Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. WMO Characterization
2.2. Yeast Strain Preservation and Inoculum Preparation
2.3. 96-Wells Microplate Experiments
2.4. Bioreactor Experiments
2.4.1. Batch Cultures
2.4.2. Two-Stage Pulse Fed-Batch Cultures
2.5. Analytical Methods
2.5.1. WMO Characterization and Substrate Consumption
2.5.2. Yeasts Biomass
2.5.3. Extracellular Protease Activity Assay
2.5.4. Microbial Lipids Extraction and Fatty Acid Analysis
2.6. Determination of Biodiesel Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. 96-Wells Microplate Experiments
3.2. Bioreactor Experiments
3.2.1. Batch Cultures
3.2.2. Two-Stage Pulse Fed-Batch Cultures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kupareva, A.; Mäki-Arvela, P.; Grénman, H.; Eränen, K.; Sjöholm, R.; Reunanen, M.; Murzin, D.Y. Chemical Characterization of Lube Oils. Energy Fuels 2013, 27, 27–34. [Google Scholar] [CrossRef]
- Soumeya, S.; Allaoueddine, B.; Hocine, A.K. Biodegradation of Used Motor Oil by Streptomyces Ginkgonis KM-1–2, Isolated from Soil Polluted by Waste Oils in the Region of Azzaba (Skikda-Algeria). J. Biotechnol. 2022, 349, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wolak, A.; Zając, G.; Gołębiowski, W. Determination of the Content of Metals in Used Lubricating Oils Using AAS. Pet. Sci. Technol. 2019, 37, 93–102. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, J.; Huang, Q.; Yang, Y. Occurrence of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Typical Used Mineral Oil from China: Implications for Risk Management. Environ. Sci. Pollut. Res. 2020, 27, 33065–33074. [Google Scholar] [CrossRef]
- Sogilub. Relatórios. Available online: https://www.sogilub.pt/quem-somos/relatorios/ (accessed on 10 May 2024).
- Bhurgri, S.; Talpur, F.N.; Nizamani, S.M.; Afridi, H.I.; Surhio, M.A.; Shah, M.R.; Bong, C.W. Isolation of Bacillus Cereus from Botanical Soil and Subsequent Biodegradation of Waste Engine Oil. Int. J. Environ. Sci. Technol. 2018, 15, 1453–1466. [Google Scholar] [CrossRef]
- Salam, L.B. Metabolism of Waste Engine Oil by Pseudomonas Species. 3 Biotech 2016, 6, 98. [Google Scholar] [CrossRef]
- Ramadan, K.M.A. Biodegradation of Used Lubricating and Diesel Oils by a New Yeast Strain Candida viswanathii KA-2011. Afr. J. Biotechnol. 2012, 11, 14166–14174. [Google Scholar] [CrossRef]
- Goulart, G.; Coutinho, J.; Monteiro, A.; Siqueira, E.; Santos, V. Isolation and Characterization of Gasoline-Degrading Yeasts from Refined Oil-Contaminated Residues. J. Bioremediation Biodegrad. 2014, 5, 2. [Google Scholar] [CrossRef]
- Mbachu, A.E.; Chukwura, E.I.; Mbachu, N.A. Isolation and Characterization of Hydrocarbon Degrading Fungi from Used (Spent) Engine Oil Polluted Soil and Their Use for Polycyclic Aromatic Hydrocarbons (PAHs) Degradation. Univers. J. Microbiol. Res. 2016, 4, 31–37. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Tebyanian, H.; Cappello, S. Isolation and Characterization of Two Crude Oil-Degrading Yeast Strains, Yarrowia Lipolytica PG-20 and PG-32, from the Persian Gulf. Mar. Pollut. Bull. 2012, 64, 1386–1391. [Google Scholar] [CrossRef]
- Yalçın, H.T.; Ergin-Tepebaşı, G.; Uyar, E. Isolation and Molecular Characterization of Biosurfactant Producing Yeasts from the Soil Samples Contaminated with Petroleum Derivatives. J. Basic Microbiol. 2018, 58, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, R. Metabolism of Hydrophobic Carbon Sources and Regulation of It in N-Alkane-Assimilating Yeast Yarrowia lipolytica. Biosci. Biotechnol. Biochem. 2013, 77, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Miranda, S.M.; Alves, J.M.; Pereira, A.S.; Belo, I. Waste Cooking Oils as Feedstock for Lipase and Lipid-Rich Biomass Production. Eur. J. Lipid Sci. Technol. 2019, 121, 1800188. [Google Scholar] [CrossRef]
- Lopes, M.; Gomes, A.S.; Silva, C.M.; Belo, I. Microbial Lipids and Added Value Metabolites Production by Yarrowia lipolytica from Pork Lard. J. Biotechnol. 2018, 265, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.S.; Lopes, M.; Duarte, M.S.; Alves, M.M.; Belo, I. Integrated Bioprocess of Microbial Lipids Production in Yarrowia lipolytica Using Food-Waste Derived Volatile Fatty Acids. Renew. Energy 2023, 202, 1470–1478. [Google Scholar] [CrossRef]
- Dias, B.; Lopes, M.; Fernandes, H.; Marques, S.; Gírio, F.; Belo, I. Biomass and Microbial Lipids Production by Yarrowia Lipolytica W29 from Eucalyptus Bark Hydrolysate. Renew. Energy 2024, 224, 120173. [Google Scholar] [CrossRef]
- Miranda, S.M.; Belo, I.; Lopes, M. Yarrowia lipolytica Growth, Lipids, and Protease Production in Medium with Higher Alkanes and Alkenes. World J. Microbiol. Biotechnol. 2024, 40, 318. [Google Scholar] [CrossRef]
- Miranda, S.M.; Lopes, M.; Belo, I. Exploring the Use of Hexadecane by Yarrowia Lipolytica: Effect of Dissolved Oxygen and Medium Supplementation. J. Biotechnol. 2024, 380, 29–37. [Google Scholar] [CrossRef]
- Folayan, A.J.; Anawe, P.A.L.; Aladejare, A.E.; Ayeni, A.O. Experimental Investigation of the Effect of Fatty Acids Configuration, Chain Length, Branching and Degree of Unsaturation on Biodiesel Fuel Properties Obtained from Lauric Oils, High-Oleic and High-Linoleic Vegetable Oil Biomass. Energy Rep. 2019, 5, 793–806. [Google Scholar] [CrossRef]
- Katre, G.; Joshi, C.; Khot, M.; Zinjarde, S.; Ravikumar, A. Evaluation of Single Cell Oil (SCO) from a Tropical Marine Yeast Yarrowia lipolytica NCIM 3589 as a Potential Feedstock for Biodiesel. AMB Express 2012, 2, 36. [Google Scholar] [CrossRef]
- Pereira, A.S.; Lopes, M.; Belo, I. From Crude Glycerol and Volatile Fatty Acids to Biodiesel and Other Bioproducts Using Yarrowia lipolytica NCYC 2904 as a Cell Factory. Sustain. Energy Fuels 2023, 7, 4687–4696. [Google Scholar] [CrossRef]
- Radha, P.; Narayanan, S.; Chaudhuri, A.; Anjum, S.; Thomas, D.L.; Pandey, R.; Ramani, K. Synthesis of Single-Cell Oil by Yarrowia lipolytica MTCC 9520 Utilizing Slaughterhouse Lipid Waste for Biodiesel Production. Biomass Convers. Biorefinery 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.C.; Kuroki, A.; Dai, Y.; Tong, Y.W. Microbial Biodiesel Production from Industrial Organic Wastes by Oleaginous Microorganisms: Current Status and Prospects. J. Hazard. Mater. 2021, 402, 123543. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Ouellet, B.; Abdel-Mawgoud, A.M. Production of Genetically Engineered Designer Biodiesel from Yeast Lipids. Curr. Res. Biotechnol. 2024, 7, 100189. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumar Sharma, P.; Jhalani, A. A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Abdul Hakim Shaah, M.; Hossain, M.S.; Salem Allafi, F.A.; Alsaedi, A.; Ismail, N.; Ab Kadir, M.O.; Ahmad, M.I. A Review on Non-Edible Oil as a Potential Feedstock for Biodiesel: Physicochemical Properties and Production Technologies. RSC Adv. 2021, 11, 25018–25037. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Chang, H.N.; Shang, L.; Choi, J.D.; Kim, N.J.; Kang, J.W. The Effect of Volatile Fatty Acids as a Sole Carbon Source on Lipid Accumulation by Cryptococcus Albidus for Biodiesel Production. Bioresour. Technol. 2011, 102, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Magdouli, S.; Guedri, T.; Tarek, R.; Brar, S.K.; Blais, J.F. Valorization of Raw Glycerol and Crustacean Waste into Value Added Products by Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 57–68. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Saber, H.; Galal, H.R.; Abo-Eldahab, M.; Alwaleed, E. Enhancing the Biodiesel Production in the Green Alga Chlorella Vulgaris by Heavy Metal Stress and Prediction of Fuel Properties from Fatty Acid Profiles. Environ. Sci. Pollut. Res. 2024, 31, 35952–35968. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Arora, N.; Sartaj, K.; Pruthi, V.; Pruthi, P.A. Sustainable Biodiesel Production from Oleaginous Yeasts Utilizing Hydrolysates of Various Non-Edible Lignocellulosic Biomasses. Renew. Sustain. Energy Rev. 2016, 62, 836–855. [Google Scholar] [CrossRef]
- Talebi, A.F.; Tabatabaei, M.; Chisti, Y. BiodieselAnalyzer©: A User-Friendly Software for Predicting the Properties of Prospective Biodiesel. Biofuel Res. J. 2014, 1, 55–57. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Crow, S.A. Metabolism of Aromatic Hydrocarbons by Yeasts. Arch. Microbiol. 1981, 129, 9–13. [Google Scholar] [CrossRef]
- Mihreteab, M.; Stubblefield, B.A.; Gilbert, E.S. Microbial Bioconversion of Thermally Depolymerized Polypropylene by Yarrowia lipolytica for Fatty Acid Production. Appl. Microbiol. Biotechnol. 2019, 103, 7729–7740. [Google Scholar] [CrossRef]
- Ferreira, T.F.; Coelho, M.A.Z.; da Rocha-Leão, M.H.M. Factors Influencing Crude Oil Biodegradation by Yarrowia lipolytica. Braz. Arch. Biol. Technol. 2012, 55, 785–791. [Google Scholar] [CrossRef]
- Ferreira, T.F.; Martins, F.F.; Cayres, C.A.; Amaral, P.F.F.; Azevedo, D.D.; Coelho, M.A.Z. Biosurfactant Production from the Biodegradation of N-Paraffins, Isoprenoids and Aromatic Hydrocarbons from Crude Petroleum by Yarrowia lipolytica IMUFRJ 50682. Fermentation 2023, 9, 21. [Google Scholar] [CrossRef]
- Martins, F.F.; Ferreira, T.F.; Azevedo, D.A.; Coelho, M.A.Z. Evaluation of Crude Oil Degradation by Yarrowia lipolytica. Chem. Eng. Trans. 2012, 27, 223–228. [Google Scholar] [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial Proteases and Their Applications. Front. Microbiol. 2023, 14, 1236368. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Erten, H. Production of Oils and Fats by Oleaginous Microorganisms with an Emphasis given to the Potential of the Nonconventional Yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic Substrate Utilisation by the Yeast Yarrowia lipolytica, and Its Potential Applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Al-Atoum, L. Virgin and Recycled Engine Oil Differentiation: A Spectroscopic Study. J. Environ. Manage. 2009, 90, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, J.; Xu, J.; Zhang, T.; Deng, Y.; He, J. Citric Acid Production in Yarrowia lipolytica SWJ-1b Yeast When Grown on Waste Cooking Oil. Appl. Biochem. Biotechnol. 2015, 175, 2347–2356. [Google Scholar] [CrossRef]
- Radha, P.; Prabhu, K.; Jayakumar, A.; AbilashKarthik, S.; Ramani, K. Biochemical and Kinetic Evaluation of Lipase and Biosurfactant Assisted Ex Novo Synthesis of Microbial Oil for Biodiesel Production by Yarrowia lipolytica Utilizing Chicken Tallow. Process Biochem. 2020, 95, 17–29. [Google Scholar] [CrossRef]
- Fabiszewska, A.U.; Zieniuk, B.; Kozłowska, M.; Mazurczak-Zieniuk, P.M.; Wołoszynowska, M.; Misiukiewicz-Stępień, P.; Nowak, D. Studies on Upgradation of Waste Fish Oil to Lipid-Rich Yeast Biomass in Yarrowia lipolytica Batch Cultures. Foods 2021, 10, 436. [Google Scholar] [CrossRef]
- Pereira, A.S.; Belo, I.; Lopes, M. Enhancing Microbial Lipids Synthesis for Biodiesel Production by Y. lipolytica W29 from Volatile Fatty Acids: Two-Stage Batch Strategies. Appl. Sci. 2022, 12, 8614. [Google Scholar] [CrossRef]
- Pereira, A.S.; Miranda, S.M.; Lopes, M.; Belo, I. Factors Affecting Microbial Lipids Production by Yarrowia lipolytica Strains from Volatile Fatty Acids: Effect of Co-Substrates, Operation Mode and Oxygen. J. Biotechnol. 2021, 331, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.S.; Lopes, M.; Miranda, S.M.; Belo, I. Bio-Oil Production for Biodiesel Industry by Yarrowia lipolytica from Volatile Fatty Acids in Two-Stage Batch Culture. Appl. Microbiol. Biotechnol. 2022, 106, 2869–2881. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Dulermo, T.; Ledesma-Amaro, R.; Nicaud, J.M. Optimization of Odd Chain Fatty Acid Production by Yarrowia Lipolytica. Biotechnol. Biofuels 2018, 11, 158. [Google Scholar] [CrossRef]
- Knothe, G. Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition. Energy Environ. Sci. 2009, 2, 759–766. [Google Scholar] [CrossRef]
- Patel, A.; Arora, N.; Mehtani, J.; Pruthi, V.; Pruthi, P.A. Assessment of Fuel Properties on the Basis of Fatty Acid Profiles of Oleaginous Yeast for Potential Biodiesel Production. Renew. Sustain. Energy Rev. 2017, 77, 604–616. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P.; Dwivedi, G. Impact of Alcohol on Biodiesel Production and Properties. Renew. Sustain. Energy Rev. 2016, 56, 319–333. [Google Scholar] [CrossRef]
- Knothe, G.; Razon, L.F. Biodiesel Fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Yaşar, F. Comparision of Fuel Properties of Biodiesel Fuels Produced from Different Oils to Determine the Most Suitable Feedstock Type. Fuel 2020, 264, 116817. [Google Scholar] [CrossRef]
Total petroleum hydrocarbons (TPH) (C10–C40 fraction) (%, w/w) | 72.5 |
Polycyclic aromatics hydrocarbons (PAH) fraction (mg·kg−1) | 870 |
Naphthalene | 190 |
Phenanthrene | 170 |
Fluorene | 130 |
Pyrene | 74 |
Anthracene | 71 |
Fluoranthene | 41 |
Y. lipolytica Strain | WMO (g·L−1) | Biomass (g·L−1) | Total WMO Consumed (g·L−1) | Yx/s (g·g−1) |
---|---|---|---|---|
2 | 1.0 ± 0.1 a | 0.65 ± 0.05 a | 1.5 ± 0.3 a | |
CBS 2075 | 5 | 0.5 ± 0.1 a | 0.5 ± 0.2 a | 0.99 ± 0.05 a |
10 | 0.50 ± 0.04 a | 0.5 ± 0.1 a | 1.0 ± 0.1 a | |
2 | 0.7 ± 0.1 a | 0.9 ± 0.1 a | 0.7 ± 0.1 a | |
DSM 8218 | 5 | 0.7 ± 0.1 a | 1.3 ± 0.1 a | 0.58 ± 0.03 a |
10 | 1.4 ± 0.3 a | 2.3 ± 0.5 a | 0.6 ± 0.2 a |
Y. lipolytica Strain | Strategy | Total WMO Consumed (g·L−1) | Yx/s (g·g−1) | Protmax (U·L−1) | Lipidsmax (g·L−1) |
---|---|---|---|---|---|
CBS 2075 | 1 pulse | 2.5 ± 0.2 | 1.1 ± 0.3 | 581 ± 29 | 1.4 ± 0.2 |
5 pulses | 2.4 ± 0.4 | 1.1 ± 0.4 | 628 ± 37 | 1.7 ± 0.3 | |
DSM 8218 | 1 pulse | 2.2 ± 0.1 | 0.8 ± 0.3 | 204 ± 10 | 1.05 ± 0.01 |
5 pulses | 2.3 ± 0.2 | 1.1 ± 0.4 | 593 ± 30 * | 1.3 ± 0.3 |
Y. lipolytica Strain | Strategy | Relative Fatty Acid Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C17:1 | C18:0 | C18:1 | C18:2 | UFA (%) | SFA (%) | ||
CBS 2075 | 1 pulse | 16 ± 2 a | 9.2 ± 0.2 a | 5.4 ± 0.2 a | 19 ± 1 a | 25 ± 1 a | 25 ± 1 a | 64 ± 3 a | 36 ± 2 a |
5 pulses | 21 ± 4 a | 8 ± 2 a | n.d | 20 ± 1 a | 25 ± 2 a | 26 ± 2 a | 59 ± 1 a | 41 ± 3 a | |
DSM 8218 | 1 pulse | 11 ± 2 a | 12 ± 1 a | n.d | 21 ± 1 a | 27 ± 1 a | 28 ± 1 a | 68 ± 1 a | 32 ± 1 a |
5 pulses | 17 ± 3 b | 11.9 ± 0.3 a | n.d | 20 ± 1 a | 25 ± 1 a | 27 ± 1 a | 64 ± 3 a | 36 ± 1 a |
Properties | Y. lipolytica CBS 2075 | Y. lipolytica DSM 8218 | Biodiesel from Y. lipolytica Strains [1,2,3,4] | EU Biodiesel Standard EN 14214 [5] |
---|---|---|---|---|
Density (kg·m−3) | 874 | 883 | 856–1019 | 860–900 |
Kinematic viscosity (mm2·s−1) | 4 | 4 | 3.6–6.4 | 3.5–5.0 |
Cetane number | 56 | 54 | 53–64 | 51 min |
Higher heating value (MJ·kg−1) | 39 | 40 | 37–41 | NS |
Cloud point (°C) | 6 | 4 | 11–17 | NS |
Oxidative stability (h) | 7 | 7 | 7–33 | 6 min |
Iodine value (mg I2/100 g) | 78 | 83 | 30–66 | 120 max |
Degree of unsaturation | 85 | 91 | 7.4 | NS |
Cold filter plugging point (°C) | 22 | 20 | −9.3–31 | NS * |
Pour point (°C) | −0.2 | −3 | 5–12 | NS |
Saponification value (mg·g−1) | 204 | 206 | 167–256 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, S.M.; Belo, I.; Lopes, M. Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source. J. Fungi 2024, 10, 777. https://doi.org/10.3390/jof10110777
Miranda SM, Belo I, Lopes M. Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source. Journal of Fungi. 2024; 10(11):777. https://doi.org/10.3390/jof10110777
Chicago/Turabian StyleMiranda, Sílvia M., Isabel Belo, and Marlene Lopes. 2024. "Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source" Journal of Fungi 10, no. 11: 777. https://doi.org/10.3390/jof10110777
APA StyleMiranda, S. M., Belo, I., & Lopes, M. (2024). Unraveling the Potential of Yarrowia lipolytica to Utilize Waste Motor Oil as a Carbon Source. Journal of Fungi, 10(11), 777. https://doi.org/10.3390/jof10110777