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Abstract: Plant–endophytic fungi are widely distributed and highly diverse, with many of them
capable of influencing plant growth and development, which is related to the production of volatile
organic compounds (VOCs). While certain fungal VOCs have been found to stimulate plant growth,
others exhibit inhibitory effects. Importantly, the impact of fungal VOCs extends beyond host plants
to affect non-host plants as well. In this study, we isolated two plant–endophytic fungi, Clonostachys
sp. CC1 and Clonostachys sp. CC2, from healthy rice roots. These strains were co-cultured with both
rice and Arabidopsis thaliana. Our results demonstrated that both strains significantly enhanced the
growth of both rice and A. thaliana. Specifically, they increased the length and biomass of rice and A.
thaliana seedlings, as well as the chlorophyll content, while decreasing the H2O2 content in the leaves
of both plants. The VOCs produced by these strains were analyzed using gas chromatography–mass
spectrometry (GC-MS), which identified a total of 10 main ingredients. Among these compounds,
1-pentanol, ethylbenzene, and dimethyl phthalate inhibited the growth of rice while promoting the
growth of A. thaliana, highlighting the variability in the effects of these compounds on different plant
species and the complexity of plant–fungal interactions.

Keywords: plant–endophytic fungi; volatile organic compounds; plant growth-promoting

1. Introduction

Plant–endophytic fungi refer to a group of fungi that live inside the tissues and
organs of plants at a certain stage or all stages without affecting the hosts negatively [1].
Many plant–endophytic fungi play an important role in plant growth, which is related
to the volatile organic compounds (VOCs) they produce. VOCs, characterized by their
low molecular weight and ability to evaporate readily, serve as vital communication
tools in interspecies interactions [2]. VOCs produced by the plant–endophytic fungi have
been reported to be able to promote plant growth and improve plant adaptability to
various biotic and abiotic stresses by facilitating nutrient absorption, modulating hormone
levels, and inducing systemic resistance. For example, Trichoderma sp. produces growth
hormone-like substances, such as cytokinins, which have been shown to enhance seedling
emergence rates and increase the height and leaf area of plants like tomato, cucumber,
and chili; Trichoderma viride has been observed to stimulate Arabidopsis growth, promote
lateral root formation, and induce early flowering, even without direct physical contact [3,4].
Additionally, research by Kuswinanti et al. highlights the potential of endophytic fungi from
aromatic rice, which produce growth-promoting substances like indole-3-acetic acid (IAA)
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and lignin for rice growth, as well as organic acids for phosphorus solubilization [5]. These
fungi have shown higher efficiency in phosphorus solubilization compared to bacteria.

Studies have also shown that VOCs produced by some plant–endophytic fungi could
inhibit plant growth [6–8]. The possible reasons were that these compounds disrupt essen-
tial ion channels or decrease enzyme activity crucial for plant growth and development [6].
For example, VOCs from Tuber melanosporum, such as 3-Octenol and (E)-2-Octenal, inhibit
A. thaliana root and leaf growth, accelerate leaf oxidation, and increase ROS scavenging
enzyme activity [7]. Similarly, VOCs from Aspergillus flavus and Fusarium oxysporum reduce
the length of barley roots by 19 to 21.5% and the surface of Hordeum vulgare aerial parts by
15% [8]. Furthermore, different concentrations of fungal VOCs can have varying effects on
plant growth, suggesting a dose-dependent relationship. For instance, 6-Pentyl-2H-pyran-
2-one (6-PP) from Trichoderma sp. promotes Arabidopsis growth at lower concentrations
but inhibits it at higher concentrations [9]. Likewise, 1-hexanol, a common VOC produced
by bacteria and fungi, promotes plant growth at low concentrations but inhibits it at high
concentrations [10]. Therefore, understanding the effect of these VOCs on plant growth is
crucial for the application of VOCs.

In this study, we isolated two plant–endophytic fungi, Clonostachys sp. CC1 and
Clonostachys sp. CC2, from the healthy roots of rice. To date, several secondary metabo-
lites from Clonostachys spp. have been identified, including terpenes, polyketides, and
peptides [11]. These compounds exhibit antagonistic effects against bacteria, inhibit the for-
mation of phytopathogenic fungal adherent cells, and promote plant growth. For instance,
Xiao et al. screened out Clonostachys rosea from medicinal plants, which significantly pro-
moted the growth of Anoectochilus roxburghii, an endangered Chinese medicinal herb [12].

Despite extensive research on Clonostachys spp., there has been limited investigation
into the specific components of their VOCs and their effects on plant growth and develop-
ment. Therefore, this study aims to address this gap by employing gas chromatography–
mass spectrometry (GC-MS) to analyze the specific components of the VOCs produced by
Clonostachys sp. CC1 and Clonostachys sp. CC2. Furthermore, we measured the influence of
individual compounds among the VOCs on plant growth and development. Our findings
reveal that VOCs produced by these two strains can promote the growth of both rice and
Arabidopsis. Notably, we identified VOCs that inhibited the growth of rice while promoting
the growth of A. thaliana, highlighting the variability in the effects of these compounds on
different plant species. Specifically, we identified 1-pentanol, ethylbenzene, and dimethyl
phthalate as potential fumigants for promoting the growth of A. thaliana, paving the way
for the application of VOCs produced by Clonostachys species.

2. Materials and Methods
2.1. Fungal Strains

Fungal strains CC1 and CC2, which were isolated from rice roots, were used in this
study. Both strains were cultured in a PDA medium (Haibo Biotechnology Co., Ltd.,
Qingdao, China) at 26 ◦C. The genomic DNA of the two strains was extracted separately
with an E.Z.N.A® Fungal DNA mini kit following the manufacturer’s guidelines (Omega,
Darmstadt, Germany). To identify the two strains, ITS genes were amplified by PCR
following the method of Jing et al. [13]. The maximum likelihood (ML) tree implemented in
MEGA X [14], the Tamura-Nei model, and 1000 bootstrap replicates were used to perform
phylogenetic analysis.

2.2. Co-Culture of Fungi and Plants

Exposures of rice and A. thaliana plants to Clonostachys VOCs were performed us-
ing a double plate-within-a-plate system to avoid direct contact with plants and fungal
strains. Briefly, a small, uncovered Petri dish (35 × 35 mm; Solarbio Science and Technol-
ogy Co., Ltd., Beijing, China) containing Clonostachys grown on PDA was placed into a
larger partitioned Petri dish (150 × 150 mm) containing two (rice) or eight (A. thaliana)
plant seedlings.
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Healthy, plump seeds of rice and A. thaliana were selected for the co-cultivation of
plants and fungi. Seeds of rice were surface-sterilized by soaking in 75% ethanol solution
(Shandong Lilkang Medical Technology Co., Ltd., Dezhou, China) for 1 min and NaClO
solution (0.9% available chlorine content; Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) for 30 min, and then rinsed with sterile deionized water 8 times. The rice seeds
were placed on Petri dishes (100 × 100 mm) containing half-strength Murashige and Skoog
salt (1/2 MS medium; Solarbio Science and Technology Co., Ltd., Beijing, China) in a
plant growth chamber. The seeds were kept in dark for 2 days to promote root growth
and then cultured under a 16 h light/8 h dark photoperiod at 26/24 ◦C with a relative
humidity of 70% and light intensity of 10,000 lm/m2. Similarly, the seeds of A. thaliana
were surface-sterilized by soaking in 75% ethanol solution for 20 s and NaClO solution (3%
available chlorine content) for 10 min and then rinsed with sterile deionized water 8 times.
The seeds were first kept in the refrigerator at 4 ◦C for 2 days and then cultured in a light
incubator with the same condition as rice.

For inoculation of fungal strains, a plug (5 mm diameter) from a PDA plate containing
the fungus was placed in the small Petri dish containing PDA medium. The PDA culture
medium without strains was used as the control group. The rice and A. thaliana seedlings
with uniform growth after 7 days of cultivation were transferred to a large Petri dish
containing 1/2 MS medium, with 2 seedlings for A. thaliana and 8 seedlings for rice per
Petri dish. Each treatment included 5 biological replicates. The fungi and plants were
co-cultured in a plant growth chamber at 26/24 ◦C with a 16 h light/8 h dark photoperiod.
At 7 days after inoculation, plant samples were harvested to measure the shoot height, root
length, fresh weight, hydrogen peroxide content, and photosynthetic pigment content of
each sample. Each treatment included 5 biological replicates.

2.3. Determination of Hydrogen Peroxide and Chlorophyll Content in Plant Tissues

To measure hydrogen peroxide contents in plant tissues, 0.2 g of fresh samples were
added to 2 mL of 0.1% TCA, grinded thoroughly on ice, and centrifuged at 1200× g for
15 min. The supernatant (0.5 mL) was mixed with 0.5 mL of PBS (10 mmol/L, pH = 7.0)
and 1 mL of KI, and then the absorbance was measured at the wavelength of 390 nm.

The contents of chlorophyll a, chlorophyll b, and carotenoids were determined accord-
ing to the method of Lichtenhaler and Wellburn [15]. Briefly, 0.1 g of plant leaves were cut
into pieces, added to 10 mL of ethanol–acetone (1:1) mixture, and kept in dark overnight
(not more than 12 h). The absorbance was measured at the wavelengths of 663, 646, and
470 nm when the leaves turned white. The following formulas were used to calculate the
content of each chlorophyll component:

Ca = 12.21 × A663 − 2.81 × A646 (1)

Cb = 20.13 × A646 − 5.03 × A663 (2)

Cx−c = (1000 × A470 − 2.05 × Ca − 114.8 × Cb)/245 (3)

2.4. Identification of VOCs Produced by the Two Clonostachys Strains

For headspace volatile analysis, 5 mL of PDA slant medium was injected into a
headspace flask with a capacity of 20 mL, placed obliquely, inoculated the strains af-
ter solidification, and incubated at 26 ◦C for 10 days. Clonostachys cultures were grown
in a 20 mL glass flask (Zhejiang Sainz Scientific Instrument Co., Ltd., Ningbo, China)
containing 5 mL of PDA at 26 ◦C for 10 days. Headspace samples taken from sterile
PDA served as negative controls. The headspace was collected for 1 h and analyzed by
GC-MS. The VOCs were extracted by a solid phase microextraction (SPME; Agilent Tech-
nologies Co., Ltd., California, America) device, and an SPME fiber (50/30 µm Divinyl
benzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDX; Anpel Laboratory Technolo-
gies Co., Ltd., Shanghai, China) was used to absorb VOCs. The VOCs were analyzed
using a gas chromatograph–mass spectrometer (Agilent 7890N/5975C system; Agilent
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Technologies Co., Ltd., California, America) equipped with an HP-5MS quartz capillary
column (0.25 mm × 30 m, 0.25 µm). The detection conditions of the column were as
follows: the extraction time was 45 min, the carrier gas was helium, the column flow rate
was 1.0 mL/min, the temperature of the vaporization chamber was 240 ◦C, the column
temperature was maintained at 30 ◦C for 3 min, then the temperature was increased to
220 ◦C at a rate of 5 ◦C/min and then maintained at 270 ◦C for 1 min after the operation,
and the injection volume was 1.0 µL in a non-split flow mode. The mass spectrometry
conditions were as follows: the ionization voltage was 70 eV, the EI ionization source and
ion source temperature was at 230 ◦C, the mass spectral range was 20~450 amu, and the
mass spectral scanning rate was 3.35 scans/s. The VOCs were identified by comparison
with the NIST/EPA/NIH Mass Spectral Library 2005 (NIST05) database (Agilent).

2.5. In Vitro Growth Promotion of Arabidopsis thaliana and Rice Seedlings by Pure VOCs with
Different Concentrations

The capacities of the pure 1-pentanol, ethylbenzene, and dimethyl phthalate for the
promotion of the growth of rice and A. thaliana were evaluated in vitro. These VOCs were
previously identified in the cultures of the tested Clonostachys strains by GC-MS. The ex-
periment was performed in Petri dishes, as described above for fungi, but by replacing
the Clonostachys inoculum with filter papers that were impregnated with 10 µL aqueous
solutions of the pure VOCs. These solutions included standard solutions and those diluted
10×, 100×, and 1000×. The standard solution consisted of 99.5% 1-pentanol (concentration
in vials: 0.018 mg/mL) (Macklin, Shanghai, China), 99.5% ethylbenzene (concentration in
vials: 0.019 mg/mL) (Macklin, Shanghai, China), and 99.7% dimethyl phthalate (concentra-
tion in vials: 0.026 mg/mL) (Macklin, Shanghai, China). The Petri dishes that contained
seedlings and filter papers without VOCs were used as the control group. After 7 days of
culture, the plant-growth-promotion parameters were measured as indicated above. Each
treatment included 5 biological replicates.

2.6. Data Analysis

IBM SPSS Statistics 21 was used for statistical analysis. The results were subjected to
an analysis of variance (ANOVA) with Duncan test and Dunnett’s t-test (p < 0.05). The
Origin 2021 was used for graphing.

3. Results
3.1. Characterization of Two Clonostachys Isolates

Two fungal strains, CC1 and CC2, were isolated from healthy rice roots (Figure 1).
Both strains exhibited growth on the PDA medium, and strain CC1 grew faster than strain
CC2 (Figure 1A). The ML tree based on ITS sequences revealed that strains CC1 and CC2
clustered with Clonostachys rosea, supported by a bootstrap value of 87% (Figure 1B). These
findings indicate that both strains can be assigned to the genus Clonostachys.

3.2. Impacts of VOC Mixture Produced by the Two Clonostachys Strains on the Growth and
Development of Rice

To investigate the effects of VOCs produced by Clonostachys strains on the growth and
development of rice, 5-day-old rice seedlings with uniform growth were co-cultured with 2-
day-old strains for 7 days to assess rice growth under VOC exposure (Figure 2A). Compared
with the control group, rice exposed to VOCs exhibited a significant increase in shoot height
and fresh weight (Figure 2B,C). For instance, VOCs produced by Clonostachys sp. CC2 led
to a 65.33% increase in the fresh weight of rice shoots. Additionally, the VOCs significantly
promoted root growth, as revealed by an increase in the number of lateral roots and root
fresh weight (Figure 2C,D). These findings demonstrate the significant growth-promoting
effects of Clonostachys VOCs on rice.
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Figure 2. Impacts of VOCs produced by strains CC1 and CC2 on the growth of rice. (A) Promotion
of rice growth by the two strains at 7 days after inoculation. (B) Chlorophyll content in rice leaves.
(C) Length of rice shoots and roots. (D) Fresh weight of rice shoots and roots. (E) H2O2 content of
rice shoots and roots. The letters a, b, and c in the figure represent the results of Duncan’s multiple
range test (p < 0.05), which is used to indicate the significance of differences between groups. Letters
that do not overlap between two groups indicate a significant difference between those groups.

To explore the impact of VOC exposure on the photosynthetic capacity of rice leaves,
the chlorophyll content was measured (Figure 2B). VOCs produced by both strains sig-
nificantly increased rice chlorophyll content, particularly chlorophyll a (Figure 2B). Fur-
thermore, to assess the effect of VOCs on rice oxidative activity, H2O2 contents in shoot
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and root tissues of rice exposed to VOCs for 7 days were analyzed. Under VOC treatment,
there was a significant decrease in H2O2 content in both shoot and root tissues (Figure 2E).
For example, VOCs from Clonostachys sp. CC1 reduced H2O2 content in rice shoots and
roots by 38.46% and 57.89%, respectively. These results indicate that VOCs produced by the
two Clonostachys strains can mitigate H2O2 accumulation in rice leaves and roots, thereby
promoting rice growth and development.

3.3. Impacts of VOC Mixture Produced by the Two Clonostachys Strains on the Growth and
Development of Arabidopsis

To further explore the impact of VOCs on different plant species, we utilized the
model plant A. thaliana. Similar to rice, Clonostachys VOCs significantly enhanced A. thaliana
growth after 7 days of co-cultivation (Figure 3). Specifically, VOCs produced by strain
CC2 increased the total fresh weight of A. thaliana by 138.36% (Figure 3C). Additionally,
Clonostachys VOCs markedly reduced the H2O2 content in A. thaliana leaves (Figure 3E).
Moreover, Clonostachys VOCs significantly augmented the chlorophyll content of A. thaliana
leaves, with strain CC1’s VOCs elevating chlorophyll a and carotenoid content by 43.7%
and 10.59%, respectively (Figure 3B). These findings demonstrate the comparable growth-
promoting effects of Clonostachys VOCs on both rice and A. thaliana.
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Figure 3. Impacts of VOCs produced by strains CC1 and CC2 on the growth of Arabidopsis thaliana.
(A) Promotion of A. thaliana growth by the two strains at 7 days after inoculation. (B) Chlorophyll
content in A. thaliana leaves. (C) Total biomass of A. thaliana. (D) Length of A. thaliana roots. (E) H2O2

content of A. thaliana shoots. The letters a, b, and c in the figure represent the results of Duncan’s
multiple range test (p < 0.05), which is used to indicate the significance of differences between
groups. Letters that do not overlap between two groups indicate a significant difference between
those groups.

3.4. Identification of VOC Mixture Produced by the Two Clonostachys Strains

The two Clonostachys strains were cultivated separately on PDA for 7 days, followed by
the collection of headspace samples over a 4 h period for GC-MS analysis. Variances in types
and abundance of volatiles were observed between the two Clonostachys strains. A total
of 10 volatile compounds were identified, including alcohols, aldehydes, alkenes, esters,
and aromatic compounds (Table 1). Among these, five volatile compounds were found to
be common to both strains, such as 2-methyl-1-butanol, 2-isopropyl-5-methyl-2-hexenal,
dimethyl phthalate, and 2,6,10-trimethyltetradecane (Table 1).
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Table 1. Volatile compounds identified by GC-MS from Clonostachys VOCs.

ID Residence Time (min) Compound Name Clonostachys sp. CC1 Clonostachys sp. CC2 CAS Number

C1 2.33 1,3-Pentadiene + − 000504-60-9
C2 5.15 2-Methyl-1-butanol + + 000137-32-6
C3 5.4 1-Pentanol − + 000071-41-0
C4 8.92 Ethylbenzene + − 000100-41-4
C5 18.04 Ethyl benzoate + − 000093-89-0
C6 20.38 8-Methyl-1-decene − + 061142-79-8
C7 21.71 2-Isopropyl-5-methyl-2-hexenal + + 035158-25-9
C8 23.73 Dimethyl phthalate + + 000131-11-3
C9 24.19 2,6,10-Trimethyltetradecane + + 014905-56-7
C10 25.67 3,4-Diethylbiphenyl − + 061141-66-0

3.5. Effects of Pure VOCs of Different Concentrations on the Growth of Rice and
A. thaliana Seedlings

Out of the 10 detected VOCs, three pure compounds (1-pentanol, ethylbenzene, and
dimethyl phthalate) were procured and utilized to investigate their effects on plant growth
(Figures 4 and 5). In rice, 1-pentanol exhibited strong growth inhibition, and the standard
solution of 1-pentanol resulted in reductions of shoot length, root length, shoot fresh weight,
and root fresh weight by 59.15%, 27.2%, 51.58%, and 34.24%, respectively (Figure 4A–D).
Additionally, 1-pentanol significantly decreased the chlorophyll a, chlorophyll b, and
carotenoid contents in rice by 67.03%, 79.67%, and 62.85%, respectively, while also elevating
the H2O2 content in rice leaves (Figure 4E–I). Notably, the inhibition of rice growth was
progressively alleviated as the concentration of 1-pentanol was reduced, with lower con-
centrations of 1-pentanol promoting rice growth (Figure 4A–D). In contrast, the standard
solutions of ethylbenzene and dimethyl phthalate showed relatively weak effects on rice
growth compared to 1-pentanol. Specifically, weak changes in shoot and root length and
fresh weight were observed in rice treated with ethylbenzene and dimethyl phthalate com-
pared with controls (Figure 4A–D). Moreover, decreased carotenoid contents were detected
in treatments with ethylbenzene and dimethyl phthalate (Figure 4I). Diluted solutions of
ethylbenzene and dimethyl phthalate exhibited effects on rice growth similar to those of
the standard solutions. These findings suggest that ethylbenzene and dimethyl phthalate
are not the active compounds in Clonostachys VOCs contributing to rice growth promotion.

In contrast to rice, different effects of the tested VOCs on A. thaliana seedlings were
observed (Figure 5). Although the standard solutions of 1-pentanol, ethylbenzene, and
dimethyl phthalate showed weak effects on the growth of A. thaliana, diluted solutions
exhibited significant promoting effects on A. thaliana growth (Figure 5A,B). For instance,
the total biomass and primary root length of A. thaliana increased by 19.23% and 18.68%
when treated with 1000× dilution of 1-pentanol (concentration in vials: 0.000018 mg/mL).
In addition, the standard solution of 1-pentanol resulted in the increase of chlorophyll a,
chlorophyll b, and carotenoid contents of A. thaliana and weak changes in the H2O2 content
(Figure 5C–F). Additionally, both diluted solutions of ethylbenzene and dimethyl phthalate
decreased the H2O2 content of A. thaliana significantly (Figure 5C). These results showed
the growth-promoting activity of 1-pentanol, ethylbenzene, and dimethyl phthalate on
A. thaliana.
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A. thaliana leaves. (E) Chlorophyll b content in A. thaliana leaves. (F) Carotenoid content in A. thaliana
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4. Discussion

The interactions between plant endophytic fungi and plants are of great interest.
Endophytic fungi residing within plant tissues contribute to plant growth through the
production of various secondary metabolites and enzymes, thereby exhibiting diverse
biological activities. For example, their influence on plant growth is notably mediated by
VOCs they emit during their growth phases. Minerdi et al. [16] demonstrated that bicyclic
semiterpenes released by Aspergillus flavus FS2 and Fusarium oxysporum MSA-35 promoted
the growth of lettuce seedlings and increased the expression of expansion protein genes in
the leaves significantly [17]. Additionally, F. oxysporum was found to enhance shoot and root
growth in Arabidopsis and tobacco, and the process was governed by plant growth hormone
signaling pathways [17]. Furthermore, VOCs emitted by Phoma sp. GS8-3, categorized as
plant growth-promoting fungi (PGPF), encompassed compounds like 2-methylpropanol,
3-methylbutanol, methacrylic acid, and isobutyl acetate [18]. These compounds exhibited
substantial growth-promoting effects on tobacco in vitro [18]. Interestingly, their effec-
tiveness was more pronounced at lower concentrations, highlighting a dose-dependent
relationship. While these VOCs resulted in a modest increase in tobacco fresh weight,
their efficacy in promoting growth underscores their potential utility in agricultural prac-
tices [18]. Notably, the endophytic fungi also release a certain amount of CO2 during
interactions between fungi and plants, which may not necessarily promote plant growth.
For example, in a study comparing Anoectochilus formosanus grown in a closed environment,
those inoculated with Tolypocladium sp. did not show significant differences in fresh weight,
average number of roots, or shoots compared to control plants that were not inoculated
with mycelium [19]. This suggests that the CO2 released during the interaction may not
have a notable growth-promoting effect on these plants.

The Clonostachys strains, such as C. rosea, are filamentous fungus that exhibits a wide
distribution worldwide [20]. It holds significant importance in various fields, including
bioenergy, biodegradation, biological fermentation, and biological control [20,21]. Further-
more, C. rosea has been shown to promote plant growth and development. For instance, it
facilitates the germination of pepper and eggplant seeds while also increasing the height of
seedlings [22]. C. rosea can also promote the growth of tomato plants [21,23,24] and boost
root development in lettuce grown hydroponically [25]. In this study, we observed signifi-
cant growth promotion effects of two plant endophytic fungi, Clonostachys sp. CC1 and
Clonostachys sp. CC2, isolated from the inter-root soil of healthy rice. Both strains exhibited
noticeable enhancements in the growth parameters of rice and A. thaliana. Specifically,
they induced a vibrant green coloration in rice leaves, increased shoot thickness, elevated
plant height, and enhanced fresh weight of both shoot and root. Similarly, Arabidopsis
plants treated with these strains displayed greener leaves, expanded leaf surface area,
and augmented total biomass. Additionally, both strains led to an increase in chlorophyll
content within the leaves of both rice and A. thaliana. Therefore, the two strains could
be prioritized as promising candidates for biofumigant applications aimed at enhancing
plant growth.

Hydrogen peroxide (H2O2) is one of the primary representatives of reactive oxygen
species (ROS), and its production and accumulation in plant cells can be triggered by biotic
and abiotic stresses, as well as hormonal signals [26–30]. The VOCs emitted by both CC1
and CC2 strains caused a general reduction in H2O2 content within rice and A. thaliana
tissues. This suggests a potential role for these VOCs in directly or indirectly scavenging
ROS, thereby benefiting plant growth and development. Notably, fungal VOCs have been
demonstrated to affect plant hormone signaling pathways [31], leading to acidification of
the cell wall, which in turn loosens the cell wall and promotes cell elongation [32]. These
results suggested the complex interactions of VOCs, ROS, and plant growth.

Different concentrations of pure VOC compounds have varying effects on plant growth.
For example, high concentrations (10 and 100 mg/L) of mushroom alcohol (1-octen-3-ol) ef-
fectively inhibited the germination of A. thaliana seeds and the growth of their seedlings [33].
Similar inhibitory effects were observed for 1-hexanol [10]. To further investigate the effects
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of pure compounds produced by strains CC1 and CC2 on the growth of rice and A. thaliana
at different concentrations, a comparative analysis was conducted. Compared to the control
group, the greatest increase in the total biomass of A. thaliana was observed with a 1000×
dilution of 1-pentanol (concentration in vials: 0.000018 mg/mL) and a 100× dilution of
ethylbenzene and dimethyl phthalate (concentrations in vials: 0.00019 and 0.00026 mg/mL,
respectively). While the total biomass of A. thaliana increased, the chlorophyll content in
the leaves did not show a significant increase, suggesting that these compounds did not
enhance plant growth by boosting leaf photosynthesis. These results suggest that pure
VOCs could serve as potential growth-promoting fumigants for A. thaliana. In contrast, the
effects on rice were different. Although exposure to the standard solution of 1-pentanol
decreased the biomass and chlorophyll content of rice leaves, dilutions of 1-pentanol not
only alleviated these inhibitory effects but also promoted rice growth. Ethylbenzene and
dimethyl phthalate exhibited relatively weak inhibitory effects on rice growth compared
to 1-pentanol, and their diluted forms had similar effects. These findings indicate that
the tested pure VOCs, especially 1-pentanol, inhibited the growth of rice but promoted
the growth of A. thaliana. The concentration of these VOCs significantly influenced their
growth-promoting effects, highlighting the variability in their effects on different plant
species. Additionally, Candida nivariensis has been shown to produce 1-pentanol [34],
whereas no endophytic fungi have been reported to produce ethylbenzene and dimethyl
phthalate to date.

Although the two Clonostachys strains, CC1 and CC2, were derived from the same
host and isolation site, they exhibited different production of VOCs, providing evidence
for individual differences between homologous strains. It is important to note that due to
experimental limitations, we obtained only three pure VOCs (1-pentanol, ethylbenzene, and
dimethyl phthalate). Consequently, we conducted growth promotion experiments on rice
and A. thaliana using different concentrations of these pure compounds. However, it is also
possible that untested compounds possess plant growth-promoting activity. Moreover, the
observed bioactivities of VOCs, such as growth promotion, may result from the synergistic
effects of multiple compounds. For example, Cladosporium cladosporioides was reported to
significantly improve the growth of tobacco seedlings in vitro, and the strain produced
α-pinene, (+)-sativene, dehydroaromadendrene, (-)-trans-caryophyllene, and tetrahydro-
2,2,5,5-tetramethylfuran, so it was hypothesized that these five compounds may have
some synergistic effect [35]. Furthermore, both VOCs (2-methyl-butanal and 3-methyl-
butanal) produced by Cladosporium halotolerans regulated the growth and development of
Nicotiana benthamiana, and the mixture of the two VOCs also enhanced plant growth and
root development compared to the compounds alone, suggesting a synergistic effect of
the mixture of the two VOCs on plant growth [36]. Furthermore, methyl jasmonate (MJ)
released into the soil in a volatile form stimulates the formation of bacterial biofilms away
from the plant roots. These biofilms release a different array of volatile compounds that
significantly contribute to plant growth in synergy with MJ [37]. However, it is important
to recognize that a single compound may not fully replicate all the bioactivities exhibited by
VOCs. Therefore, further studies are required to explore the synergistic effects of different
VOCs on plant growth.
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