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Abstract: This study developed and validated a robust UPLC-MS/MS method for quantifying
cyclic glycine–proline (cGP) in mangrove-derived Penicillium and Aspergillus strains. The method
demonstrated excellent linearity, precision, and recovery, with detection limits as low as 4.8 ng/mL.
Penicillium pedernalense extract achieved a cGP content of 67.45 ± 1.11 ng/mL, with a corresponding
fermentation yield of 29.31 ± 0.61 mg/L. This surpassed Penicillium steckii, which reached a content
of 31.71 ± 0.31 ng/mL, with a yield of 8.51 ± 0.15 mg/L. This quantitative approach for metabolite
analysis provides a viable method for screening these fungal strains, highlighting their potential for
sustainable production of cyclic glycine–proline (cGP).

Keywords: UPLC-MS/MS; cyclic glycine–proline; Penicillium pedernalense; quantitative approach

1. Introduction

Cyclic glycine–proline (cGP, 1, Figure 1) is a widely studied marine-derived cyclic
peptide characterized by a conformationally constrained diketopiperazine (DKP) core [1,2].
Known for its neuroprotective properties, cGP has shown great potential for therapeutic ap-
plications, particularly in treating neurological disorders by modulating insulin-like growth
factor 1 (IGF-1) homeostasis [3]. The pharmaceutical promise of cGP is further exemplified
by its inclusion in drug candidates like NNZ-2591 (2, Figure 1), which is currently in Phase
II clinical trials for treating Prader–Willi syndrome and Angelman syndrome, underscoring
its importance in modern drug development [4]. In addition, cGP is utilized in nutraceutical
products such as cGPMAX™ for cognitive and cardiovascular health in older adults [5].
Beyond its role in IGF-1 regulation, cGP is a valuable building block for preclinical drug
candidates (Compounds 3–5, Figure 1) with a wide range of biological activities [6–8].
Compound 3, built on the cGP scaffold, enhances serotonin receptor inhibition with an
IC50 of 1.86 µM—two orders of magnitude better than the prototype. Other cGP-derived
molecules, such as the D2R modulator (4) and CSP-2503 (5), demonstrate strong bioactivity,
further establishing cGP as a key component in drug discovery.

The biosynthesis of cGP via biological processes is still a vital area of interest despite the
development of synthetic methods for cGP scaffold [9,10]. Advances have been made using
engineered Escherichia coli expressing specific enzymes, such as non-ribosomal peptide
synthetases and cyclodipeptide synthases, to construct this specific peptide bond [11,12].
However, efficient biosynthesis from amino acids like proline and glycine continues to
face major challenges related to precise peptide bond formation and selectivity [13]. This
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has spurred research into natural metabolic processes, particularly in marine fungi, which
exhibit special physiological abilities in harsh conditions [14,15].
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Mangrove-derived fungi, such as Penicillium and Aspergillus species, have emerged
as promising sources of cGP due to their rich secondary metabolite production under
the unique marine conditions [16]. These fungi offer a sustainable and possibly high-
yield alternative for cyclic peptide production. However, to harness their full capacity,
efficient screening of wild strains is necessary to facilitate gene cluster mining and identify
biosynthetic pathways that can be optimized for industrial applications [17].

Advanced analytical techniques such as Selected Reaction Monitoring (SRM) have
become essential to support this exploration [18]. The high-resolution mass spectrome-
try method provides the specificity, sensitivity, and precision needed to quantify small
molecules in complex mixtures [19–21]. Using a triple-quadrupole mass spectrometer offers
superior mass accuracy, resolution, and ease of data acquisition compared to traditional
HPLC, making it an indispensable tool in metabolomics and natural product discovery.

In this study, we aim to develop a robust UPLC-MS/MS method utilizing an SRM
method to quantify cGP in fungal fermentation extracts (Figure 2). This approach will be
applied to Penicillium and Aspergillus strains to assess their biosynthetic capacity, offering
new insights into sustainable cGP production and laying the foundation for upcoming
biology and drug development applications.
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UPLC-MS/MS-SRM approach to measure cyclic glycine–proline content.

2. Materials and Methods
2.1. Materials

Marine-derived fungal strains, including species of Penicillium and Aspergillus, were
obtained from the low-temperature (−20 ◦C) strain storage of the Xiamen Key Laboratory
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of Marine Natural Product Resources, Xiamen Medical College, China. Cyclic glycine–
proline (≥98% purity) was purchased from Bide Pharmatech Co. Ltd. (Shanghai, China).
Chromatographic-grade chemicals such as methanol and ethyl acetate, were used through-
out the study.

2.2. Fungal Strain Culture and Fermentation and Sample Preparation

A total of 15 fungal strains were utilized in this study. The strains were initially
activated on sterilized Potato Dextrose Agar (PDA) and incubated at 28 ◦C for 4 days
in sealed containers. Once the spores matured, approximately 1 cm³ of the culture was
transferred to a 1 L Erlenmeyer flask containing 500 mL of sterilized Potato Dextrose Broth
(PDB). The cultures were then incubated at 28 ◦C with shaking at 180 rpm for 7 days.
Additionally, an uninoculated blank PDB medium was cultured as a parallel control group
under the same conditions.

Following incubation, the fungal mycelium was separated from the culture broth and
extracted three times with 200 mL of ethyl acetate. The combined organic phases were
concentrated under reduced pressure, yielding crude ethyl acetate extract. Subsequently,
ultrasound-assisted extraction of the mycelium was performed using 200 mL methanol
for 30 min, followed by centrifugation and three additional extractions. The combined
methanol extracts were evaporated to dryness, producing a crude methanol extract. The
methanol residue was mixed with 100 mL of water and further extracted three times with
100 mL of ethyl acetate. The ethyl acetate layers and methanol residues were combined
and concentrated to yield the crude metabolite. The blank control group underwent the
same post-treatment procedure as described for the fungus extraction; the extract from the
blank control group was also collected.

A 10 mg portion of crude extract from both the fermented samples and the blank con-
trol group was dissolved in chromatographic-grade methanol to prepare a test solution with
a concentration of 20.0 µg/mL. Additionally, 10 mg of the cGP standard was dissolved in
methanol to prepare standard solutions with a concentration range of 20–220 ng/mL. Both
test and standard solutions were then filtered through a 0.22 µm microporous membrane
into a small vial for subsequent UPLC-MS/MS analysis. Notably, the relative abundance
values for the fungal extract were calculated by subtracting the blank control value from
the detected peak area of the fungal extract.

2.3. UPLC-MS/MS Methods

In the SRM assay, a Shimadzu Nexera X2 LC-30AD UHPLC system, coupled with a
Shimadzu triple quadrupole mass spectrometer (Kyoto, Japan), was used for the separation
and detection of target metabolites. A Shim-pack XR-ODS III column (75 × 2 mm i.d.,
1.6 µm) was employed for the target dipeptide separation at 35 ◦C. Mobile phase A consisted
of 0.1% formic acid in water, and mobile phase B in methanol. A linear gradient elution was
used as follows: 0~4 min, 5~40% B; 4~4.5 min, 40~100% B; 4.5~6.5 min, 100% B; 6.5~6.6 min,
100~5% B; 6.6~10 min, 5% B, with a flow rate of 0.3 µL/min.

Key MS parameters included a spray voltage of 4Kv, gas flow rates (nebulizer: 2 L/min,
heating: 10 L/min, dry gas: 10 L/min), interface temperature of 300 ◦C, and desolvation
line (DL) temperature of 250 ◦C. For the product ion scan, the precursor ion was set at m/z
155.00, with a scan range of 20~200 and a time interval of 0.2 s.

2.4. Data and Statistical Analysis

All experiments were conducted in triplicate or sextuplicate, and results were ex-
pressed as mean ± standard deviation (SD). The relative standard deviation (RSD) was
calculated to assess intra- and inter-day precision and spike-recovery. Calibration curves
were generated across a concentration range of 20~220 ng/mL, with R2 > 0.999 indicating
excellent linearity. Statistical significance was determined using GraphPad Prism 9.0, with
a p-value of <0.05 considered significant.
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3. Results and Discussions
3.1. Fungal Strain Growth and Morphology

The 15 marine mangrove-sourced fungal strains, comprising 7 Aspergillus and 8 Peni-
cillium species, displayed distinct growth patterns on PDA (Figure 3). Colony diameters
ranged from 20 to 45 mm, with textures varying from cottony to woolly and abundant
aerial mycelia. Both genera formed mycelial pellets that were either spherical or oval, with
minor morphological differences in shape and structure. However, Aspergillus strains were
characterized by fast-growing dense mycelial networks, while Penicillium strains showed
slower growth with more loosely branched mycelia [22].
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The mature spores of each species were inoculated into sterilized media for incubation.
After seven days of fermentation, crude extracts were obtained for subsequent cGP content
analysis. Despite their physical similarities, these fungi from marine mangroves offer
the potential to biosynthesize a diverse array of valuable secondary metabolites under
controlled fermentation conditions.

3.2. Quantification and Monitoring of cGP

In SRM mode, the parent ion with the highest response was predefined. After under-
going collision-induced fragmentation in Q2, specific sub-ions were filtered in Q3 before
being transmitted to the detector [23]. The peak areas of these transitions enabled precise
analysis of target metabolites within complex secondary mixtures. Building on the research
of Furtado [24], which characterized the secondary mass spectrum of cGP derivatives from
Aspergillus fumigatus, it was confirmed that the main product ions of cGP differ significantly
from those of its derivatives due to their unique fragmentation patterns. For example, the
product ion at m/z 70 is almost absent in the derivatives, while a distinct ion at m/z 82
remains characteristic of cGP. This allowed us to leverage this highest response strength
of ion fragments in SRM mode for effective quantification of cGP, avoiding interference
from homologous compounds. For optimal conditions, we selected parent ion at m/z
155.05 with a Q1 pre-selection deviation of −0.012 Da and collision energies ranging from
−21.0 to −22.0 kV. These conditions generated specific sub-ions at m/z 70.15 and m/z 82.10,
which showed the highest response values and specificity for cGP quantification. The Q3
pre-selection deviations for these sub-ions ranged between −0.015 and −0.013 Da, with the
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ions designated as quantitative and qualitative ions, respectively. Additionally, alternative
sub-ion fragments generated from the parent ion fragmentation, including m/z 58.05, m/z
99.15, and m/z 127.10, are proposed in their structures in Figure 4.
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m/z 155.05 and its characteristic product ions at m/z 70.15 and 82.10, along with alternative sub-ion
fragments generated from parent ion fragmentation.

Qualitative monitoring of 15 wild-type marine mangrove fungal fermentation extracts
using UPLC-MS/MS in SRM mode, based on the characteristic ions of cGP at m/z 70.15
and m/z 82.10, revealed the biosynthetic potential of these strains. While several strains
demonstrated potential for cGP biosynthesis, Penicillium incoloratum, Penicillium citrinum,
and Aspergillus alabamensis showed notable results. However, the highest abundance of
cGP was observed in Penicillium pedernalense and Penicillium steckii (Figure 5).
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Figure 5. High-efficiency screening of wild-type fungal strains from marine mangroves using
UPLC-MS/MS-SRM (Note: Relative abundance is calculated as the detected peak area minus the
blank control. A negative value indicates a lower peak area than the control, suggesting a weaker
biosynthetic activity).

3.3. Method Validation

The method was validated in line with FDA guidelines for bioanalytical method
validation, focusing on sensitivity, linearity, precision, and accuracy. A highly specific,
cost-effective SRM analysis method was developed using a triple quadrupole MS, targeting
the quantitative characteristic ions of cGP at m/z 70.15.

The limit of detection (LOD) for cGP was determined to be 4.8 ng/mL, and the
limit of quantification (LOQ) was 16.0 ng/mL, based on signal-to-noise ratios of 3 and
10, respectively (Figure 6a,b). Standard calibration curves were generated in SRM mode
by analyzing standard dilutions across a linear concentration range of 20–220 ng/mL.
Six concentration levels were analyzed in triplicate to quantify cGP based on relative
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abundance. The resulting regression equation for the standard curve was y = 3199x + 9472,
with a correlation coefficient of R2 > 0.999 (p < 0.0001) (Figure 6c).
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Figure 6. (a) LOD and (b) LOQ determination for cGP quantification in SRM mode, and (c) Cal-
ibration curve of standard solution. Note: The black signal line in the left figures represents the
monitoring result of the quantitative ion of cGP at m/z 70.10, while the pink signal line corresponds
to the monitoring of the qualitative ion of cGP at m/z 82.10. The signal-to-noise ratio (S/N) is
calculated as the signal (S) divided by the noise (N). Detailed values are provided in Table S3 in the
Supplementary Information.

The method was also validated for both intra-day and inter-day precision. Intra-day
precision (repeatability) was assessed by performing six repeated analyses (n = 6) of a
standard solution at specified concentration levels within a single day, with precision
expressed as the relative standard deviation (RSD) of the replicate measurements. (Table 1)
Inter-day precision was evaluated over three separate days within one week to measure
reproducibility. The RSD for the repeatability was 1.65% with a mean concentration of
67.45 ng/mL, while the RSD for inter-day precision was 1.54%, with a mean concentration
of 67.61 ng/mL—both meeting the acceptance criteria (≤15% deviation). Additionally,
recovery was assessed using spiked standard solutions at concentrations of 33.5 ng/mL
and 67.0 ng/mL. The recovery ranged from 85.70% to 90.00%, with an RSD of 1.60% to
2.98%, indicating consistent performance across concentration levels. These validation
results confirm that the method demonstrates excellent sensitivity, linearity, precision, and
recovery, with no observed interference from endogenous components during ionization,
further reinforcing the method’s reliability.

Table 1. Validation of method by intra-day and inter-day precision and recovery. Precision was
evaluated with a cGP standard solution at 20 µg/mL.

Repeatability
(% RSD, n = 6)

Precision
(% RSD, n = 6)

Recovery (%, n = 6)

33.5 ng/mL 67.0 ng/mL

Mean (ng/mL) RSD Mean (ng/mL) RSD Mean RSD Mean RSD

67.45 1.65 67.61 1.54 88.62 2.90 90.04 1.60

3.4. Results of cGP Content

The validated method demonstrated excellent performance, confirming its effective-
ness for quantifying cGP content in marine mangrove-derived fungal extracts. This method
was specifically applied to fermentation extracts from Penicillium pedernalense and Peni-
cillium steckii, with the results summarized in Table 2. The cGP content in Penicillium
pedernalense was found to be 67.45 ng/mL, while Penicillium steckii produced 31.71 ng/mL.
In terms of production yield, Penicillium pedernalense exhibited a significantly higher cGP
yield (29.31 mg/L) compared to Penicillium steckii (8.51 mg/L). Both Penicillium pedernalense
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and Penicillium steckii demonstrated productivity levels that are competitive with filamentous
fungus strains, underscoring their feasibility for industrial applications.

Table 2. Results of cGP content and corresponding fermentation yield.

Sample Measured Content
(ng/mL, Mean ± SD)

Production
(mg/L, Mean ± SD)

Penicillium pedernalense 67.45 ± 1.11 29.31 ± 0.61 a

Penicillium steckii 31.71 ± 0.31 8.51 ± 0.15 a

Blank control 14.15± 0.16 --
Note: ‘a’ refers to the fermentation yield calculated based on the actual content, determined by subtracting the
blank control content from the measured content.

Although wild-type fungal yields can be enhanced through genetic modification and
fermentation optimization, the production levels of Penicillium pedernalense and Penicillium
steckii demonstrate competitive and potentially superior productivity under the conditions
tested in this study. Our findings suggest that Penicillium pedernalense and Penicillium
steckii naturally produce cGP efficiently, even under unoptimized fermentation conditions.
Given the challenges associated with the chemical synthesis of cyclic peptides, biosynthetic
pathways utilizing marine fungi offer a promising alternative for sustainable production.
Furthermore, the ability to produce significant quantities of cGP opens new avenues for its
application in the pharmaceutical and nutraceutical industries.

4. Conclusions

The marine mangrove fungal strains exhibited distinct growth patterns, with As-
pergillus forming fast-growing, dense mycelial networks, while Penicillium displayed slower
growth with loosely branched mycelia. Following fermentation, crude extracts were ob-
tained for cGP content analysis, which illustrated the capability of marine-derived fungi
from mangroves for the production of valuable secondary metabolites.

This work effectively established and validated a UPLC-MS/MS method for the
quantification of cyclic glycine–proline (cGP) in fungal extracts obtained from mangroves.
The method demonstrated excellent sensitivity, precision, and recovery, confirming its
reliability for studying cyclic peptide biosynthesis. Both tested fungi produced significant
amounts of cGP, with P. pedernalense having a superior yield of 29.31 mg/L, demonstrating
their feasibility for sustainable production and promising industrial applications in drug
development and biotechnology [25].

Future research could focus on optimizing fermentation parameters and employing
genetic engineering techniques to enhance cGP yields in these strains [26]. Also, study-
ing other fungi that grow in mangroves might help find new sources of cGP or related
bioactive compounds, which would help create more environmentally friendly ways for
pharmaceuticals. The significance of this study lies in its contribution to sustainable ma-
rine biotechnology, particularly through quantitative metabolite tracking for precise strain
screening, which can be employed for high-value compound production while eliminating
the petrochemical consumptions for conventional synthetic approaches.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof10110779/s1. Figure S1: Full scan mass spectrum of cGP standard;
Figure S2: Product scan mass spectrum of cGP standard; Table S1: SRM parameter optimization
results; Figure S3: SRM chromatogram of the standard at a concentration of 0.14 µg/mL; Figure S4:
SRM chromatogram of the blank control; Table S2: Screening of wild-type fungal strains from marine
mangroves; Figure S5: SRM chromatogram of the Penicillium pedernalense; Figure S6: SRM chromatogram
of the Penicillium steckii; Table S3: LOD and LOQ; Table S4: Calibration curve of standard; Table S5:
Precision results; Table S6: Repeatability results; Table S7: Recovery results.

https://www.mdpi.com/article/10.3390/jof10110779/s1
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