (BD) = 5 mm.
Figure 4. Cerioporus yunnanensis (holotype): basidiomata on the substrate (A), character hymenophore (BD). Bars: (A) = 2 cm, (BD) = 5 mm.
Jof 10 00055 g004
Figure 5. Microscopic structures of Cerioporus yunnanensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), cystidioles (D), basidia and basidioles (E). Bars: (A–E) = 10 µm.
Figure 5. Microscopic structures of Cerioporus yunnanensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), cystidioles (D), basidia and basidioles (E). Bars: (A–E) = 10 µm.
Jof 10 00055 g005
Figure 6. Perenniporiopsis sinensis (holotype): basidiomata on the substrate (A,B), character hymenophore (C,D). Bars: (A,B) = 1 cm, (C) = 5 mm, (D) = 3 mm.
Figure 6. Perenniporiopsis sinensis (holotype): basidiomata on the substrate (A,B), character hymenophore (C,D). Bars: (A,B) = 1 cm, (C) = 5 mm, (D) = 3 mm.
Jof 10 00055 g006
Figure 7. Microscopic structures of Perenniporiopsis sinensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), cystidioles (D), basidia and basidioles (E). Bars: (AE) = 10 µm.
Figure 7. Microscopic structures of Perenniporiopsis sinensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), cystidioles (D), basidia and basidioles (E). Bars: (AE) = 10 µm.
Jof 10 00055 g007
Figure 8. Sarcoporia yunnanensis (holotype): basidiomata on the substrate (A,B), character hymenophore (C,D). Bars: (A,B) = 1 cm, (C) = 6 mm, (D) = 4 mm.
Figure 8. Sarcoporia yunnanensis (holotype): basidiomata on the substrate (A,B), character hymenophore (C,D). Bars: (A,B) = 1 cm, (C) = 6 mm, (D) = 4 mm.
Jof 10 00055 g008
Figure 9. Microscopic structures of Sarcoporia yunnanensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), basidia and basidioles (D). Bars: (AD) = 10 µm.
Figure 9. Microscopic structures of Sarcoporia yunnanensis (holotype): a section of the hymenium (A), hyphae from context (B), basidiospores (C), basidia and basidioles (D). Bars: (AD) = 10 µm.
Jof 10 00055 g009
Table 1. Names, voucher numbers and corresponding GenBank accession numbers of the taxa used in this study. The new species are in bold, NA refers to data not available.
Table 1. Names, voucher numbers and corresponding GenBank accession numbers of the taxa used in this study. The new species are in bold, NA refers to data not available.
Species NameSample No.GenBank Accession No.References
ITSnLSURPB1RPB2TEF1mt-SSU
Abortiporus biennisCui 17845ON417149ON417197ON424663ON424750ON424821ON417064[5]
Abundisporus fuscopurpureusCui 10950KC456254KC456256NANAKF181154KF051025[18]
A. fuscopurpureusCui 10969KC456255KC456257NANAKF181155KF051026[18]
A. pubertatisCui 5776KC787565KC787572NANANANA[19]
A. violaceusRyvar10775KF018126KF018134NANANANA[19]
Adustoporia sinuosaCui 16253MW377251MW377332MW337153ON424752MW337082MW382046[5]
Cabalodontia delicataMCW 564/17MT849295MT849295MT833947NAMT833934NA[20]
Cerioporus choseniaeLE22545NAKM411479NANAKM411495NA[8]
C. choseniaeLE301310KJ595567NANANANANA[8]
C. choseniaeYu 2AB587632AB587621NANAKU189924KU189959[21]
C. corylinusCBS 133216MK116405NANANANANAUnpublished
C. flavusMP207MZ997326MZ996885NANANANAUnpublished
C. flavusTENN59088AY513571NANANANANAUnpublished
C. mollisCui 16224OK642176OK642227NAOK665311OK665191OK641964Unpublished
C. mollisLE-BIN 5040OR683754NANANANANAUnpublished
C. rangiferinusHBAU 15706MZ063062NANANANANAUnpublished
C. scutellatusCBS 459.66MH858856MH870495NANANAAF358731[22]
C. scutellatusWD2272LC412118AB368064NAAB368122NANA[23]
C. squamosusAFTOL-ID 704DQ267123AY629320DQ831023DQ408120DQ028601NA[24]
C. squamosusCui 12375KX851641NANANANANA[21]
C. subtropicusDai 7186JX559262JX559301NAJX559310NANA[25]
C. subtropicusDai 12881KC415183KC415193NAKC415200NANA[25]
C. tibeticusCui 9486JX559265JX559299NAJX559309NANA[25]
C. tibeticusCui 9510JX559264JX559298NAJX559308NANA[25]
C. tropicusDai 13147KC415181KC415189NAKC477838NANA[25]
C. tropicusDai 13152KC415182KC415190NAKC477839NANA[25]
C. variusCui 10746KX900013NANANANANA[21]
C. variusCui 11121KX900014KX900134NANAKX900342KX900215[21]
C. yunnanensisCLZhao 27228OR771909OR759766OR872327OR875937NAOR852701Present study
C. yunnanensisCLZhao 27270OR771910OR759767OR872328OR875938NAOR852702Present study
Ceriporia lacerataFP-55521-TKP135024KP135202KP134805KP134915NANA[26]
Cerrena unicolorHe 6082OM100740OM083972ON424672ON424756ON424825ON417068[5]
Cerrena zonataCui 16578ON417153ON417203ON424673ON424757ON424826ON417069[5]
Coriolopsis strumosaDai 10642JX559278JX559303KX885080JX559312KX838416KX838379[27]
C. strumosaDai 10657KC867371KC867491KX885081KF274650KX838417KX838380[27]
Crustoderma dryinumFP 105487KC585320KC585145NANANANA[28]
Cymatoderma elegansDai17511ON417155ON417205NANANANA[5]
Dacryobolus gracilisHe 5995ON417156ON417206NAON424760ON424831ON417075[5]
D. sudansFP 101996KC585332KC585157NANANANA[28]
Daedalea dickinsiiYuan 2685KP171201KP171223NAKR610803KR610712KR605982[29]
D. quercinaDai 12152KP171207KP171229ON424675KR610809KR610717KR605989[5]
Daedaleopsis confragosaCui 6892KU892428KU892448KU892481KU892507KX838418KX838381[27]
D. confragosaCui 9756KU892438KU892451KU892483KU892508NANA[27]
D. tricolorCui 8301KU892426KU892468KU892487KU892513KX838423KX838386[27]
D. tricolorDai 8349KU892432KU892470KU892490KU892501KX838422KX838385[27]
Dichomitus squalensCui 9639JQ780407JQ780426KX838471KX838478KX838436KX838404[30]
D. squalensCui 9725JQ780408JQ780427KX838470NAKX838435KX838403[30]
Fibroporia albicansCui 16486OM039277OM039177OM037750OM037775OM037799OM039212[5]
F. vaillantiiDai 23467ON417158ON417208ON424680ON424763ON424833ON417077[5]
Fomitopsis kesiyaeCui 16466MN148235OL621250ON424688MN158178MN161750OL621761[5]
F. pinicolaLT 319KF169652NANAKF169721KF178377NA[31]
Fragiliporia fragilisDai 13080KJ734260KJ734264NAKJ790248KJ790245KJ734268[19]
F. fragilisDai 13559KJ734261KJ734265NAKJ790249KJ790246KJ734269[19]
Ganoderma applanatumDai 12483KF494999KF495009NANANANA[19]
G. sinenseWei 5327KF494998KF495008NANANANA[19]
Gelatoporia subvermisporaDai 22847ON417160ON417210ON424695ON424773ON424836NA[5]
Gilbertsonia anguloporaFP 133019KC585354KC585182NANANANA[28]
Grammothelopsis subtropicaCui 9035JQ845094JQ845097NANAKF181124KF051030[18]
G. subtropicaCui 9041JQ845096JQ845099NANAKF181133KF051039[18]
Grifola frondosaDai 19172ON417161ON417211ON424696ON424774ON424837NA[5]
G. frondosaDai 19175ON417162ON417212ON424697ON424775ON424838NA[5]
Haploporus odorusDai 11296KU941845KU941869NAKU941916KU941932NA[32]
H. odorusYuan 2365KU941846KU941870NAKU941917KU941933NA[32]
H. thindiiCui 9373KU941851KU941875NAKU941922KU941938NA[32]
H. thindiiCui 9682KU941852KU941876NAKU941923KU941939NA[32]
Heterobasidion annosumDai 20962ON417163ON417213ON424698ON424776ON529284ON417079[5]
Hexagonia apiariaCui 6447KC867362KC867481MG867667KF274660MG867697MG847228[27]
H. apiariaDai 10784KX900635KX900682MG867668MG867677KX900822KX900732[27]
H. hirtaDai 5081NAKC867486NANANANA[27]
H. hirtaCui 4051KC867359KC867471NANANANA[27]
Hornodermoporus latissimusCui 6652HQ876604JF706340NANAKF181134KF051040[27]
H. latissimusDai 12054KX900639KX900686NANAKF286303KF218297[27]
H. martiusCui 4082KX900640KX900687NANANAKX900736[27]
H. martiusCui 7992HQ876603HQ654114NANAKF181135KF051041[27]
Hyphoderma litschaueriFP 101740KP135295KP135219KP134868KP134965NANA[26]
H. setigerumFD 312KP135297KP135222KP134871NANANA[26]
H. sordidumCLZhao 27390OR141732OR506180OR520149NAOR507166NA[5]
Hyphodermella rosaeFP-150552KP134978KP135223KP134823KP134939NANA[26]
Irpex lacteusTFD-9KP135026KP135224KP134806NANANA[26]
Ischnoderma benzoinumCui 17058ON417164ON417214ON424699ON424777ON424839ON417080[5]
I. resinosumFD 328KP135303KP135225KP134884KP134972NANA[26]
Jorgewrightia guangdongensisCui 9130JQ314373JQ780428NANAMG867698KX900747[27]
J. guangdongensisCui 13986MG847208MG847217NAMG867680MG867699MG847229[27]
Laetiporus ailaoshanensisDai 13256KF951289KF951317NAKT894786KX354625KX354579[33]
L. sulphureusCui 12388KR187105KX354486MG867671KX354652KX354607KX354560[33]
Laricifomes officinalisJV 0309/49-JKR605821KR605764NAKR610846KR610757NA[29]
Leptoporus mollisRLG-7163-SpKY948794MZ637155KY948956OK136101MZ913693NA[34]
Luteoporia albomarginataGC 1702-1LC379003LC379155LC379160LC387358LC387377NA[34]
L. luteaGC 1409-1MZ636998MZ637158MZ748467OK136050MZ913656NA[34]
Megasporoporiella rhododendriDai 4235aJQ314355KX900707NAKX900810KX900841KX900759[27]
M. rhododendriCui 10725KX900658KX900708NAKX900811KX900842KX900760[27]
M. subcavernulosaCui 14247MG847213MG847222MG867673MG867685MG867705MG847234[27]
M. subcavernulosaCui 9252JQ780378JQ780416MG867674MG867686MG867706MG847235[27]
Megasporia hexagonoidesCui 10896KX900651KX900700NANANAKX900751[27]
M. hexagonoidesCui 13855MG847209MG847218NAMG867681NAMG847230[27]
Megasporoporia bannaensisCui 13967MG847212MG847221MG867672MG867684MG867704MG847233[27]
M. bannaensisDai 13596KX900653KX900702NAKX900808KX900838KX900754[27]
Metuloidea reniformisMCW 542/17MT849303MT849303MT833950NAMT833940NA[20]
Microporus affinisCui 7714JX569739JX569746NAKF274661NAKX880696[27]
M. affinisCui 8188KX880614KX880654NANAKX880874KX880697[27]
M. xanthopusCui 8284JX290074JX290071NAJX559313KX880878KX880703[27]
M. xanthopusDai 12076KX880620KX880659NAKX880849NAKX880704[27]
Neodatronia gaoligongensisCui 8055JX559269JX559286NAJX559317NAMG847236[25]
N. gaoligongensisCui 8186JX559268JX559285NAJX559318NAMG847237[25]
N. sinensisCui 9949KX900663KX900713NANAKX900847KX900765[27]
N. sinensisDai 11921JX559272JX559283NAJX559320NANA[25]
Obba rivulosaCui 16482ON417172ON417222ON424712ON424788ON424850NA[5]
Oligoporus podocarpiDai 22043MW937878MW937885MZ005580MZ082977MZ082983MW937892[5]
O. rennyiCui 17054OK045508OK045514OK076906OK076934OK076962OK045502[5]
Perenniporia hainanianaCui 6364JQ861743JQ861759NANANANA[19]
P. medulla-panisCui 14515MG847214MG847223NAMG867687MG867707NA[27]
P. substramineaCui 10177JQ001852JQ001844NANAKF181140KF051046[19]
Perenniporiella chaqueniaMUCL 47647FJ411083FJ393855NANANANA[35]
P. microporaMUCL 43581FJ411086FJ393858NANANANA[35]
P. neofulvaMUCL 45091FJ411080FJ393852NANANANA[35]
Perenniporiopsis minutissimaDai 11643HQ876602KF495015NANAKF286309KF218303[9]
P. minutissimaTFM 16173KX962543KX962550NANANANA[9]
P. minutissimaTFM 16174KX962544KX962551NANANANA[9]
P. sinensisCLZhao 8278OR149913OR759768NAOR875939NAOR852703Present study
P. sinensisCLZhao 8315OR149914OR759769NAOR875940NAOR852704Present study
Phaeolus fragilisCui 16579MW377314MW377392NAMW337070MW337137MW382095[5]
P. schweinitziiFP 133218KC585369KC585198NANANANA[28]
Phanerochaete alneaFP-151125KP135177MZ637181MZ748385OK136014MZ913641NA[34]
rhodellumFD-18KP135187KP135258KP134832KP134948NANA[26]
P. sordidaFD-241KP135136KP135252KP134833KP134947NANA[26]
Phanerochaetella angustocystidiataWu 9606-39MZ637020GQ470638MZ748422OK136082MZ913687NA[34]
Phlebia tomentopileataGC 1602-67MZ637040MZ637244MZ748457OK136064MZ913702NA[34]
Picipes tibeticusCui 12215KU189755KU189787KU189879KU189975KU189902KU189940[21]
P. tibeticusCui 12225KU189756KU189788KU189880NAKU189903KU189941[21]
Podoscypha venustulaCui 16923ON417181ON417231ON424722ON424799ON424860ON417089[5]
Polyporus tuberasterDai 11271KU189769KU189800NAKU189983KU189914KU189950[21]
P. tuberasterDai 12462KU507580KU507582NANAKU507590KU507584[21]
Postia hirsutaCui 18347OM039286OM039186NAON424800OM037809OM039221[5]
P. lacteaCui 17334OM039287OM039187OM037753OM037782OM037810OM039222[5]
Pyrofomes demidoffiiMUCL 41034FJ411105FJ393873NANANANA[35]
Radulodon caseariusCui 17979ON417185ON417236ON424727NAON424868ON417093[5]
Resinoporia crassaH6029177KJ028071KT711030NANAKT711069NA[36]
R. luteolaCui 16472MW377319MW377397ON424728MW337072MW337140MW382099[5]
Sarcoporia longitubulataJV 0809/8 TKM207860KM207863NANANANA[7]
S. longitubulataJV 1009/9AKM207861KM207864NANANANA[7]
S. polysporaCui 16995OM039299OM039199OM037761ON424811OM037817NA[5]
S. polysporaCui 17165 TON417192ON417244ON424740ON424812ON424878NA[5]
S. yunnanensisCLZhao 18778OR771908NANANANANAPresent study
Skeletocutis coprosmaeCui 16623ON417193ON417245ON424741ON424813ON424879ON417100[5]
S. yuchengiiFBCC 1132KY953045KY953045KY953143NAKY953109NA[37]
Sparassis crispaAFTOL ID 703DQ250597AY629321NADQ408122NANA[38]
S. radicataOKM-4756KC987580KF053407KY949023NANANA[39]
Sparsitubus nelumbiformisCui 6590KX880632KX880671KX880819NAKX880888KX880715[27]
S. nelumbiformisCui 8497KX880631KX880670NAKX880856KX880887KX880714[27]
Steccherinum meridionaleCui 16691ON417195ON417247ON424743ON424817ON424882ON417102[5]
Trametes hirsutaCui 7462KC848299KC848384NAKX880863KX880928KX880732[27]
T. hirsutaCui 7784KC848297KC848382NANANAKX880731[27]
T. versicolorCui 9306KC848267KC848352NANAKX880918KX880761[27]
T. versicolorCui 9310KC848266KC848351KX880846NAKX880919KX880762[27]
Truncospora ochroleucaDai 11486HQ654105JF706349NANANANA[40]
T. ohiensisMUCL 41036FJ411096FJ393863NANANANA[35]
T. ornataCui 5714HQ654103HQ654116NANANANA[19]
Tyromyces chioneusFD 4KP135311KP135291KP134891KP134977NANA[26]
Vanderbylia delavayiDai 6891JQ861738KF495019NANANANA[19]
V. fraxineaCui 7154HQ654095HQ654110NANANANA[19]
V. robiniophilaCui 5644HQ876609JF706342NANANANA[19]
Wolfiporia cocosCBS 279.55MW251869MW251858NAMW250264MW250253NA[41]
W. hoelenCBK 1KX354453KX354689NAKX354685KX354688NA[42]
Wolfiporiella cartilagineaDai 3764KX354456NANANANANA[5]
W. dilatohyphaFP 94089KC585401KC585236NANANANA[5]
Yuchengia narymicaDai 7050JN048776JN048795NANAKF181147KF051053[43]
Y. narymicaDai 10510HQ654101JF706346NANAKF181148KF051054[43]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yang, Y.; Li, R.; Jiang, Q.; Zhou, H.; Muhammad, A.; Wang, H.; Zhao, C. Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China. J. Fungi 2024, 10, 55. https://doi.org/10.3390/jof10010055

AMA Style

Yang Y, Li R, Jiang Q, Zhou H, Muhammad A, Wang H, Zhao C. Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China. Journal of Fungi. 2024; 10(1):55. https://doi.org/10.3390/jof10010055

Chicago/Turabian Style

Yang, Yang, Rong Li, Qianquan Jiang, Hongmin Zhou, Akmal Muhammad, Hongjuan Wang, and Changlin Zhao. 2024. "Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China" Journal of Fungi 10, no. 1: 55. https://doi.org/10.3390/jof10010055

APA Style

Yang, Y., Li, R., Jiang, Q., Zhou, H., Muhammad, A., Wang, H., & Zhao, C. (2024). Phylogenetic and Taxonomic Analyses Reveal Three New Wood-Inhabiting Fungi (Polyporales, Basidiomycota) in China. Journal of Fungi, 10(1), 55. https://doi.org/10.3390/jof10010055

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop